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Abstract. In math we typically assume a set of axioms to prove a theorem.

In reverse mathematics, the premise is reversed: we start with a theorem and

try to determine the minimal axiomatic system required to prove the theorem
(over a weak base system). This produces interesting results, as it can be

shown that theorems from different fields of math such as group theory and

analysis are in fact equivalent. Also, using reverse mathematics we can put
theorems into a hierarchy by their complexity such that theorems that can be

proven with weaker subsystems are “less complex”. This paper will introduce

three frequently used subsystems of second-order arithmetic, give examples as
to how different theorems would compare in a hierarchy of complexity, and

culminate in a proof that subsystem ACA0 is equivalent to the statement that
the range of every injective function exists.
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1. Introduction

Reverse mathematics is a relatively new program in logic with the aim to deter-
mine the minimal axiomatic system required to prove theorems. We typically start
from axioms A to prove a theorem τ . If we could reverse this to show that the
axioms follow from the theorem, then this would demonstrate that the axioms were
necessary to prove the theorem. However, it is not possible in classical mathematics
to start from a theorem to prove a whole axiomatic subsystem. A weak base theory
B is required to supplement τ . If B+ τ can prove A, this proof is called a reversal.
Then we can conclude that A and τ are equivalent over B.

This paper will introduce reverse mathematics at a level accessible to undergrad-
uate mathematics majors. No prior knowledge of logic is needed. This paper will
draw heavily from Simpson’s reverse mathematics text [2].
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2. Second order arithmetic (Z2)

In reverse mathematics, subsystems of second-order arithmetic (Z2) are most
often used. Z2 is a formal system consisting of language L2 and some axioms.
From these axioms, we can deduce formulas, called theorems of Z2. A subsystem
of second-order arithmetic is a formal system consisting of language L2 and axioms
that are theorems of Z2; a subsystem consists of some of the theorems of Z2, so it
is just a fragment of Z2.

The language of second-order arithmetic L2 is a first-order theory and is two-
sorted—that is, there are two kinds of variables. The first kind represent individual
natural numbers and is denoted by lowercase letters. The second kind represent sets
of natural numbers and is denoted by uppercase letters. The language has constants
0 and 1 and binary operations · and +. The atomic formulas of this language are
x = y, x < y, and x ∈ A, where x and y are natural numbers and A is any
set variable. Formulas are constructed from atomic formulas using propositional
connectives ∧, ∨, ¬, →, and ↔, and quantifiers ∀ (for all) and ∃ (exists).

The axioms of second-order arithmetic consist of:
1) the axioms of Peano arithmetic (such as the existence of additive and

multiplicative identity, associativity and commutativity of addition and
multiplication, the distributive law)

2) the induction axiom:

(2.1) (0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X))→ ∀n(n ∈ X)

3) the comprehension scheme:

(2.2) ∃X∀n(n ∈ X ↔ ϕ(n))

where ϕ(n) is any L2 formula where X does not occur freely. We use the
comprehension scheme to show a set exists in Z2 by defining the set abstractly
with ϕ(n). For example, if X is the set of even numbers, then ϕ(n) could be
∃m(m+m = n). Also, for any finite set of natural numbers X, there is a formula
ϕ(n) that defines it. For the set X={1, 23, 125}, one possible formula ϕ(n) that
can be used is one that formalizes the statement:

(the nth prime divides p1 · p23 · p125)

where pi is the ith prime. This works because of the uniqueness of prime power
decomposition.

In reverse mathematics, the five most commonly used subsystems in increasing
logical strength are RCA0, WKL0, ACA0, ATR0, and Π1

1-CA0. The initial three
subsystems will be discussed in subsequent sections.

The 0 subscript in the subsystem abbreviations means that induction is re-
stricted. Let X be the set that exists due to the comprehension scheme with
ϕ(n). Then the induction axiom becomes the second-order induction scheme:

(2.3) (ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1)))→ ∀n ϕ(n).

In the five aforementioned subsystems, we cannot use just any L2 formula ϕ(n) in
the induction scheme. The formulas must have a specific form, hence the subsystems
have restricted induction schemes.



REVERSE MATHEMATICS 3

3. Arithmetical Formulas

For each subsystem, induction is restricted to a certain level of arithmetical
formula; there are limitations to what ϕ(n) can be used in the induction scheme.
Different types of arithmetical formula are denoted by Σ0

n,Π
0
n, and ∆0

n. The 0
superscript indicates that quantifiers (∃ and ∀) range over numbers as opposed to
sets of numbers.

The following expressions are bounded number quantifiers:

∀n < t,∀n ≤ t,∃n < t,∃n ≤ t.
A bounded quantifier formula is a formula whose quantifiers are all bounded number
quantifiers. For example, ∃m ≤ n(n = m+m) is a bounded quantifier formula that
asserts n is even. The class of bounded-quantifier formulas is Σ0

0 (Π0
0).

An L2 formula is Σ0
n if it has form:

(∃y1)(∀y2)(∃y3) · · · (Qyn) θ

where yi are number variables and θ is a bounded quantifier formula. The quanti-
fiers alternate between ∃ and ∀.

An L2 formula is Π0
n if it has form:

(∀y1)(∃y2)(∀y3) · · · (Qyn) θ

where yi are number variables and θ is a bounded quantifier formula.
An L2 formula is ∆0

n if it is both Σ0
n and Π0

n.
We also use this hierarchy to classify sets as Σ0

n, Π0
n, and/or ∆0

n. A set is at
a particular level of the hierarchy if it is defined by a formula at that level. For
example, the set of even numbers B is Σ0

0 because a Σ0
0 formula can be used to

describe the set:
n ∈ B ↔ ∃m ≤ n(n = m+m).

The Σ0
1 induction scheme is the restriction of the second-order induction scheme

as in Equation 2.3 to ϕ(n) that are Σ0
1. Similarly, the ∆0

1 comprehension scheme is
the restriction of the comprehension scheme as in Equation 2.2 to ϕ(n) that are ∆0

1.
If a formula is of form, say, Σ0

n, it may or may not be ∆0
n. We would have to check

every Π0
n formula for equivalence to the Σ0

n formula. Thus, the ∆0
1 comprehension

scheme consists of all formulas of form

∀n(ψ(n)↔ ϕ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ(n) is a Σ0
1 formula and ψ(n) is a Π0

1 formula.
In all the subsystems, induction is restricted to Σ0

1 formulas. The subsystems
have different comprehension schemes, so the stronger the subsystem’s comprehen-
sion scheme, the logically stronger the subsystem is.

4. Recursive comprehension axiom (RCA0)

RCA0 is typically used as the weak base theory in reverse math. Most theorems
from mathematics are either equivalent to RCA0, or equivalent to WKL0, ACA0,
ATR0, or Π1

1-CA0 over RCA0. ATR0 and Π1
1-CA0 are stronger subsystems that

will not be discussed in this paper.
RCA0 is a subsystem of second-order arithmetic that consists of the axioms of

Peano arithmetic, the Σ0
1 induction scheme, and the ∆0

1 comprehension scheme. A
set X is the comprehension of a Σ0

1 formula if and only if it is recursively enumer-
able. Similarly, a set X is the comprehension of a ∆0

1 formula if and only if it is
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computable (recursive)— equivalently, if and only if there is an algorithm that can
determine whether or not a given natural number n is in X.

A structure of a set or system describes its variables and non-logic symbols
(constants, operations) that yield relations between variables. For example, the
structure of the rational numbers is (Q,+Q,−Q,×Q, 0Q, 1Q, <Q,=Q). A model of
a set of formulas is a structure with the same non-logic symbols, and all formulas
in the set are in the model as well. Computability theorists define ω-models (ω
denotes the natural numbers, the range of the number variables in an ω-model is
the natural numbers) of subsystems. An ω-model S of RCA0 must satisfy the
following properties:

1. S 6= ∅
2. A ∈ S and B ∈ S imply A⊕B ∈ S
3. A ∈ S and B ≤T A(B is Turing reducible to A) imply B ∈ S.

[See [3] for a guide to computability theory.]

Not surprisingly, the minimum ω-model of RCA0 is the computable sets. More
precisely, the minimum ω-model has structure:

( ω︸︷︷︸
range
of the
number
variables

, {X ⊆ ω : X is computable}︸ ︷︷ ︸
range of
the set
variables

, +,×︸︷︷︸
number
variable

operations

, 0, 1︸︷︷︸
number
variable
constants

, <︸︷︷︸
number
variable
relation

).

RCA0 says we can assume a set of natural numbers exists only if we can compute
the set. Thus, RCA0 cannot prove the existence of non-computable sets.

The following examples are computable, hence in RCA0.

Examples 4.1. The following exist in RCA0: (i) constant functions, (ii) function
composition, and (iii) characteristic functions.

Proof. (i) Define a function f = {(x, y)|ϕ(x)}. In the tuple (x, y), x is the function’s
input, y is the output, and ϕ is the formula of the function that relates the two.
Let c ∈ N be a constant. In the function f = {(x, y)|y = c}, the formula y = c
is Σ0

0, so f exists by Σ0
0 comprehension.

(ii) Let f : A→ B and g : B → C be two functions. Define their composition
h : A→ C by h = {(x, y)|x ∈ A ∧ ∀z((x, z) ∈ f → (z, y) ∈ g)}, which is Π0

1.
Alternatively we can write h = {(x, y)|∃z ∈ B((x, z) ∈ f ∧ (z, y) ∈ g)}, which
is Σ0

1. Hence, h is ∆0
1 and exists by ∆0

1 comprehension.
(iii) A characteristic function of a set outputs 1 if the input is in the set and 0 if

the input is not in the set. For a set A, the characteristic function

χA = {(x, y)|(x ∈ A ∧ y = 1) ∨ (x /∈ A ∧ y = 0)}

exists by Σ0
0 comprehension. In future proofs, a ∈ A or a 6∈ A is assumed

provable in RCA0 since χA(a) exists. �

A variety of mathematical objects can be encoded in RCA0.

Examples 4.2. The following can be encoded in RCA0: (i) Finite sets, tuples,
numbers in (ii) Z, (iii) Q, and (iv) R, and (v) computable sequences and functions.

Proof. (i) Finite sets and tuples can be encoded with prime numbers as discussed
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earlier (because of the uniqueness of prime power decomposition).
(ii) For Z, each integer can be encoded as an (N,N) tuple.

Let b ∈ N be the tuple (b, 0), so then integer a = (m,n) = m− n.
We can have the following operations and relations:

(m,n) +Z (p, q) = (m+ p, n+ q)

(m,n)−Z (p, q) = (m+ q, n+ p)

(m,n)×Z (p, q) = (m× p+ n× q,m× q + n× p)
(m,n) <Z (p, q) ↔ m+ q < n+ p

(m,n) =Z (p, q) ↔ m+ q = n+ p

In RCA0, we can show Z,+,−,×, 0, 1, < is an integral domain.
(iii) For Q, recall that any rational number can be expressed as the quotient of

m
n where m is an integer and n is a positive integer.
Then any rational number can be encoded as a tuple (Z,Z+) with the following
operations and relations:

(m,n) +Q (p, q) = (m× q + n× p, n× q)
(m,n)−Q (p, q) = (m× q − n× p, n× q)
(m,n)×Q (p, q) = (m× p, n× q)
(m,n) <Q (p, q) ↔ m× q < n× p
(m,n) =Q (p, q) ↔ m× q = n× p

In RCA0, we can show Q,+,−,×, 0, 1, < is an ordered field.
(iv) For R, a real number can be expressed as a sequence of rational numbers
{qk} (k ∈ N) such that ∀k∀i(|qk − qk+i| ≤ 1

2k
).

With N, Z, and Q numbers, two numbers q and q′ are equal with the ∆0
0 formula

q = q′. Two real numbers {qk} and {q′k} are equal if the following is true:

∀k
(
|qk − q′k| ≤

2

2k

)
In contrast, this formula is Π0

1. An equivalent Σ0
1 formula is needed for ∆0

1

comprehension, so proving two real numbers are equal in RCA0 is problematic.
(v) Sequences and functions that are computable can be encoded in RCA0 by

definition of RCA0. �

Theorem 4.3. The following theorems are provable in RCA0:
(i) the intermediate value theorem

(ii) the Baire category theorem
(iii) the Tietze extension theorem for complete separable metric spaces
(iv) the soundness theorem
(v) Gödel’s completeness theorem

(vi) the Banach-Steinhaus theorem
[Various Authors]

Although RCA0 is the weakest subsystem, it is sufficient to prove basic proper-
ties of numbers as in Examples 4.2(ii-iv), theorems used in calculus, algebra, and
analysis, even theorems used in topology such as the Baire category theorem.
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Next we will prove primitive recursion and some results that will be used in the
final proof.

Theorem 4.4. Primitive Recursion
The following is provable in RCA0:
For any two functions f : Nk → N and g : Nk+2 → N, there exists a unique function
h : Nk+1 → N defined by

h(0, n1, · · · , nk) = f(n1, · · · , nk)

h(m+ 1, n1, · · · , nk) = g(h(m,n1, · · · , nk),m, n1, · · · , nk)

Proof. Let θ(s,m, 〈n1, · · · , nk〉) be a formula that says: (i) s ∈ N<N is the code
of the finite sequence 〈s(0), · · · , s(m)〉, which has length m + 1; (ii) the sequence
that s codes for is recursively defined by s(0) = f(n1, · · · , nk), and for all i < m,
s(i+ 1) = g(s(i), i, n1, · · · , nk).

The formula ∃s θ(s,m, 〈n1, · · · , nk〉) is Σ0
1. Thus, for each fixed finite sequence

〈n1, · · · , nk〉 ∈ Nk, we can prove there exists a sequence that fulfills (i) and (ii):
∃s θ(s,m, 〈n1, · · · , nk〉) by Σ0

1 induction on m.
If θ(s,m, 〈n1, · · · , nk〉) and θ(s′,m, 〈n1, · · · , nk〉) hold, then s(i) = s′(i) by in-

duction on i < m + 1. In other words, for a fixed m and 〈n1, · · · , nk〉, the code s
for the sequence is unique. It follows from the previous sentence that for a fixed
m and 〈n1, · · · , nk〉, the existence of a sequence that meets (i) and (ii) with last
element j is equivalent to the statement that all sequences that meet (i) and (ii)
imply that j is the last element. So for all 〈n1, · · · , nk〉 ∈ Nk, m, and j,

∃s(θ(s,m, 〈n1, · · · , nk〉) ∧ s(m) = j)↔ ∀s(θ(s,m, 〈n1, · · · , nk〉)→ s(m) = j)

The left statement is Σ0
1 and the right statement is Π0

1, and since the statements
are equivalent this is ∆0

1. Hence by ∆0
1 comprehension (the comprehension scheme

of RCA0), there exists the function h : Nk+1 → N such that

h(m,n1, · · · , nk) = j

if and only if ∃s(θ(s,m, 〈n1, · · · , nk〉) ∧ s(m) = j). The function h fulfills the
properties of the theorem. �

Theorem 4.5. Minimization
The following is provable in RCA0:
Let function f : Nk+1 → N be such that for all 〈n1, · · · , nk〉 ∈ Nk there exists m ∈ N
such that f(m,n1, · · · , nk) = 1. Then there exists g : Nk → N defined by

g(n1, · · · , nk) = least m such that f(m,n1, · · · , nk) = 1.

Proof. Define the function g as a set of tuples (Nk [input],N [output]) as follows:

g = {(〈n1, · · · , nk〉,m)|(〈m,n1, · · · , nk〉, 1) ∈ f∧¬(∃j < m)((〈j, n1, · · · , nk〉, 1) ∈ f)}

This set exists by Σ0
0 comprehension, so it exists in RCA0. Also, g defined as such

fulfills the theorem’s conditions. �

Lemma 4.6. The following can be proven in RCA0: for any infinite set A ⊆ N,
there exists a function πA : N → N such that ∀n(n ∈ A ↔ ∃m(πA(m) = n)) and
∀k∀m(k < m→ πA(k) < πA(m)), that is, the function enumerates all the elements
of A in order.
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Proof. Define νA : N→ N by

νA(m) = least n such that n ∈ A and n ≥ m

Define πA : N→ N using primitive recursion (Theorem 4.4):

πA(0) = νA(0)

πA(m+ 1) = νA(πA(m) + 1)

Using Σ0
0 induction, we can see that πA fulfills the lemma’s conditions. �

Lemma 4.7. Let ϕ(n) be a Σ0
1 formula in which X and function f do not occur

freely. The following is provable in RCA0: either
(i) there exists a finite set X such that

∀n(n ∈ X ↔ ϕ(n)),

that is, there are only finitely many n such that ϕ(n) is true, or
(ii) there exists a one-to-one function f : N→ N such that

∀n(ϕ(n)↔ ∃m(f(m) = n)),

that is, there is a one-to-one function f : N → N whose range is the n that satisfy
ϕ(n).

Proof. Suppose (i) is false, then we will show (ii) must be true. Formula ϕ(n) is
Σ0

1, so we can rewrite it as ∃j θ(j, n) where θ(j, n) is Σ0
0. Define a set

Y = {(j, n)|θ(j, n) ∧ ¬(∃i < j)θ(i, n)},

which exists by Σ0
0 comprehension. Since (i) is false, there are infinitely many n

such that ϕ(n) holds, so the set Y is infinite. By Lemma 4.6, there is a function
πY : N → N that enumerates the elements of Y in strictly increasing order. We
define the second projection function p2 : N→ N as such:

for all j, n ∈ N, p2((j, n)) = n

Function p2 exists by Σ0
0 comprehension. Finally, let f : N → N be defined as the

composition function f(m) = p2(πY (m)), which meets the criterion in (ii). �

5. Weak König’s lemma (WKL0)

WKL0 consists of the axioms of RCA0 and also Weak König’s Lemma, which
states that every infinite binary tree has an infinite path.

WKL0 = RCA0 + Weak König’s Lemma

After some definitions, the implications of this lemma will be expanded on below.

The set of all finite strings of natural numbers is denoted by N<N. For example,

〈3, 35, 264, 6, 3, 2〉 and

〈3, 264, 35, 6, 3, 2〉

are two different strings of six natural numbers.

Definition 5.1. A set of strings of natural numbers T is a tree if it is closed under
initial segments, that is, for all σ ∈ T and for all τ � σ (τ is an initial segment of
σ), we have τ ∈ T .
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Definition 5.2. The set of all finite strings of 0’s and 1’s is denoted by {0, 1}<N.
A binary tree is a subset of {0, 1}<N.
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A Tree A Binary Tree
These finite trees have four levels. An infinite tree has infinitely many levels.

Definition 5.3. An infinite path through an infinite tree T is a function f : N→ N
such that for all k ∈ N, the initial string f [k] = 〈f(0), f(1), ...f(k − 1)〉 is in T . A
path through a binary tree is a function g : N→ {0, 1}.

An interesting equivalence to Weak König’s Lemma is Σ0
1 separation, which

states that given two Σ0
1 formulas of number variable n that are exclusive, there

exists a set containing all n satisfying one formula and none satisfying the other.
Reversals in WKL0 frequently make use of Σ0

1 separation.

Theorem 5.4. Over RCA0, the following are equivalent:
1. WKL0.
2. Σ0

1 separation
Let ϕ0(n) and ϕ1(n) be Σ0

1 formulas. If ¬∃n(ϕ0(n) ∧ ϕ1(n)) then

∃X∀n ((ϕ0(n)→ n ∈ X) ∧ (ϕ1(n)→ n /∈ X)).

The proof can be found in [2]. This is a full reversal theorem, in that WKL0

proves Σ0
1 separation, and Σ0

1 separation implies WKL0 over RCA0 (the reversal).

Examples 5.5. Over RCA0, the following are equivalent:
(i) WKL0

(ii) some properties of continuous real-valued functions on [0, 1] and compact
metric spaces such as uniform continuity, the maximum principle,
Riemann integrability, and Weierstrass approximation

(iii) the completeness and compactness theorems in mathematical logic
(iv) the existence of real closure for countable formally real fields
(v) the uniqueness of algebraic closure of countable fields
(vi) the existence of prime ideals and countable commutative rings

(vii) the Brouwer and Schauder fixed point theorems
(viii) the Peano existence theorem for solutions of ordinary differential equations

(ix) the separable Hahn/Banach theorem
(x) the Heine/Borel theorem for [0,1] and compact metric spaces

[Various Authors]

The statements in Examples 5.5 are equivalent to Weak König’s Lemma, hence
the statements are also equivalent to WKL0 over RCA0. All theorems that can
be proven in RCA0 can be proven in WKL0 since WKL0 consists of RCA0 plus
Weak König’s Lemma. The addition of Weak König’s Lemma to RCA0 allows for
the existence of non-computable sets.

The next logically stronger subsystem, ACA0, is equivalent overRCA0 to König’s
Lemma. König’s Lemma states that every infinite, finitely branching tree has a



REVERSE MATHEMATICS 9

path, so this is stronger than Weak König’s Lemma which adds the condition that
the trees must be binary trees. Hence, all theorems that can be proven in WKL0

can be proven in ACA0.

6. Arithmetical comprehension axiom (ACA0)

ACA0 is defined similarly to RCA0, but is stronger. ACA0 also consists of the
axioms of Peano arithmetic, but has a comprehension scheme for all arithmetical
formulas (formulas with no set quantifiers), not just ∆0

1 formulas. The relationship
between RCA0 and ACA0 can be represented by the following equation:

ACA0 = RCA0 + Arithmetical Comprehension

Examples 6.1. Over RCA0, the following are equivalent:
(i) ACA0

(ii) sequential compactness of [0,1] and compact metric spaces
(iii) the existence of the strong algebraic closure of a countable field
(iv) every countable vector space over Q has a basis
(v) every countable commutative ring has a maximal ideal
(vi) the uniqueness of the divisible closure of a countable Abelian group

(vii) König’s lemma for subtrees of NN

(viii) Ramsey’s theorem for colorings of [N]3

(ix) the least upper bound principle for sequences of real numbers
[Various Authors]

Finally, we will show an example of how to do a reverse mathematics proof.

Theorem 6.2. ACA0 over RCA0 is equivalent to the following:
(i) Σ0

1 comprehension
(ii) The range of every one-to-one function f : N→ N exists

Proof. Recall the discussion at the beginning of the section on RCA0 as to how
reverse mathematics is performed. First, we want to show the axioms A = ACA0

prove theorem τ , where τ is statements (i) and (ii). We use weak base theory
B = RCA0. To do the reversal proof we will show RCA0 + τ imply ACA0. This
will allow us to conclude that Theorem 6.2 is true.

Proof that ACA0 → τ
ACA0 → (i): By definition, ACA0 implies (i).
(i) → (ii): Recalling Equation 2.2, (i) Σ0

1 comprehension is the same as
∃X∀n(n ∈ X ↔ ϕ(n)) where ϕ(n) is restricted to a Σ0

1 formula in which X does
not occur freely.
The existence of the range is equivalent to saying:
there exists a set X ⊆ N (X is the range) such that ∀n(n ∈ X ↔ ∃m(f(m) = n));
ϕ(n) as in the Σ0

1 comprehension formula is ∃m(f(m) = n), which is a Σ0
1 formula.

Proof that RCA0 + τ → ACA0

(ii) → (i): This follows from Lemma 4.7.
(i) → ACA0: We need to show that Σ0

1 comprehension implies arithmetical com-
prehension. Every arithmetical formula consists of alternating ∀ and ∃ quantifiers
(we do not know if the first quantifier is a ∀ or if it is a ∃) followed by a Σ0

0 bounded
quantifier formula. If the formula starts with a ∀ quantifier, then we can just put
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a dummy variable with an existential quantifier at the beginning of the formula.
Then we can write each arithmetical formula as a Σ0

k formula for some k ∈ N, so it
is sufficient to prove Σ0

1 comprehension implies Σ0
k comprehension. We can do this

using induction on k ∈ N.
Base case: this is trivial for k = 0, 1.
Inductive step: Assuming Σ0

k comprehension, we need to show Σ0
k+1 comprehen-

sion. Let ϕ(n) be Σ0
k+1 for k ≥ 1. Then we can write ϕ(n) as ∃j θ(n, j) where

θ(n, j) is Π0
k. Let set Y = {(n, j)|¬θ(n, j)}, which exists by Σ0

k comprehension. By
Σ0

1 comprehension, let set X = {n|∃j ((n, j) 6∈ Y )}. Then n ∈ X if and only if
∃j θ(n, j), which is equivalent to ϕ(n). �

7. Conclusion

An interesting aside is that the five most commonly used subsystems in re-
verse mathematics, RCA0, WKL0, ACA0, ATR0, and Π1

1-CA0, correspond to
philosophically motivated programs in foundations of mathematics: Bishop’s con-
structivism, Hilbert’s finitistic reductionism, Weyl’s predicativity as developed by
Feferman, predicative reductionism as developed by Friedman and Simpson, and
impredicativity, respectively. By studying reverse mathematics, we gain insight
into mathematical philosophy and the implications of using different programs.

Reverse mathematics provides a new lens with which we may examine theorems.
We can prove that theorems from different fields of math have the same logical
strength. We can also show that as we go from theorems provable in RCA0 (Theo-
rem 4.3) to those in WKL0 (Examples 5.5) to those in ACA0 (Examples 6.1), the
theorems are increasing in logical strength. An hierarchy of logical strength exists,
and can be extended by other subsystems such as the logically stronger ATR0 and
Π1

1-CA0.
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