
ALGEBRAIC TOPOLOGY
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Abstract. The focus of this paper is a proof of the Nielsen-Schreier Theorem,

stating that every subgroup of a free group is free, using tools from algebraic

topology.
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1. Preliminaries

Notations 1.1.
I [0, 1] the unit interval
Sn the unit sphere in Rn+1

× standard cartesian product
≈ isomorphic to
∨ the wedge sum
A−B the space {x ∈ A|x /∈ B}
A/B the quotient space of A by B.

In this paper we assume basic knowledge of set theory. We also assume previous
knowledge of standard group theory, including the notions of homomorphisms and
quotient groups.

Let us begin with a few reminders from algebra.

Definition 1.2. A group G is a set combined with a binary operator ? satisfying:

• For all a, b ∈ G, a ? b ∈ G.
• For all a, b, c ∈ G, (a ? b) ? c = a ? (b ? c).
• There exists an identity element e ∈ G such that e ? a = a ? e = a.
• For all a ∈ G, there exists an inverse element a−1 ∈ G such that a?a−1 = e.

A convenient way to describe a particular group is to use a presentation, which
consists of a set S of generators such that each element of the group can be written
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as a product of elements in S, and a set R of relations which define under which
conditions we are able to simplify our ‘word’ of product of elements in S.

Definition 1.3. A group is called a free group if there are no relations on its
generators other than that of an element with its inverse.

Definition 1.4. A subset H of a group G is called a subgroup of G if H is also a
group under the same binary operator as G. We write this as H ≤ G.

2. The Fundamental Group

While algebra and topology seem at first to be very different branches of math-
ematics, they are related in surprising ways. Notions of algebra can be used to
study properties from topological spaces under various maps. Our first object of
study will be the fundamental group, which is, loosely put, the set of loops in a
topological space. As its name suggests, it is indeed a group in the algebraic sense.
In order to prove this fact, we shall first need to formalize the notion of ‘loops in
space’.

Definition 2.1. Let X be a topological space and a, b ∈ X. A path from a to b is
a continuous function f : I → X such that f(0) = a and f(1) = b.

We call a and b endpoints. When we look at the above definition, it is quite
clear that even for the simplest of spaces the amount of different paths betweens
two endpoints is colossal. In order to reduce that number we define the notion
of homotopy between paths. Intuitively, two functions are homotopic if we can
‘continuously deform’ one into the other.

Definition 2.2. Given a, b ∈ X, we say two paths f0 and f1 are homotopic as
paths if there exists a family of paths such that for all t ∈ I, ft satisfies the following
properties:

• ft(0) = a, ft(1) = b.
• The map F : I × I → X defined by F (s, t) = ft(s) is continuous.

A family of paths satisfying the above conditions is called a homotopy. We
also define a special type of homotopy which will be useful later on. As its name
suggests, a deformation retract is a continuous map that deforms a space into one
of its subspaces.

Definition 2.3. A deformation retract from a space X to a subspace A is a
homotopy satisfying the additional properties that:

• f0 = id.
• f1(X) ⊂ A.
• ft|A = id for all t.
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Proposition 2.4. Given two fixed endpoints a and b, path homotopy is an equiv-
alence relation on the set of all paths from a to b.

Proof. Fix two points a and b in the space which will be the endpoints of all paths
considered. Let us use the symbol ‘∼=’ to mean ‘is path homotopic to’. We must
now prove that ∼= is reflexive, symmetric and transitive.

Reflexivity is trivial from the definition, since f ∼= f by the constant homotopy
ft = f ; and so is symmetry since if f0 ∼= f1 by the homotopy ft, then f1 ∼= f0 by
the inverse homotopy f1−t.

For transitivity, suppose f0 ∼= f1 = g0 via ft and g0 ∼= g1 via gt. Then f0 ∼= g1 via
the homotopy ht that equals f2t on [0, 12 ] and equals g2t−1 on [ 12 , 1]. The associated
map H(s, t) is indeed continuous since it is continuous when restricted to each of
the intervals, and it agrees at t = 1

2 since f1 = g0 by assumption. �

Example 2.5. In a convex set in Rn, all loops are equivalent to the trivial loop.
This is because given any two loops f0 and f1, we can always define the homotopy
ft = (1− t)f0 + tf1, which tells us in particular that any loop is homotopic to the
constant loop.

Given the above proposition, we can now consider only different homotopies in
the space rather than specific paths. From now on we shall refer to the homotopy
class represented by a loop f by [f ]. Of particular importance are paths whose
endpoints coincide.

Definition 2.6. A path f is called a loop if f(0) = f(1).

Definition 2.7. For a family of loops in space with common endpoint x0, we refer
to x0 as the basepoint.

Inspired by the homotopy we’ve created in the previous proof, we shall now
define an operation on paths. It is essentially defined so that paths are traversed
sequentially, each twice as fast, in order for the path product to be traversed entirely
in the same unit of time.

Definition 2.8. Given two paths f, g : I → X such that f(1) = g(0), the product
path f · g is a path in X defined by

f · g =

{
f(2s), 0 ≤ s ≤ 1

2
g(2s− 1), 1

2 ≤ s ≤ 1

By restricting the product above to loops having the same basepoint, we get a
well defined operation on homotopy classes, since the homotopy class of the product
path f · g is independent of the representative paths chosen from the homotopy
classes of f and g. We can now state one of the most essential theorem in algebraic
topology.

Theorem 2.9. Given a space X, the set of homotopy classes [f ] of loops based at
x0 ∈ X is a group under the product path [f ] · [g] = [f · g]

We call this group the fundamental group of X based at x0, written π1(X,x0).
We sometimes omit the basepoint and write simply π1(X) when X is path-connected,
since in this case the fundamental groups of X based at each point will be isomor-
phic.
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Proof. We wish to show that the above product on homotopy classes satisfy the
group axioms. Given f, g, h loops based at x0, we wish to prove first that
(f · g) · h = f · (g · h). To see this, we define a reparametrization of a path f to
be the compostion fφ where φ : I → I is a continuous map such that φ(0) = 0
and φ(1) = 1. We see that fφ is homotopic to f by the homotopy fφt where
φt(s) = (1− t)φ(s)+ ts. We observe that f · (g ·h) is a reparametrization of (f ·g) ·h
given by the function

φ(s) =


1
2s, 0 ≤ s ≤ 1

2
s− 1

4 ,
1
2 ≤ s ≤

3
4

2s− 1, 3
4 ≤ s ≤ 1

The two paths are homotopic, thus their homotopy classes are equal and path
product is associative.

The two sided identity is the constant path defined by cx0
(s) = x0 for all s ∈ I.

Since f is a loop, f(0) = f(1) = cx0
(s) for all s ∈ I, so we can see that f · cx0

is a
reparametrization of f by the map

φ(s) =

{
2s, 0 ≤ s ≤ 1

2
1, 1

2 ≤ s ≤ 1

Similarly we see that cx0 · f is a reparametrization of f thus the constant map
satisfies the role of the identity in π1(X,x0) .

To verify the two sided inverse property, we define the inverse path of f to be
f̄(s) = f(1 − s). Now consider the identity path i : I → I. Its inverse ī is also a
path on I, and i · ī is a loop based at 0. Since I is convex, there exists a homotopy
H in I between i · ī and the constant path c0 at 0. Then fH is a path homotopy
between fc0 = cx0 and (fi) · (f ī) = f · f̄ . We use a similar argument to prove that
f̄ · f is homotopic to cx0 . �

As its name suggests, the fundamental group is an essential algebraic invariant
of topological spaces. We say a space is simply connected if it is path-connected
and has trivial fundamental group. In our example above, we’ve shown that convex
sets in Rn are simply connected.

Example 2.10. A very important computation is that the fundamental group of
S1 is isomorphic to the free group on one generator. An intuitive way to see this
fact is to imagine the real line as a helix wound up above S1. Now consider a path
on the helix starting at 0 going up n times around the helix if n > 0 or down n times
if n < 0, (n ∈ N). Projecting these paths onto the circle below gives us all loops in
S1. When we apply the product path to these loops, we get that the fundamental
group of S1 is isomorphic to the group of integers under addition, which is itself
isomorphic to the free group generated by one element. We will return to this
example in the section about covering spaces.

A critical property of the fundamental group is its relation to maps between
spaces. Specifically, basepoint-preserving maps between topological spaces induce
homomorphisms on their fundamental groups.

Definition 2.11. Let X,Y be topological spaces, x0 ∈ X, y0 ∈ Y be basepoints in
their respective spaces, and let ψ : X → Y be a continuous map such that
ψ(x0) = y0. The map ψ induces a map ψ∗ : π1(X,x0)→ π1(Y, y0) called induced
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homomorphism and defined as composing loops in X with ψ. The resulting path
in Y is a loop since ψ(f(0)) = ψ(f(1)).

Proposition 2.12. ψ∗ is a group homomorphism.

Proof. Given two loops f, g in X based at x0, direct computation shows that

ψ(f · g) =

{
ψ(f(2s)), 0 ≤ s ≤ 1

2
ψ(g(2s− 1)), 1

2 ≤ s ≤ 1

=ψ(f) · ψ(g)

�

3. Van Kampen’s Theorem

The Van Kampen theorem provides a means of computing fundamental group
by decomposing a space into a union of simpler spaces, whose fundamental groups
are already understood. Repeated use of this theorem will allow us to compute the
fundamental group of a very large number of spaces.

Definition 3.1. Let A,B be topological spaces such that A ⊂ B. An inclusion
map is a map i : A→ B that sends an element from A to itself, but considered as
an element in B. We sometimes use the notation A ↪→ B for the inclusion map of
A in B.

Definition 3.2. Given two groups G and H, the free product G ∗H is the set of
elements s1s2 . . . sn, where si is an element of either G or H. Such a word can be
reduced only by removing an instance of the identity element (in either G or H),
or by replacing a consecutive pair of elements in the same group by their product
in that group.

Theorem 3.3. Let U1, U2 be open subsets of X such that U1 ∪ U2 = X and
U1 ∩ U2 is path connected. Let x0 ∈ U1 ∪ U2 be a basepoint, and let
i1 : π1(U1 ∪ U2) → π1(U1), i2 : π1(U1 ∪ U2) → π1(U2) be the homomorphisms
respectively induced by the inclusion maps (U1 ∪ U2) ↪→ U1 and (U1 ∪ U2) ↪→ U2.
Then the homomorphism Φ : π1(U1) ∗ π1(U2) → π1(X) is surjective and has a
normal subgroup N generated by elements of the form i1(ωα)i−12 (ωα) where ωα are
loops in U1 ∪ U2. Thus Φ induces an isomorphism π1(X) ≈ (π1(U1) ∗ π1(U2))/N .

The proof of this theorem is somewhat long and technical, so we shall instead
give a brief outline of it. Surjectivity of Φ is given by considering a loop f in the
space based at some point x0. We then divide I into subintervals so that when
we restrict f to each subinterval, it lies in only one Ui. The product of these loop
sections with appropriate paths in U1 ∩ U2 gives us a product of loops each lying
in a single Ui that is homotopic to f . Thus Φ is surjective.

To show that Φ has a normal subgroup N , we choose to factorize an element
[f ] into individual loops in each of the Ui such that the product of all the loops is
homotopic to [f ]. A factorization of [f ] is thus a word in (π1(U1) ∗π1(U2)) mapped
to [f ] by Φ. We now show the uniqueness of such a factorization by simultaneously
combining adjacent loops in the factorization that lie in the same space Ui and by
systematically considering loops in the intersection to be in one space or the other
(say, consider all loops in U1∩U2 to be only in U1). By applying this method, we can
show that any two factorizations of a loop [f ] are in fact equivalent. By definition of
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N , equivalent factorizations of [f ] give us the same element in (π1(U1)∗π1(U2))/N .
Since the factorization is unique, the induced map (π1(U1) ∗ π1(U2))/N → π1(X)
is injective, thus the kernel of Φ is exactly N .

Example 3.4. The fundamental group of the wedge sum
∨n
i=1 S

1
i of n copies of

S1 is isomorphic to the free group on n generators. If xj is a basepoint in S1
j ,

the wedge sum
∨n
i=1 S

1
i is the union of all the S1

i with their respective basepoints
identified to a single point x0. For each xj there exists an open neighbourhood Uj
such that Uj deformation retracts onto xj . We’ve seen previously that π1(S1) is the
free group on one element. We now inductively apply the Van Kampen theorem

on A = (
∨k
i=1 S

1
i )∪Uk+1 and B = S1

k+1 ∪ (
∨k
i=1 Uk). The intersection of these two

spaces is
∨k+1
i=1 Uk+1, which is simply connected since it deformation retracts to the

basepoint x0. A similar argument also shows that π1(B) = π1(S1), thus we have an

isomorphism Φ : π1(A) ∗ π1(S1) → π1(
∨k+1
i=1 S

1
i ). So π1(

∨n
i=1 S

1
i ) is the free group

on n generators, one for each copy of S1.

4. Covering Spaces

While the Van Kampen theorem is useful for computing the fundamental group
of unions of spaces whose fundamental group we already know, it is not very helpful
if we do not actually know the fundamental group of any spaces. In an earlier section
we asserted without proof that π1(S1) was isomorphic to the free group with one
generator. The notion of covering space will finally give us the tools needed to
directly compute non-trivial fundamental groups.

Definition 4.1. Let p : X̃ → X be a surjective map between two topological
spaces. We say an open set U ⊂ X is evenly covered by p if p−1(U) can be written

as the union of disjoint open sets Vα ⊂ X̃ such that p|Vα is a homoemorphism onto
U .

Definition 4.2. Let p : X̃ → X be surjective map. If every x ∈ X has a neighbor-
hood U such that U is evenly covered by p, then we call p a covering map and
refer to X̃ as the covering space. We sometimes refer to the topological space as
a covering space of some space X; the existence of a covering map is implicit.

It is often useful to visualize the set p−1(U) as a ‘stack of pancakes’ of identically
shaped and sized copies of U floating above it.
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As we hinted in our intuitive explanation about the fundamental group of the
circle, a space X and its covering space are related by what are called lifts. Lifts
give us the correspondence between paths in X and paths in X̃.

Definition 4.3. Let X,Y be spaces and p : X̃ → X be a covering space of X. A
lift of a map f : Y → X is a map f̃ : Y → X̃ such that pf̃ = f .

Proposition 4.4. Given a covering space p : X̃ → X, a homotopy ft : Y → X
and a lift f̃0 : Y → X̃ lifting of f0, there exists a unique homotopy f̃t : Y → X̃
starting at f̃0 lifting ft.

Proof. Let F : Y × I → X be our homotopy map. We first construct a lift
F̃ : N × I → X̃ for N a neighborhood of a fixed point y0 in Y . F is continuous,
thus for every (y, t) ∈ Y × I, there exists a neighborhood Nt × (at, bt) such that
F (Nt× (at, bt)) ⊂ Uα, where Uα is an open set in X such that Uα is openly covered
by p. Since {y0} × I is compact, we have a finite number of such neighborhoods
covering it. Hence we can choose a single neighborhood N of y0 and a partition
0 = t0 < t1 < . . . < tm = 1 of I so that for each i, F (N × [ti, ti+1]) is contained in

some Uα, which we will now refer to as Ui. We will now construct F̃ inductively,
assuming it is constructed on N × [0, ti]. On N × [ti, ti+1], by definition there exists

an open set Ũi ∈ X̃ containing the point F̃0(y0, ti) that projects homeomorphically
onto Ui by p. Up to replacing N with a smaller neighborhood, we can assume
that F̃ (N × {ti}) is contained in Ũi. We can now define F̃ on N × [ti, ti+1] to be

the composition of F with p−1 : Ui → Ũi. This process terminates after finitely
many iterations, thus giving us a completely defined lift F̃ : N × I → X for some
neighborhood N of y0.

We prove uniqueness in two parts. We begin with the special case where Y is a
single point. For ease of notation, we can simply write I for {y}×I. Let us suppose

F̃ and F̃ ′ are two lifts of F : I → X such that F̃ (0) = F̃ ′(0). Once again we choose
a partition of I such that for each i, F ([ti, ti+1]) ⊂ Ui. Assume by induction that

on [0, ti] F̃ = F̃ ′. F̃ ([ti, ti+1]) is connected, so it must lie in a single Ũi. Similarly

F̃ ′([ti, ti+1]) lies in a single Ũj . However F̃ (ti) = F̃ ′(ti) so in fact Uj = Ui. Since

p is injective on Ũi and pF̃ = pF̃ ′, we conclude that F̃ = F̃ ′ on the whole interval
[ti, ti+1], thus completing the inductive step.

We now finalize by remarking that since our F̃ defined as above on N × I is
unique when restricted to {y} × I, it must agree whenever two such sets N × I
overlap. So F̃ is well-defined and unique on all of Y × I. �

Corollary 4.5. (Path lifting property) Given a covering space p : X̃ → X, for
each path f : I → X and each pre-image x̃0 of f(0) = x0, there is a unique path

f̃ : I → X̃ lifting f starting at x̃0.

To prove this corollary, we simply consider a path to be homotopic to a point
and apply the proposition above.

Before we go on and compute the fundamental group of the circle, we shall first
prove a proposition which we shall need later on.

Proposition 4.6. Given a space X and a covering space p : π1(X̃, x̃0)→ π1(X,x0),

the induced map p∗ : π1(X̃, x̃0)→ π1(X,x0) is injective.

Proof. The proof is a simple application of our previous proposition. Elements
in the kernel of p∗ are represented by loops f̃0 : I → X̃ such that there exists a
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homotopy ft : I → X of f0 = pf̃0 to the trivial loop f1. By the above proposition,
there exists a unique homotopy f̃t starting at f̃0 lifting ft. Thus [f̃0] = 0 and p∗ is
injective. �

Definition 4.7. Let p : X̃ → X be a covering space, x0 ∈ X be a basepoint.
Choose a point x̃0 ∈ X̃ such that p(x̃0) = x0. Given an element [f ] of π1(X,x0),

let f̃ be the corresponding lift of f starting at x̃0.
If we denote the endpoint f̃(1) by Φ([f ]), then Φ is a well defined map

Φ : π1(X,x0) → p−1(x0) called the lifting correspondence derived from the
covering map p.

Proposition 4.8. Let p : X̃ → X be a covering map and Φ : π1(X,x0)→ p−1(x0)

be a lifting correspondence based at x̃0. If X̃ is simply connected, Φ is bijective.

Proof. Let [f ], [g] be elements in π1(X,x0) such that Φ([f ]) = Φ([g]), and let f̃ , g̃

be lifts of f and g, respectively, beginning at x̃0. Then f̃(1) = g̃(1). Since X̃ is

simply connected, there exists a path homotopy between F̃ between f̃ and g̃. Then
pF̃ is a path homotopy in X between f and g; thus Φ is injective.

Φ is surjective since given x̃1 ∈ p−1(x0), there is a path f̃ in X̃ from x̃0 to x̃1.

Then f = pf̃ is a loop in X based at x0. Thus Φ is surjective. �

We are now finally ready to prove that the fundamental group of the circle is
isomorphic to the additive group of integers.

Example 4.9. We shall use without proof the fact that p : R → S1 given by the
equation p(x) = (cos(2πx), sin(2πx)) is a covering map. We refer to our intuitive
notion explained earlier of ‘wrapping’ R around S1 as a helix. Choose our x̃0 to
be 0 ∈ R, and let x0 = (1, 0). We thus have that p−1(1, 0) = Z. Since R is simply
connected, the lifting correspondence Φ : π1(S1, x0) → Z is bijective according to
our above proposition.

We now need to prove that Φ is a homomorphism to complete the proof. Given
[f ], [g] in π1(X,x0), let f̃ and g̃ be their respective lifts beginning at 0. Let n = f̃(1)
and m = g̃(1). Then by definition Φ([f ]) = n and Φ([g]) = m.

Consider ˜̃g(x) = n + g̃(x) a path in R. This path is a lifting of g̃ beginning at

n since p(n + x) = p(x) for all x ∈ R. Then the product f̃ · ˜̃g is well defined, and

is a lift of f · g. The endpoint of this path is ˜̃g(1) = n + m. Then by definition
Φ([f ] · [g]) = n+m = Φ([f ]) + Φ([g]).

As we have seen in our previous calculation, it is fairly advantageous to have
a simply connected covering space. A necessary condition on the original space is
that of semi-locally simple connectedness. Roughly speaking, this condition
imposes a lower bound on the size of ‘holes’ in X. It is a fairly general condition,
and spaces that do not satisfy it are usually considered pathological.

Definition 4.10. Let X be a space, and p : X̃ → X be a covering space. We
say X is semi-locally simply connected if for each point x ∈ X, there exists a
neighborhood U each loop in U is nullhomotopic (i.e, the inclusion induced map
π1(U, x)→ π1(X,x) is trivial).

Example 4.11. A standard example of a non semi-locally simply connected space
is the so called Hawaiian Earrings, the union of circles with center ( 1

n , 0) and radius
1
n for n ∈ N.
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This next proposition is important in classifying the various covering spaces of
a space. We shall however not supply its proof since it involves notions about the
construction of simply-connected covering spaces. It is sufficient to say that such
spaces exist as quotient spaces of simply-connected covering spaces.

Proposition 4.12. Let X be a path connected and semi-locally simply connected
space. Then for any subgroup G ≤ π1(X) there exists a covering space p : X̃G → X
such that p∗(π1(XG, x̃0)) = G for an appropriately chosen basepoint x̃0 ∈ XG

5. Graphs

The usual objective of homotopy theory is to reduce problems of topology to
those of algebra. In our final section, we will be doing the reverse by using topo-
logical properties of linear graphs to prove the Nielsen-Schreier Theorem, stating
that every subgroup of a free group is free.

Definition 5.1. A linear graph is a space X obtaining by attaching to a discrete
set X0 of points a collection of 1-cells eα (spaces homeomorphic to the open interval
(0, 1)). We create X by identifying the endpoints of the closed intervals Iα with
points in X0. We call points in X0 vertices and the eα edges.

Under this definition edges do not include their endpoints. They are open subsets
of X. Their closure ēα is homeomorphic to I or S1, depending on whether the two
endpoints of the edge are distinct or not. Since X is defined as a quotient space of
the disjoint union X0

⋃
α Iα, X has the weak topology, meaning a subset of X is

closed (resp. open) if and only if it intersects the closure ēα of each edge Eα in a
closed (resp. open) set in ēα.

A subgraph of X is a closed subset Y ⊂ X that is a union of vertices and edges
such that if eα ∈ Y , then ēα ∈ Y .

Definition 5.2. A tree is a subgraph of a graph X such that any two vertices
are connected by exactly one path. Equivalently, a tree is a subgraph that is
contractible to a single point.

We say a tree is maximal if it contains all the vertices of X.
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Proposition 5.3. Every connected graph contains a maximal tree, and every tree
is contained in a maximal tree.

We shall omit the proof of the above proposition, but it is a standard exercise
in graph theory.

Definition 5.4. Let X,Y be topological spaces. We say X is homotopy equiva-
lent to Y if there exists maps f : X → Y and g : Y → X such that fg is homotopic
to idY and gf is homotopic to idX .

An important property of homotopy equivalent spaces is that their fundamental
group are isomorphic. To prove this we shall use a fact about homotopies that do
not fix the basepoint.

Lemma 5.5. If ft : X → Y is a homotopy and h is the path ft(x0) formed by
the images of a basepoint x0 ∈ X, then the three maps from the following diagram
satisfy f0∗ = βhf1∗, where βh is an isomorphism.

π1(X,x0)
f1∗ //

f0∗ ''OOOOOOOOOOO
π1(Y, f1(x0))

βh

��
π1(Y, f0(x0))

Proof. Let ht(s) = h(ts). The map ht is the restriction of h to [0, t], reparametrized
such that the domain of ht is still [0, 1]. If ω is a loop in X based at x0, then the
product ht · (ftω) · h̄t gives a homotopy of loops at f0(x0). Looking at t = 0 and
t = 1, we see that f0∗([ω]) = βh(f1∗([ω])). �

Using this lemma, we can now prove the following proposition.

Proposition 5.6. Let f : X → Y be a homotopy equivalence between two spaces
X and Y . Then the induced homomorphism f∗ : π1(X,x0) → π1(Y, f(x0)) is an
isomorphism for all x0.

Proof. Let g : Y → X be a homotopy inverse of f , in other words a map such that
gf is homotopic to idY and fg is homotopic to idX . Now consider the following
maps.

π1(X,x0)
f∗−→ π1(Y, f(x0))

g∗−→ π1(X, gf(x0))
f∗−→ π1(Y, fgf(x0))

Since gf = idX , by the lemma g∗f∗ = βh for some h, then the composition
of the first two maps is an isomorphism. This implies in particular that f∗ is
injective. Applying the same reasoning to the second and third map tells us that
g∗ is injective. So since both maps are injective and their composition f∗g∗ is an
isomorphism, then the first map f∗ must be surjective as well. �

In our next proposition we shall use without proof the fact that the quotient
space of a space X by a contractible subspace T is a homotopy equivalence. This
is made intuitively obvious since the space we collapse already has the homotopy
type of a point.

Proposition 5.7. Given a connected graph X with maximal tree T, π1(X) is a free
group on n generators, where n is the number of edges in X − T .
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Proof. Since the map X → X/T is a homotopy equivalence, the fundamental group
of X is the same as that of X/T . Since our tree T contains all the vertices of X,
when we collapse it we are left with a graph consisting of a single vertex and as
many arcs as were in X − T . This space is homeomorphic to the wedge sum of
circles, whose fundamental group we have calculated previously to be the free group
on n elements, where n is the number of circles in the wedge, which in our case is
the number of edges in X − T . �

We are almost ready to prove our final theorem. We just need a lemma about
the covering spaces of graphs.

Lemma 5.8. Every covering space of a graph is also a graph.

Proof. Let p : X̃ → X be the covering space. We shall see that we can construct X̃
according to our definition of a linear graph. First, we use the set X̃0 = p−1(X0) as
our set of vertices. If we write X as a quotient space of the disjoint union X0

⋃
α Iα,

we can then apply the path lifting property to the resulting maps Iα → X used to
attach our 1-cells to X0. We then obtain a unique lift Iα → X̃ passing through
each point of p−1(x), for x ∈ eα which define edges in X̃. Thus our covering space

satisfies our definition of a graph. The topology between X and X̃ is the same by
the property of p being a local homeomorphism. �

We now have all the tools we need to smoothly attain our goal of proving the
Nielsen-Schreier Theorem.

Theorem 5.9. Every subgroup of a free group is free.

The proof is now merely a technicality.

Proof. Given a free group F , choose a graph X such that π1(X) ≈ F . We may
take X to be the wedge sum of one circle for every generator of F . By proposition
4.12, for each subgroup G ≤ F there exists a covering space p : X̃ → X such
that p∗(π1(X̃)) = G. By proposition 4.6, p∗ is injective, thus π1(X̃) ≈ G. By the

preceding lemma, X̃ is a graph, thus its fundamental group is free by proposition
5.7. �
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