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Abstract

In this paper we provide a tool for counting tree analogues in directed graphs, the theorem proved here
being a generalization of Gustav Kirchhoff’s Matrix-Tree Theorem. This paper does not presuppose the
reader’s knowledge of any graph theory, only requiring a modicum of linear algebra. We begin by building
from scratch the graph theory necessary to understand the statement of the Matrix-Tree Theorem for
Directed Graphs. We then state and prove our generalized result, an endeavor which relates the presence
of cycles in functional digraphs and permutation groups.

1 Introductory Graph Theory

The following section is meant to accomplish two tasks. Firstly, it should allow a reader unacquainted with
graph theory to understand the theorem presented here and its proof. Secondly, it provides a standardized
set of notations and definitions to avoid the confusion of a reader already so acquainted.

Definition 1.1 A directed-graph, hereafter referred to as a digraph, is a pair (V,E), where V is a nonempty
set of nodes or vertices, and E is a set of directed edges between the vertices. To complete this definition,
we define a directed edge to be an object which has two properties associated with it: a starting node, and
an ending node.

Notation 1.2 Let G = (V,E) be a digraph, and let i, j be vertices in V . Then the number of edges in E
that start at i and end at j we write as aij . This is normally read as the number of edges from i to j.

Definition 1.3 An undirected graph G is a digraph where aii = 0, aij = aji and aij = 0 or 1 for all i, j ∈ V .

Some notes about the distinctions between digraphs and undirected graphs. First, the term digraph is used
because in a digraph the edges are directed, aij need not equal aji. Secondly, digraphs allow for self-loops, a
self loop being an edge from a vertex to itself, which occurs when aii 6= 0. Lastly, our definition of digraphs
allows for the case when aij > 1, when there are multiple edges from i to j. These three characteristics
distinguish between digraphs and the undirected graphs discussed in other literature.

Because of the topic of this paper, all graphs hereafter are assumed to be finite (in that the number of vertices
and edges is finite). However, for those interested in a more general view of graph theory, the preliminary
definitions are equally valid for infinite graphs as well finite graphs.

Definition 1.4 Let G = (V,E) be a digraph. If, for some vertices i, j ∈ V , there exists an edge starting at
i and ending at j, then we say j is an outneighbor of i.

Definition 1.5 Let G = (V,E) be a digraph, and v be a vertex in V . We call an edge starting at v an
outedge of v.
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Definition 1.6 Let G be a digraph, and v be a vertex in V . Then we say the outdegree of v is
∑
i∈V avi,

the number of outedges of v. We write this number as deg+(i).

The following definitions are used to characterize vertices by the edges between them.

Definition 1.7 Let G be a digraph and let x, y ∈ V . A walk from x to y is a sequence1 of vertices
{x = x1, x2, . . . , xk−1, xk = y} where xi+1 is an outneighbor of xi for 1 ≤ i < k. An infinite walk starting at
x is a infinite sequence of vertices {x = x1, x2, x3, . . . } where xi+1 is an outneighbor of xi for all i ∈ N.

Definition 1.8 Let G be a digraph and let x, y ∈ V . A path from x to y is a sequence of alternating vertices
and edges {x = x1, e1, x2, . . . , xk−1, ek−1, xk = y} where ei is an edge from xi to xi+1 for all 1 ≤ i < k and
where all the vertices and edges are unique.

Since each vertex in a path must be unique and all graphs have finitely many vertices, all paths are finite by
nature.

Definition 1.9 Let G be a digraph, and let x, y ∈ V . Then x is said to be connected to y if there exists a
walk from x to y.

Note 1.10 From the definitions above it immediately follows that, for vertices x, y ∈ V , there is a path from
x to y iff there is a walk from x to y. We choose to draw a distinction between paths for the following reason.
We will consider walks when we want to discuss whether or not two vertices are connected. We will consider
paths when we want to discuss whether or not that connection is unique.

As defined above, the property of being connected applies only to pairs of vertices, and hence is a local
property. It can be generalized to the following global property.

Definition 1.11 Let G = (V,E) be an undirected graph. We say G is connected if every vertex is connected
to every other vertex. An equivalent definition is that for all nonempty subsets A,B ⊂ V where A ∩ B = ∅
and A ∪ B = V , there exists an edge between a node in A and a node in B. An undirected graph is called
disconnected if it is not connected.

The first of the two equivalent definitions above embodies the idea of being able to walk from one node to any
other node, while the second embodies the notion that V cannot be separated into two unrelated subsections
A and B. These two notions are equivalent only because of the bidirectionality of edges in undirected graphs,
and are not equivalent for digraphs.

Definition 1.12 Let G = (V,E) be a digraph. We say G is strongly connected if every vertex is connected
to every other vertex. We say G is weakly connected if for all nonempty subsets A,B ⊂ V where A ∩B = ∅
and A ∪ B = V , there exists an edge from a node in one subset to a node in the other. A digraph is called
disconnected if it is not weakly connected.

Note 1.13 As the names suggest, strong connectivity is a sufficient but not necessary condition for weak
connectivity.

In this paper, we are more interested in the distinction between being weakly connected and being discon-
nected than in the notion of being strongly connected. However, we are more interested in working with walks
and paths than sets of vertices. As such, we proceed to give an equivalent definition of weak connectivity in
terms of walks.

1In this paper we will use the term sequence to denote a finite, nonempty, ordered set.
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Definition 1.14 Let G be a digraph, and let x, y ∈ V . A direction-ignoring walk from x to y is a sequence
of vertices {x = x1, x2, . . . , xk−1, xk = y} where for all 1 ≤ i < k, either xi is an outneighbor of xi+1 or xi+1

is an outneighbor of xi.

Definition 1.15 Let G be a digraph. We say G is weakly connected if there is a direction-ignoring walk
from every vertex to every other vertex.

The two definitions of weak connectivity are equivalent for the same reason that there is no distinction
between strong connectivity and weak connectivity in undirected graphs.

Lastly we wish to formalize the idea of starting with a digraph, and then taking edges out of it to form a
new digraph.

Definition 1.16 Let G = (V,E) be a digraph. We say H = (V, F ) is a subgraph of G if F ⊂ E. Note that
G and H share the same vertex set.

2 History and Generalization

We have now covered enough basic graph theory to discuss the object that this paper is interested in.

Definition 2.1 Let G be an undirected graph. We say G is a tree if there is a unique path from every vertex
to every other vertex.

Trees are useful objects in many areas of graph theory. For example, trees are the only undirected graphs
that have the interesting property that they are connected, but removing any edge from them will disconnect
them. Thus, for an undirected graph G, the number of its subgraphs that are trees is the number of different
ways one can pare down G to a minimally connected graph. The goal of this paper, however, is not to explore
the interesting uses of trees, but to provide for those uses a tool for counting trees. In 1847, Kirchhoff found
a way to count how many subgraphs of a connected undirected graph are trees[3], and a more modern proof
can be found in Chaiken’s article[2]. We wish to find a similar method for counting trees in digraphs.

Generalizing this problem to digraphs requires some care. In digraphs, connectedness is a directed property;
it is not symmetric. The above definition of a tree does not respect that aspect of digraphs. As such, we
must find an analogous object to discuss in the setting of directed graphs.

Definition 2.2 Let G be a digraph. We say s ∈ V is a sink if, whenever v ∈ V is an outneighbor of s, then
v = s. An equivalent definition is s ∈ V is a sink iff deg+(s)− ass = 0.

Definition 2.3 For our purposes, a digraph G will be called a sink-rooted digraph if there is a sink s ∈ V to
which all other nodes are connected. Moreover, for the sake of convenience, we require the sink to have one
and only one self-loop, that ass = 1. This sink will be called the root.

Definition 2.4 Let G be a sink-rooted digraph. We say G is a reverse arborescence if, for all nodes v ∈ V
that are not the root, there is a unique path from v to the root.

It turns out that reverse arborescences are the closest analogues to trees in directed graphs, engendering a
result that is nearly identical Kirchhoff’s original theorem. Our goal is then, given a sink-rooted digraph G,
count the number of reverse arborescence subgraphs it has. First a couple of minor observations to ease our
notation.

Observation 2.5 Let G = (V,E) be a sink-rooted digraph, with root r. Then r is the unique sink in V .
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Proof: Suppose s ∈ V is a sink. Then s has no outneighbors other than itself, and hence is connected only
to itself. But s is connected to r since r is the root of the graph. Thus s = r. 2

Notation 2.6 Let G be a sink-rooted digraph with root s ∈ V . Since the root is the unique sink in G,
we will use the two terms interchangeably. Moreover, the uniqueness of the sink allows us to differentiate
between it and every other node, which we will call sites. We write V0 = V \ {s}, the set of sites.

We are now ready to proceed with the result of this paper. To do so we need the following constructs, which
may seem unmotivated now, but should be made clearer in the proof.

Definition 2.7 Let G be a sink-rooted digraph, and let the vertices in V be indexed from 1 to n, where the
nth node is the sink. The adjacency matrix of G is the n × n matrix A = [aij ], where aij is as defined in
Notation 1.2 . The diagonal matrix of G is the n× n diagonal matrix D = [dij ], where

dij =

{
deg+(i), if i = j

0, otherwise

The Laplacian of G is the matrix D −A. The sink-reduced Laplacian of G is the (n− 1)× (n− 1) matrix L
formed by removing the nth row and column from the Laplacian of G, the row and column corresponding to
the sink. To clarify, the sink-reduced Laplacian of G is the matrix L = [lij ], where, for all 1 ≤ i, j ≤ n− 1,

lij =

{
deg+(i)− aii, if i = j

−aij , otherwise

This allows us to state the result of this paper:

Theorem 2.8 (Matrix-Tree Theorem for Digraphs) Let G = (V,E) be a sink-rooted digraph. Then the
number of reverse arborescence subgraphs of G is equal to the determinant of the sink-reduced Laplacian of
G.

3 Proof of Theorem

Before we begin directly tackling the proof of the theorem, we must broaden our understanding of reverse
arborescences as a specific type of a functional digraph.

Definition 3.1 A functional digraph F is a digraph where deg+(x) = 1 for all nodes x ∈ V . An equivalent
definition: F = (V,E) is a functional digraph if there exists a function f : V → V such that

aij =

{
1 if f(i) = j,
0 otherwise

Notation 3.2 Let G be a sink-rooted digraph. Then we denote the set of its functional subgraphs by X.

We introduce functional digraphs because they are much easier to count than reverse arborescences. For
example, while it is difficult to count the number of reverse arborescence subgraphs of a digraph G, it is easy
to count the number of functional subgraphs. Any given functional subgraph can be specified by choosing
exactly one outedge of each vertex in G. Since these choices can be made independently from one another -
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as the only requirement to be a functional digraph is about the number of outedges of each vertex, not their
directions - we get that

|X| =
∏
v∈V

deg+(v) = deg+(s) ∗

(∏
v∈V0

deg+(v)

)
=
∏
v∈V0

deg+(v)

But counting functional subgraphs is only useful in conjunction with the following fact:

Fact 3.3 A reverse arborescence is a functional digraph.

Proof: Let G = (V,E) be a reverse arborescence. To show it is a functional digraph, we must show that
there is exactly one edge leaving from every node in V . First consider the sink. Since there is exactly one
self-loop at the sink, there is at least one edge leaving the sink. Since the sink is connected to no nodes
besides itself, there are no other edges leaving the sink. Hence the sink has only one outedge.

Now consider a node x ∈ V0. Suppose x has more than one edge leaving from it. Then x has two different
edges leaving it, e1 and e2. Let y1, y2 be the two vertices these edges terminate at. (Note that y1 is not
necessarily a different vertex then y2). Since G is a reverse arborescence, there exist paths P1 and P2 from
y1 and y2, respectively, to the sink. Then x→ y1 via edge e1, and then to the sink via P1, is a different path
to the sink than the path x → y2 via edge e2, and then to the sink via P2. This contradicts the fact that,
since G is a reverse arborescence, there must be a unique path from x to the sink. Thus x cannot have more
than one outedge. But it must have at least one outedge, because it is connected to the sink. Hence it has
exactly one outedge.

Therefore all nodes in V have exactly one outedge, and G is a functional digraph. 2

Since we can count functional subgraphs, and know that reverse arborescence subgraphs are a type of func-
tional subgraph, our goal then becomes to extract the number of reverse arborescence subgraphs from the
number of functional subgraphs. To do this, we must understand what characteristics distinguish the two
types of subgraphs. This leads us to a discussion about cycles.

Definition 3.4 A cycle in a digraph G is a nonempty sequence of vertices C = {x1, . . . , xk} where xi+1 is
an outneighbor of xi for 1 ≤ i < k and x1 is an outneighbor of xk. We require every vertex in C to be unique.

Note that this allows {x} - the sequence consisting of a single vertex - to be a cycle if and only if there is
a self-loop at x. Specifically, the sink in a sink-rooted digraph is a cycle. We will call this the sink self-loop
cycle.

Definition 3.5 A digraph G is called unicyclic if it contains exactly one cycle.

The following are two facts that follow immediately from our definition of cycles.

Fact 3.6 Let F be a functional digraph. Then the following are true: 1) F contains a cycle 2) If x0 is a
vertex in V , then x0 is connected to the vertices of a cycle.

Proof: Since F is a functional digraph, x0 has a single outneighbor x1. Similarly x1 has a single outneighbor
x2. Continue inductively to create an infinite walk {x0, x1, x2, . . . }. Since G is finite, there exists n ∈ N
such that xn = xk for some k < n. Then {xk, xk+1, . . . , xn−1} is a cycle in F , and x0 is connected to those
vertices. 2

We know have enough information to show that reverse arborescence subgraphs of a digraph G are exactly
its unicyclic functional sugraphs.
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Lemma 3.7 Let G be a sink-rooted digraph. Then all of its functional subgraphs contain the sink self-loop
cycle.

Proof: Let F be a functional subgraph of G. Then the sink s must have an outedge in F . This outedge
must be one of the outedges of s in G. But the sink has only one outedge in G, a self-loop. Hence the sink
has a self-loop in F . 2

Fact 3.8 Let G be a sink-rooted digraph, and F a unicyclic functional subgraph of G. Then F is a reverse
arborescence.

Proof: To show a digraph is a reverse arborescence, we must show that (1) It has a sink with exactly one
self-loop, and (2) There exists a unique path from every site to the sink. The above lemma has already proven
(1). So now we must show (2). Take v ∈ V0. Then v is connected to the vertices of a cycle by Fact 3.6. But
F is unicyclic, so the only cycle in F is the sink self-loop cycle. Thus v is connected to the sink, and there
exists a path P from v to the sink. Since F is a functional subgraph, all paths starting at v must coincide
with P . Thus P is the unique path from v to the sink, and we have shown (2). 2

Now we will show the converse, that if F is a reverse arborescence subgraph of a sink-rooted digraph G, then
F is a unicyclic functional subgraph.

Fact 3.9 Let F be a weakly connected functional digraph. Then F is unicyclic.

Proof: As shown in Fact 3.6, all functional digraphs have at least one cycle. Now we will use weak con-
nectivity to show that this cycle is unique. We do this through the contrapositive. Suppose there exist two
distinct cycles C1 and C2 in F , and there exists a direction-ignoring walk {x1, . . . , xn} where x1 ∈ C1 and
xn ∈ C2. Let a = max{k ∈ N : xk ∈ C1} and b = min{k ∈ N : xk ∈ C2}. Then xa+1 /∈ C1. Since xa is an
element of C1, its unique outneighbor must also be a member of that cycle. Then xa+1 is not the outneighbor
of xa, so xa is the outneighbor of xa+1.

Suppose we can find c = min{k > a : xk+1 is an outneighbor of xk}. Then xc is not an outneighbor of xc−1,
so xc−1 is an outneighbor of xc. But xc+1 is also an outneighbor of xc. Since G is a functional digraph, xc
must have a unique outneighbor, so this is a contradiction. Hence c does not exist and for all a ≤ i < n, xi
is an outneighbor of xi+1.

Then xb−1 is an outneighbor of xb. But xb−1 /∈ C2, so it cannot be the outneighbor of an element of C2.
This contradiction implies that there is no direction-ignoring walk from an element of C1 to an element of
C2. Hence if F is not unicyclic, it is not weakly connected. 2

Fact 3.10 Let G be a sink-rooted digraph, and let F be a reverse arborescence subgraph of G. Then F is a
unicyclic functional digraph.

Proof: Fact 3.3 already shows that F is a functional subgraph of G, so all we must show is that F is uni-
cyclic. Since F is a reverse arborescence, F is weakly connected, and thus is a weakly connected functional
subgraph. But the above fact shows that weakly connected functional digraphs are unicyclic. 2

We have now completed our foray into functional digraphs, having shown that reverse arborescence subgraphs
are exactly the unicyclic functional subgraphs, and are now ready to count the reverse arborescence subgraphs
of a sink-rooted digraph. To proceed with this task, we must borrow a principle from combinatorics.
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Fact 3.11 (Inclusion-Exclusion Priniciple) Let A1, A2, . . . Am be subsets of a finite universe X, the set which
complements are taken with respect to. Let [m] = {1, 2, . . . ,m}. Define B = X \

⋃
i∈[m]Ai. Then

|B| =
∑
I⊂[m]

(−1)|I| ·

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ ,
the sum over all subsets I of [m], where ⋂

i∈∅

Ai = X

by convention.

This principle will not be proved here, if the reader wants, a more detailed analysis of it is given here[1].
However, the following is an informal explanation of the idea behind this principle. We want to calculate the
size of the set B = X \

⋃
i∈[m]Ai, the set left over when the Ai are removed from X. We begin this calculation

with an approximation, taking the size of X, and subtracting from it the sizes of each of the Ai, giving us
the expression |B| ≈ |X| −

∑
i∈[m] |Ai|. However, the last term in this approximation exaggerates the total

size of
⋃
i∈[m] |Ai| by over counting everywhere the Ai overlap. So we must correct our approximation with

an additional term, getting us to

|B| ≈ |X| −
∑
i∈[m]

|Ai|+
∑

i,j∈[m]
i 6=j

|Ai ∩Aj |.

But the latest term in this approximation exaggerates the overlap of the Ai, by over counting everywhere
three members of the Ai intersect. So the approximation must proceed to a term of order three, leaving us
with

|B| ≈ |X| −

∑
i∈[m]

|Ai|

+

 ∑
i,j∈[m]
i6=j

|Ai ∩Aj |

−
∑
I∈m
|I|=3

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣


Successively adding higher order terms leaves us with the Inclusion-Exclusion principle.

We are conceptually ready to apply this principle and begin counting arborescences, but just need a bit more
notation to ease the process.

Notation 3.12 Let G be a sink-rooted digraph. Recall X = {functional subgraphs of G}. We define
RA = {reverse arborescence subgraphs of G}. We will enumerate the cycles in G that are not the sink
self-loop cycle by C1, . . . , Cm. Then we define Ai = {functional digraphs which contain Ci} for all 1 ≤ i ≤ m.
Lastly, for any such cycle Ci and vertex v ∈ Ci let w be the outneighbor of v along the cycle Ci. Then we
will write ai(v) = avw, and read this symbol as the number of outedges of v along the cycle Ci.

Since all functional subgraphs of a sink-rooted digraph contain the sink self-loop cycle, the only unicyclic
functional subgraphs are those that contain no other cycles. Thus RA = X \

⋃
i∈[m]Ai. Applying the above

principle we get:

|RA| =
∑
I⊂[m]

(−1)|I| ·

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ (1)

Now to write out this formula in a more concrete form. First, recall the discussion above Fact 3.3, where we
show that ∣∣∣∣∣⋂

i∈∅

Ai

∣∣∣∣∣ = |X| =
∏
v∈V0

deg+(v)
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This describes the zeroth order term of the summation. The next terms in the summation are the first order
terms, which are just the individual Ai. Our goal then becomes to count the functional subgraphs of G that
contain a given cycle Ci. For every vertex not in the cycle, a functional subgraph containing the cycle has
exactly one of its outedges. For every vertex in the cycle, the functional subgraph would have exactly one
outedges from that vertex to the next vertex in the cycle. This leaves us with

|Ai| =

∏
v/∈Ci

deg+(v)

 ∗(∏
v∈Ci

ai(v)

)

We then proceed to evaluate the size of the larger order terms.

Fact 3.13 Let G be a sink-rooted digraph, and let Ci and Cj be two distinct cycles in G. Then Ai ∩Aj = ∅
if Ci ∩ Cj 6= ∅.

Proof: Let S be a subgraph of G containing both cycles. Supposing Ci ∩ Cj 6= ∅, we can find a vertex
v ∈ Ci ∩ Cj . Write Ci = {w1, . . . wk} and Cj = {z1, . . . , zl} where w1 = z1 = v, and wi+1 is an outneighbor
of wi for 1 ≤ i < k and zj+1 is an outneighbor of zj for 1 ≤ j < l. Let r = min{i ∈ N : wi 6= zi}. Then
zr−1 = wr−1 is a single vertex which has two distinct outneighbors wi and zi. That implies it has at least
two outedges in S, so S cannot be a functional digraph. 2

The above result can be generalized to the following statement: if the {Ci}i∈I are not pairwise disjoint for
any nonempty subset I ⊂ [m], then ∩i∈IAi = ∅. Thus all we need to calculate is the the number of functional
digraphs that contains a collection of pairwise disjoint cycles. But to do this, we treat the members of each
cycle separately, as we did above for the individual Ai, and then choose any outedge of the remaining vertices.
Thus for any nonempty subset I ⊂ [m], we get that

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ =


 ∏
v/∈

⋃
i∈I Ci

deg+(v)

 ∗∏
i∈I

(∏
v∈Ci

ai(v)

)
if the Ci are pairwise disjoint

0, otherwise

(2)

This, along with equation 1, gives us a concrete, if messy, way of counting reverse arborescences.

We are momentarily done counting reverse arborescences, and will begin analyzing the determinant of the
sink-reduced Laplacian. For that we will need some theory of permutation groups, which will be used both
to define the determinant and to make use of that definition. We will not build up this theory from scratch,
but only state some of its key results and hope the reader is already acquainted with them. If the reader is
not so acquainted, then they may find a useful reference here[4].

Definition 3.14 Let M = [mij ] be a k × k matrix. We then say that the determinant of M is

det(M) =
∑
σ∈Sk

sgn(σ)

k∏
v=1

mv,σ(v)

where Sk is the set of permutations on k objects, and sgn(σ) is the sign of the permutation σ, equal to 1 if
σ can be decomposed into an even number of transpositions and −1 otherwise.

We are interested in the determinant because we are able to expand the permutations that make it up into
cycles. It is through these cycles that we will relate the determinant to our count of reverse arborescences.

8



Definition 3.15 Let φ be a permutation on k objects. We say φ is a cyclic permutation if there exists an
ordering of the objects v1, . . . , vk where φ(vi) = vi+1 for 1 ≤ i < k and φ(vk) = v1. We say φ is a permutation
on a subset S of k elements, if φ restricted to S is a cyclic permutation, and φ restricted to [k] \ S is the
identity. We say that φ is a proper cyclic permutation if it is not the identity.

Fact 3.16 Let φ be a proper cyclic permutation on a subset S of k objects. Then sgn(φ) = (−1)|S|−1.

The following fact is a basic result in the theory of permutations that is essential to our discussion of the
determinant of the sink-reduced Laplacian.

Fact 3.17 Let σ be a permutation on k elements that is not the identity. Then there exist proper cyclic
permutations φ1, . . . , φN over pairwise disjoint subsets S1, . . . , SN of the k elements, where σ = φ1 ◦ · · · ◦φN .

Since the φi act on pairwise disjoint subsets, it immediately follows that the order of the composition of the
φi doesn’t matter. It also follows from the disjointed property of the Si that for any permutation σ, the
choice of the φi is unique. Thus what we are doing is decomposing σ into its cyclic components.

Fact 3.18 Let σ be a permutation on k objects, and let its decomposition into proper cyclic permutations be
φ1, . . . , φN . Then sgn(σ) =

∏N
i=1 sgn(φi).

Now let us return to the problem at hand. If G = (V,E) is a sink-rooted digraph with V indexed from 1 to
n (the nth node being the sink), recall that the sink-reduced Laplacian of G is the (n− 1)× (n− 1) matrix
L whose entries are

lij =

{
deg+(i)− aii if i = j

−aij otherwise

where i, j are vertices that range from 1 to n− 1. Then

det(L) =
∑

σ∈Sn−1

sgn(σ)

n−1∏
v=1

lv,σ(v)

We now wish to expand this expression into something workable. For every permutation σ ∈ Sn−1, let us
decompose it into proper cyclic permutations φ1, . . . , φN over disjoint subsets S1, . . . , SN of the [n−1] nodes.

Then we get that σ(v) = v exactly when v /∈
⋃N
i=1 Si. Thus for σ ∈ Sn−1,

sgn(σ)

n−1∏
v=1

lv,σ(v) = sgn(σ)

 ∏
v/∈

⋃N
i=1 Si

(deg+(v)− avv)

 ∗ N∏
i=1

(∏
v∈Si

−av,φi(v)

)

Now,

sgn(σ) =

N∏
i=1

sgn(φi) =

N∏
i=1

(−1)|Si|−1

and,
N∏
i=1

(∏
v∈Si

−av,φi(v)

)
=

(
N∏
i=1

(−1)|Si|

)
∗
N∏
i=1

(∏
v∈Si

av,φi(v)

)
so when we multiply the two together many of the -1’s will cancel. Thus we can rewrite the determinant as

det(L) =
∑

σ∈Sn−1

(−1)N

 ∏
v/∈

⋃N
i=1 Si

(deg+(v)− avv)

 ∗ N∏
i=1

(∏
v∈Si

av,φi(v)

)
(3)
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where it is implicit in the notation that the choice of the Si and the φi is dependent on the individual σ.

For a sink-rooted digraph, we now have an expression for the number of its reverse arborescence subgraphs
in equations 1 and 2, and an expression for the determinant of its sink-reduced Laplacian in equation 3. We
then must show that these represent the same number. First we shall concentrate on the similarities between
these two formulas. Let Ci indexed over I ⊂ [m] be a collection of pairwise disjoint cycles in G, where none
of the cycles is a self-loop. Then the term corresponding to them in the count of the reverse arborescences is

(−1)|I|

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = (−1)|I|

 ∏
v/∈

⋃
i∈I Ci

deg+(v)

 ∗∏
i∈I

(∏
v∈Ci

ai(v)

)

Now for each cycle Ci, let φi be the cyclic permutation whose image of a vertex v ∈ Ci is the outneighbor of
v along Ci. Since the Ci are not self-loops, the φi are proper cyclic permutations. Since the Ci are disjoint,
the φi uniquely determine a permutation σ of the sites in G. Then there is a term in the expansion of the
determinant corresponding to σ, which is

sgn(σ)

n−1∏
v=1

lv,σ(v) = (−1)N

 ∏
v/∈

⋃N
i=1 Si

(deg+(v)− avv)

 ∗ N∏
i=1

(∏
v∈Si

av,φi(v)

)

These two terms should seem very similar. Since each φi sends vertices along the cycle Ci, we get that
av,φi(v) = ai(v). There are also some notational differences; one term is indexed over I while the other is
indexed from 1 to N , and in one term the cycles are called Ci while in the other they are called Si, but the
number these two terms represent is almost the same. The one caveat is that the latter term has a product
of deg+(v)− avv for vertices not in any cycle, while the former only multiplies by deg+(v). We will explain
this away latter.

For now we will concentrate on the differences between the domains of the sums in each expression. Our
count of reverse arborescences sums over the Ci, representing all possible combinations of the cycles found in
G. Our expression for the determinant sums over the permutations σ, representing all possible combinations
of disjoint cycles of n− 1 vertices. The differences in these sums leaves two discrepancies.

First, our count of reverse arborescences has a term for every collection of cycles Ci for I ⊂ [m], not just
those collections that are pairwise disjoint. When a collection of cycles is not pairwise disjoint there can be
no corresponding term in the expansion of the determinant. This is because there must be a node which
has two different outneighbors under two different cycles, a phenomena that no permutation can represent.
However, we already showed that such terms do not contribute to the count of reverse arborescences, because
there are no functional digraphs which contain two distinct but intersecting cycles. As such, we can dismiss
this concern.

Our second concern is that there exist permutations in Sn−1 whose cyclic decompositions contain cycles of
the n − 1 vertices that are not present in G. For each of these terms in the expansion of the determinant,
there can be no corresponding term in our count of reverse arborescences. However, we will be able to dismiss
this worry just as we did above. Suppose φ : V0 → V0 is a proper cyclic permutation corresponding to a
sequence of vertices C = {c1, . . . ck}, where C is not a cycle in G. This implies that there must be a node cj
which has no outedges towards φ(cj). Let σ be any permutation in Sn−1 whose decomposition into proper
cyclic permutations contains φ. Then the term for σ in our expansion will be a product which contains∏
v∈C av,φ(v), which in turn contains acj ,φ(cj), which is zero. Thus such terms are zero and do not contribute

to the determinant of the sink-reduced Laplacian.

Thus, despite appearances otherwise, there is an exact correspondence between the non-zero terms of each
sum. However, there are two last deviations between the two formulae that must be accounted for. First of
all, where each term in the count of reverse arborescences multiply by∏

v/∈
⋃

i∈I Ci

deg+(v)
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the terms in the determinant expansion multiply by∏
v/∈

⋃N
i=1 Si

(deg+(v)− avv)

Second, the terms of the sum in the expansion of the determinant cannot represent self-loop cycles, for the
decomposition of a permutation is only into proper cyclic permutations. Where a term in the expansion of
the determinant would need to represent a self-loop cycle at v by multiplying by avv, it instead multiplies by
lvv = deg+(v)− avv.

In fact, these two deviations end up reconciling one another. To see this, take I ⊂ [m] so that the Ci are
pairwise disjoint and none of them are self-loops. Index the sites not in any of the Ci by s1, . . . sk. Then
there will be a term for I in the count of reverse arborescences, namely

(−1)|I|

(
k∏
i=1

deg+(si)

)
∗
∏
i∈I

(∏
v∈Ci

ai(v)

)

Let D1 be the self-loop cycle at s1. Then there will be a term corresponding to the functional subgraphs
that contain the Ci and D1, namely

(−1)|I|−1 ∗ as1s1 ∗

(
k∏
i=2

deg+(si)

)
∗
∏
i∈I

(∏
v∈Ci

ai(v)

)

Adding the two leaves us with

(−1)|I| ∗
(
deg+(s1)− as1s1

)
∗

(
k∏
i=2

deg+(si)

)
∗
∏
i∈I

(∏
v∈Ci

ai(v)

)

Let D2 be the self-loop cycle at s2. Then there will be a term for the functional digraphs that contain the Ci
and D2, and a term for those that contain the Ci and D1 and D2. Adding those two terms together leaves,

(−1)|I|−1 ∗
(
deg+(s1)− as1s1

)
∗ as2s2 ∗

(
k∏
i=3

deg+(si)

)
∗
∏
i∈I

(∏
v∈Ci

ai(v)

)

Adding this to our original computation leaves us with

(−1)|I| ∗

(
2∏
i=1

(
deg+(si)− asisi

))
∗

(
k∏
i=3

deg+(si)

)
∗
∏
i∈I

(∏
v∈Ci

ai(v)

)

Continuing this process inductively will eventually leave us with

(−1)|I| ∗

(
k∏
i=1

(
deg+(si)− asisi

))
∗
∏
i∈I

(∏
v∈Ci

ai(v)

)

which is a term in the expansion of the determinant. In other words, each term of the expansion of the
determinant already accounts for the adjustments due to self-loops of the corresponding term in the count of
reverse arborescences. This being the last discrepancy between the two formulae, we conclude that they are
equal, and that for a digraph G, the number of its subgraphs that are reverse arborescences is the determinant
of its sink-reduced Laplacian.
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