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Abstract. A theory is called κ-categorical, or categorical in power κ, if it has
one model up to isomorphism of cardinality κ. Morley’s Categoricity Theorem

states that if a theory of first order logic is categorical in some uncountable

power κ, then it is categorical in every uncountable power. We provide an ele-
mentary exposition of this theorem, by showing that a theory is categorical in

some uncountable power if and only if it is ω-stable and has no Vaughtian pairs.
Along the way, we will develop the theory of Vaughtian pairs, stable theories,

and indiscernibles and provide a proof of Vaught’s two-cardinal theorem.
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A theory is called κ-categorical, or categorical in power κ, if it has one model
up to isomorphism of cardinality κ. Morley’s Categoricity Theorem states that if
a theory of first order logic is categorical in some uncountable power κ, then it
is categorical in every uncountable power. This striking result still provides the
impetus and motivation for various areas of contemporary research within model
theory.

The categoricity theorem is remarkable for a number of reasons. The Löwenheim-
Skolem theorem tells us that every theory in a countable language with an infinite
model has a model of any infinite cardinality. It is counterintuitive that such a
restrictive structural property as categoricity in an uncountable power holds as
models get very large. Furthermore, many examples of theories categorical in every
uncountable power were known before the categoricity theorem was discovered,
but the proofs of these facts relied on properties of the theories themselves. For
example, the categoricity in uncountable powers of the theory of algebraically closed
fields of characteristic p (zero or prime) depends on facts about transcendence
degree. The categoricity theorem manages to prove that theories categorical in
some uncountable power must be categorical in every uncountable power using
model-theoretic methods alone.
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Examples of theories categorical in an uncountable power are somewhat limited.
However, some natural examples of such theories include:

• algebraically closed fields of characteristic p (zero or prime)
• pure identity theory
• torsion-free divisible Abelian groups
• infinite Abelian groups in which every element has order p (prime)
• natural numbers with a successor function
• vector spaces over a countable field.

This paper aims to provide a fairly elementary exposition of Morley’s categoricity
theorem, closely following the presentation in Marker [2]. In section 1, we discuss
the basic definitions and concepts of model theory and state a number of results
which are used, but not proved, throughout the paper. In subsequent sections, we
develop a wide array of tools to attack the central result. It is a fortunate fact that
the road to the categoricity theorem is paved with model theoretic gold, so many
results which are interesting in their own right will be proved in the body of the
paper.

Finally, it is worth mentioning that Morley’s categoricity theorem may be of
historical interest to a UChicago audience. It was proved by Michael Morley in his
1961 PhD dissertation in the UChicago mathematics department under Saunders
Mac Lane (together with Robert Vaught at Berkeley). One can trace the UChicago
lineage of the theorem back even further, as the very notion of categoricity was
first introduced by Oswald Veblen in his 1903 dissertation in the mathematics
department.

1. Logical Preliminaries

We presume the reader is already familiar with the rudiments of first-order logic,
including the compactness theorem and the notion of an L-structure. In this section,
we state some important logical results which are necessary for the rest of the paper
and briefly state some definitions, but the presentation will be quick and terse.
This allows us to develop the more complicated machinery required to prove the
categoricity theorem in greater detail.

A language L is a set of function symbols, relation symbols, and a set of constant
symbols. The L-formulas are built up inductively. We begin with terms, which
include constant symbols, variable symbols, and function symbols applied to terms.
Then we build up to atomic formulas, which include formulas stating the equality
of two terms and relations applied to terms. Then the full set of L-formulas is
the smallest set containing all of the atomic formulas closed under conjunction,
negation, and quantification. To prove statements about all formulas, we induct on
the complexity of formulas.

An L-structure M, also called a model, is an underlying set M together with
interpretations in M of the function, relation, and constant symbols of the language
L. Throughout we use script letters M, N , etc to refer to structures and the
corresponding capital Roman letter M,N to refer to the underlying sets. Although
it requires some care to define satisfaction in a model, we say M |= φ if the
interpretations of the symbols in φ make a true statement about the elements of
M . A theory is just a set of sentences in a language. We sayM |= T ifM |= φ for
every φ ∈ T . Furthermore, we say T is satisfiable if it is possible to find a model
that satisfies it. Additionally, we write T |= φ if for every N such that N |= T , we
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have N |= φ. Finally, we write Th(M), the full theory of M, for the set of all
sentences true in M.

Throughout, we will always assume that T is a complete theory in a countable
language.

Definition 1.1. An L-embedding η :M→N is an injective map η : M → N that
preserves the interpretation of all the symbols of L. An isomorphism is a bijective
L-embedding. If A ⊆M and B ⊆ N , then a map f : A→ B is a partial embedding
when f ∪{(cM, cN )| c is a constant in L} is a bijection preserving all relations and
functions of L.

Definition 1.2. Suppose M and N are L-structures. We say an L-embedding
j :M→N is an elementary embedding if

M |= φ(a1, . . . , an) ⇐⇒ N |= φ(j(a1), . . . , j(an)),

for any formula φ of L and any a1, . . . , an ∈ M . This definition extends to par-
tial embeddings in the obvious way: a partial elementary embedding is a partial
embedding f : A→ Bin which

M |= φ(c1, . . . , cn) ⇐⇒ N |= φ(f(c1), . . . , f(cn)),

for c1, . . . , cn ∈ A.
If the inclusion map i :M→N is an elementary embedding, we say that M is

an elementary substructure (or submodel) of N or, interchangeably, we say that N
is an elementary extension of M.

The following theorem provides a useful criterion for determining when a sub-
structure is an elementary substructure:

Theorem 1.3 (Tarski-Vaught Test). Suppose that M is a substructure of N .
M is an elementary substructure if and only if, for any φ(v, w) and a ∈ M , there
is a c ∈M so that N |= φ(c, a) whenever there is a b ∈ N so that N |= φ(b, a).

The proof is an easy induction on the complexity of formulas.
We will also make extensive use of the following two theorems, which we state

without proof:

Theorem 1.4 (Compactness). A theory T is satisfiable if every finite subset of
T is satisfiable.

Theorem 1.5 (Löwenheim-Skolem). SupposeM is an L-structure and X ⊆M ,
there is an elementary submodel N ofM such that X ⊆ N and |N | ≤ |X|+|L|+ℵ0.

Finally, we will use the fact that theories and languages have expansions that
provide sufficient functions to witness existential sentences. An L-theory has built-
in Skolem functions if, given any L-formula φ(v, w), there is a function f so that

T |= ∀w((∃vφ(v, w))→ φ(f(w), w)).

We will assume the following fact:

Theorem 1.6. Given an L-theory T , there is an expanded language L∗ and ex-
panded theory T ∗ so that T ∗ has built in Skolem functions. If M |= T , then there
is an expanded L∗-structure M∗ so that M∗ |= T ∗. Additionally, L∗ can be chosen
so that |L∗| = |L|+ ℵ0.
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We refer to L∗ and T ∗, as in the above theorem, as the Skolem expansions of
L and T respectively. The function symbols are called Skolem functions and the
terms built up with them are called Skolem terms.

We will use the following conventions throughout the paper: as mentioned before,
M, N will be used to denote L-structures, and M , N their respective underlying
sets. We write a to denote the n-tuple (a1, . . . , an) and we write φ(v, a) to denote a
formula φ in free variables (variables not under the scope of a quantifier) v1, . . . , vk
and parameters a. We write |A| to signify the cardinality of the set A. We identify
a function f with its graph, so that it makes sense to take unions and intersections
of functions, and write dom(f) and ran(f) to denote the domain and range of f ,
respectively. Finally, we use 2<ω for the set of finite binary sequences, and given
σ, τ ∈ 2<ω, we let σ _ τ be the concatenation of the two sequences, starting with
σ.

2. Types and Topology

Given some L-structure M and some A ⊂ M , the set of parameters, we can
add a new constant symbol ca to the language L for each a ∈ A, producing a new
language LA. We can then turnM into an LA-structure by interpreting these new
constant symbols by setting cMa = a for each a ∈ A. We call this expanded language
the enrichment of L by A and we denote the resulting set of LA formulas true
in M by ThA(M). This construction allows us to define the notion of a type.

Definition 2.1. Let p be the set of LA formulas in free variables v1, . . . , vn. We
say p is an n-type if p ∪ ThA(M) is satisfiable. We say that p is complete if φ ∈ p
or ¬φ ∈ p for all LA-formulas φ in free variables v1, . . . , vn. We sometimes write
p(v) to emphasize the fact that the type p is in the free variables v. We denote the
set of all complete n-types by SMn (A).

The requirement that p ∪ ThA(M) is satisfiable means that a type in a given
structure must be consistent with the structure’s full theory. A type does not,
however, have to be realized in that structure.

Definition 2.2. We say an n-type p over A is realized by a ∈ Mn whenever
M |= φ(a) for every formula φ ∈ p. If there is no b ∈Mn so that p is realized, then
we say that p is omitted in M.

In order to clarify the notion of a type, we will consider some examples. Consider
M = (Q, <), the rational numbers with the usual ordering relation. If we let N ⊂ Q
be the set of parameters, one possible type is

p(x) = {x > 1, x > 2, x > 3, . . .}.
If we take any finite δ ⊂ p, we can find the formula in δ with the greatest parameter
x > n. Interpreting x as n + 1, then, satisfies every formula in δ, which, by
compactness, implies that p is satisfiable. Thus, p is a 1-type.

Returning the example type p(x) above, we can see that p is not realized in Q.
An easy way to find complete types realized in a model is to define them as follows.
Let

s(v) = {φ(v)|φ an LA-formula,M |= φ

(
1

2

)
}.

Since M |= φ if and only if M 6|= ¬φ, s is a complete type, and it is obviously
realized in M by 1

2 .
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This method of generating complete types generalizes into one particular n-type
(over A in a structure M) of interest, called the type of a for any a ∈ Mn, which
is defined as the set of all formulas in n free variables satisfied by a. Put more
explicitly, we define the type of a as

tpM(a/A) = {φ(v1, . . . , vn) ∈ LA|M |= φ(a1, . . . , an)}.

Clearly, tpM(a/A) is realized by a. When ∅ is the set of parameters, we just write
tpM(a). In the lemma that follows, we show that every complete type can be
realized in an elementary extension of the given model, where it will be the type of
the element which realizes it.

Given an L-theory T , we let Sn(T ) be the set of complete n-types so that p ∪ T
is satisfiable. If T is complete and M |= T , then clearly Sn(T ) = SMn (∅).

Even if a type is not realized in a some structure M, we can find a realization
of it in an elementary extension of M.

Lemma 2.3. If M is an L-structure, A ⊆ M , and p is an n-type over A, then
there is an elementary extension N so that p is realized in N .

Proof. Let Γ = p∪{φ(m1, . . . ,mn)|M |= φ(m1, . . . ,mn), φ an L-formula}. We can
use a straightforward compactness argument to show that Γ is satisfiable.

To show that any finite subset of Γ is satisfiable, it suffices to consider finite
subsets ∆ of the form

φ(v1, . . . , vn, a1, . . . , am) ∧ ψ(a1, . . . , am, b1, . . . , bl),

with a1, . . . , am ∈ A, b1, . . . , bl ∈ M \ A, φ(v, a) ∈ p, and M |= ψ(a, b), since any
finite subset of Γ is satisfiable if and only if the conjunction of the conjunction
of the formulas in the type and the conjunction of the formulas satisfied in M is
satisfiable.

Since p is a type, we know there is N0 so that N0 |= p∪ThA(M). Furthermore,
since ∃wψ(a,w) ∈ ThA(M), we have

N0 |= φ(v, a) ∧ ∃wψ(a,w).

Interpreting b1, . . . , bl as the elements of N0 that witness ∃wψ(a1, . . . , am.w), we
have N0 |= ∆, so ∆ is satisfiable, which tells us that Γ is satisfiable.

Since Γ is satisfiable, let N |= Γ. Because we have

N |= {φ(m1, . . . ,mn)|M |= φ(m1, . . . ,mn), φ an L-formula},

we know that the map that sends cM 7→ cN is an elementary embedding. If
c1, . . . , cn ∈ N are the interpretations of the vi above, then c is a realization of
p. �

We can put a topology on SMn (A) as follows. Given any LA-formula φ, we set

[φ] = {p ∈ SMn (A)|φ ∈ p},

i.e. the set of complete n-types that contain φ. The sets for each LA-formula form a
basis of open sets. Accordingly, we can put [φ∧ψ] = [φ]∩ [ψ] and [φ∨ψ] = [φ]∪ [ψ].
It can be shown that this space is compact and totally disconnected.

Definition 2.4. A type p ∈ SMn (A) is isolated if {p} is open in SMn (A).
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Since a set is open only if it is a union of the basic open sets, we can characterize
these types by saying a type p ∈ SMn (A) is isolated if {p} = [ψ] for some LA formula
ψ. We can also define isolated types by saying a type p is isolated if and only if
there is a formula φ(v) ∈ p so that for all ψ(v) ∈ p,

ThA(M) |= φ(v)→ ψ(v).

Although we omit the proof, each of these three definitions is equivalent. We will
employ whichever is more convenient for completing the proof at hand.

Likewise, we say p ∈ Sn(T ) is isolated if and only if there is φ(v) ∈ p so that for
all ψ(v) ∈ p,

T |= φ(v)→ ψ(v),

in the same way.
Earlier, we stated a result saying that omitted types can be realized in elementary

extensions of a given model. However, the following theorem tells us that, if a
realized type is non-isolated, then there is an elementary submodel which omits it:

Theorem 2.5 (Omitting Types). Let L be a countable language, T an L-theory,
and p a non-isolated n-type over ∅. Then there is a countable M |= T omitting p.

The isolated types in a structure have a number of interesting and useful prop-
erties. The following lemmas tell us certain facts about isolated types which will
help us prove important results in the subsequent sections.

Lemma 2.6. Suppose φ(v) is an LA-formula so that [φ] contains no isolated types
in SMn (A). Then, there is a formula ψ(v) so that [φ ∧ ψ] and [φ ∧ ¬ψ] are both
non-empty and do not contain an isolated type.

Proof. It is first easy to check that there is a formula ψ so that [φ∧ψ] and [φ∧¬ψ]
cannot both be empty. We can pick any type p ∈ [φ] ⊆ SMn (A). Since p is complete,
either ψ or ¬ψ is in p so at least one of [φ∧ψ] = [φ]∩ [ψ] and [φ∧¬ψ] = [φ]∩ [¬ψ]
is non-empty.

Next, suppose that for all LA-formulas ψ, exactly one of [φ ∧ ψ] and [φ ∧ ¬ψ] is
non-empty. Let p′ = {θ|[φ ∧ θ] 6= ∅}. We note p′ is a complete type and

ThA(M) |= ∀v(φ(v)→ θ(v)),

for all θ ∈ p′. Therefore, φ isolates p′, contradicting our assumption. This shows
that there is a formula ψ(v) so that [φ ∧ ψ] and [φ ∧ ¬ψ] are both non-empty. �

Lemma 2.7. If A ⊆ M and (a, b) ∈ Mm+n realizes an isolated type in SMm+n(A),

then tpM(a/A) is isolated.

Proof. Let φ(v, w) isolate tpM(a, b/A). We want to show that ∃wφ(v, w) isolates
tpM(a/A).

Let ψ(v) be any LA-formula such that M |= ψ(a). We need to show that

ThA(M) |= ∃w(φ(v, w)→ ψ(v)).

Suppose not. Then, there is a c ∈Mm so that M |= ∃w(φ(c, w) ∧ ¬ψ(c)).
Pick d ∈Mn so thatM |= φ(c, d)∧¬ψ(c). Because φ(v, w) isolates tpM(a, b/A),

we have ThA |= φ(v, w)→ ψ(v).
This is a contradiction, since

ψ(v) ∈ tpM(a/A) ⊂ tpM(a, b/A),

which completes the proof. �
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Lemma 2.8. Suppose that M |= T , A ⊆ B ⊆ M , and every b ∈ Bm realizes an
isolated type in SMm (A). If a ∈ Mn realizes an isolated type in SMn (B), then a
realizes an isolated type in SMn (A).

Proof. Let φ(v, w) be an L-formula and suppose b ∈ Bm is selected so that φ(v, b)
isolates tpM(a/B). Let θ(w) be an LA-formula isolating tpM(b/A). We want to
show that φ(v, w) ∧ θ(w) isolates tpM(a/B).

Suppose M |= ψ(a, b). Because φ(v, b) isolates tpM(a/B), we have

ThA(M) |= θ(w)→ ψ(v, b).

Furthermore, because θ(w) isolates tpM(b/A),

ThA(M) |= θ(w) |= (φ(v, w)→ ψ(v, w)),

and, consequently,

ThA(M) |= (θ(w) ∧ φ(v, w))→ ψ(v, w),

which is what we want.
Because tpM(a, b/A) is isolated, we know that tpM(a/A) is isolated, by the

previous lemma. �

3. Prime Models and Stable Theories

Definition 3.1. Suppose that M |= T . We say M is a prime model of T if
whenever N |= T there is an elementary embedding of M into N . Furthermore,
given some A ⊆ M , we say that M is prime over A if whenever N |= T and
f : A→ N is partial elementary, there is an elementary f∗ :M→N extending f .

Definition 3.2. We say that a theory T is ω-stable if, given any M such that
M |= T and countable A ⊆ M , then SMn (A) is countable. Moreover, we say that
T is κ-stable if, whenever M |= T and A ⊂ M with |A| = κ > ℵ0, we have
|SMn (A)| = κ.

Theorem 3.3. Suppose that T is a complete theory in a countable language. If T
is ω-stable, then for all structures M so that M |= T and all A ⊆ M , the isolated
types in SMn (A) are dense.

Proof. Suppose not. We know, then, there is an LA formula φ so that [φ] does
not contain any isolated types. By Lemma 2.6, we can find ψ so that [φ ∧ ψ] and
[φ ∧ ¬ψ] are non-empty and do not contain isolated types. In particular, we can
repeat this process arbitrarily to build a tree as follows:

• Let φ∅ = φ, for any φ so that [φ] does not contain any isolated types.
• For each σ ∈ 2<ω, put φσ_0 = φσ ∧ ψ and φσ_1 = φσ ∧ ¬ψ, where ψ is

some formula chosen as in the lemma.

We observe that each [φσ] is non-empty and does not contain any isolated types
and, futhermore, if σ ⊂ τ , then φτ |= φσ and φσ_i |= ¬φσ_(1−i). Notice that
each branch of the tree encodes a consistent set of formulas - a type - and any two
branches disagree about a formula and are hence pairwise inconsistent.

Let A0 be the set of all parameters occurring in all φσ. Since this is a countable
union of finite sets, A0 is countable. Since there are 2ℵ0 branches in the tree, we
can conclude that |SMn (A0)| = 2ℵ0 , which contradicts the assumption of ω-stability.
Therefore, the isolated types are dense. �
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Lemma 3.4. Suppose A ⊆ M . If f : A → N is a partial elementary embedding,
then SMn (A) is homeomorphic to SN (f(A)).

Proof. If f : A → N is a partial elementary embedding, then we can show that f
induces a homeomorphism so that p 7→ f(p), where we define

f(p) = {φ(v, f(a))|φ(v, a) ∈ p},

where p ∈ SMn (A).
First, we can show that p 7→ f(p) is surjective. Given p ∈ SMn (A), fix any finite

∆ ⊂ f(p). We then have

∆ = {φ1(v, f(a)), . . . , φm(v, f(a))}.

Since p ∈ SMn (A), we know that p ∪ ThA(M) is consistent, so

M |= ∃v
m∧
i=1

φi(v, a)

and, since f is a partial elementary embedding, we have

N |= ∃v
m∧
i=1

φi(v, f(a)),

so, by compactness, f(p)∪Thf(A)(N ). This shows that if p ∈ SMn (A), then f(p) ∈
SNn (f(A)). A similar argument shows that p ∈ SMn (A) only if f(p) ∈ SNn (f(A)),
so the mapping p 7→ f(p) is a surjection.

To see that it must also be injective, suppose we have p, q ∈ SMn (A) with p 6= q.
Since these are complete types, there must be some ψ(v, a) ∈ p and ¬ψ(v, a) ∈ q.
If f(p) = f(q), then ψ(v, f(a)) ∧ ¬ψ(v, f(a)) ∈ f(p) = f(q), which contradicts the
fact that f(p) ∪ Thf(A)(N ) is satisfiable. Therefore, p 7→ f(p) is a bijection.

Now to see that p 7→ f(p) is continuous, we simply note that if we have

[φ(v, f(a))] = {f(p) ∈ SNn (f(A))|φ(v, f(a)) ∈ f(p)},

an open subset of SNn (f(A)), then we get

f−1([φ(v, f(a))]) = {p ∈ SMn (A)|φ(v, a) ∈ p} = [φ(v, a)],

an open subset of SMn (A). This shows that the preimage of an open set is open, so
p 7→ f(p) is continuous. It is clear that a similar argument shows that p 7→ f−1(p)
is continuous, so SMn (A) is homeomorphic to SNn (f(A)) under the map induced by
f . �

Theorem 3.5. Given an ω-stable theory T, let M |= T and A ⊆ M . There is an
elementary substructure of M, M0, which is a prime model extension over A, and
it can be selected so that every element of M0 realizes an isolated type over A.

Proof. We’ll build a sequence (Aα)α≤δ of nested subsets of M as follows:

• Set A0 = A,
• For a limit ordinal α, we put Aα =

⋃
β<αAβ ,

• If no element M \ Aα realizes an isolated type, then we put δ = α. If not,
we pick some aα which realizes an isolated type over Aα and let Aα+1 =
Aα ∪ {aα}.
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We then let M0 be the substructure of M with underlying set Aδ.
We first want to show that M0 is indeed an elementary substructure of M.

We can check by applying Tarski-Vaught (Theorem 1.3). Suppose M |= ∃vφ(v, a),
where a ∈ Aδ. Since the isolated types in SM(Aδ) are dense, by Theorem 3.3, there
is a b ∈M so that M |= φ(b, a) and tpM(b/Aδ) is isolated. But we chose δ so that
b ∈ Aδ so M0 is an elementary substructure of M.

Next, we want to show that M0 is a prime model extension over A. Suppose
N |= T and f : A → N is partial elementary. We can show by a quick induction
argument that f can be extended into an elementary map f∗ :M→N . We want
to build a sequence of functions

f = f0 ⊂ . . . ⊂ fα ⊂ . . . ⊂ fδ,

where fα : Aα → N is elementary. In this sequence, if α is a limit ordinal, then we
set

fα =
⋃
β<α

fβ .

Given a partial elementary embedding fα : Aα → N , suppose φ(v, a) isolates
tpM0(aα/Aα). Because fα is partial elementary, by Lemma 3.4, we know that
φ(v, fα(a)) isolates fα(tpM0(aα/Aα)) in SN1 (fα(A)). Additionally, we know that,
since fα is partial elementary, there is a b ∈ N so that N |= φ(b, fα(a)). Therefore,
fα+1 = fα ∪ {(aα, b)} is elementary.

This shows that fδ :M0 → N is elementary, so M0 is a prime model extension
over A. It follows immediately from lemmas 2.6 and 2.7 that every element in M0

realizes an isolated type over A. �

Definition 3.6. Let κ be an infinite cardinal. We say M |= T is κ-homogeneous
if, whenever A ⊂ M with |A| < κ, f : A → M is a partial elementary map and if
a ∈M , then there is f∗ ⊇ f so that f∗ : A∪{a} →M is partial elementary. Often,
we simply say M is homogeneous when it is |M |-homogeneous.

Theorem 3.7. Let T be a complete theory in a countable language. Suppose that
M and N are countable homogeneous models of T and M and N realize the same
types in Sn(T ) for n ≥ 1. Then M∼= N .

Proof. For this proof, we construct an isomorphism f : M → N by building a
sequence of partial elementary maps with finite domain and letting f be their
union. Since M and N are countable, let M = {an|n ∈ N} and N = {bn|n ∈ N}.
In our construction, we will make sure ai ∈ dom(f2i+1) and bi ∈ ran(f2i+2), so when
we pass to their union, we have dom(f) = M and ran(f) = N with f :M→N an
isomorphism.

We start by setting f0 = ∅. Because T is complete, f0 is partial elementary.
For the inductive step, we assume fs is a partial elementary embedding, with a =
dom(fs) and fs(a) = b.

For s + 1 = 2i + 1, we let p = tpM(a, ai). Because M and N realize the same
types, we can find c, d ∈ N so that tpN (c, d) = p. We have tpN (c) = tpM(a)
by choice of c, and tpM(a) = tpN (b) because fs is partial elementary. Therefore
tpN (c) = tpN (b). Because N is homogeneous, there is an e ∈ N so that tpN (b, e) =
tpN (c, d) = p. Thus, we have fs+1 = fs∪{(ai, e)}, a partial elementary embedding
with ai ∈ dom(fs+1).
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For s + 1 = 2i + 2, we can repeat the above steps to find c, d ∈ M so that
tpM(c, d) = tpN (b, bi). Because M is homogeneous, there is e ∈ M so that
tpM(c, d) = tpM(a, e). We then have fs+1 = fs ∪ {(e, bi)}, with bi ∈ ran(fs+1).

If we set
f =

⋃
i<ω

fi,

we clearly obtain an isomorphism between M and N , which is what we want. �

We underwent this digression on homogeneous models in order to develop a
tool to show that two prime models are isomorphic. This comes up naturally in a
discussion of ω-stable theories, since models of ω-stable theories have elementary
prime model extensions.

Theorem 3.8. Let T be a complete theory in a countable language. If M and N
are prime models of T , then M∼= N .

Proof. First, we can show that ifM is a prime model of T , then tpM(a) is isolated
for all a ∈ Mn. Suppose j : M → N is an elementary embedding. If a ∈ Mn

realizes p ∈ Sn(T ), then j(a) must do so, as well. But if p ∈ Sn(T ) is non-isolated,
then there is an N so that N omits p, by the omitting types theorem (Theorem
2.5). Therefore, M cannot realize a non-isolated type. Since tpM(a) is realized in
M for all a ∈Mn, we know that tpM(a) is isolated.

Next, we can show that if M is a prime model, then it is ℵ0-homogeneous.
Suppose a 7→ b is elementary and c ∈ M . Let φ(v, w) isolate tpM(a, c). Because
M |= ∃wφ(a,w) and a 7→ b is elementary, we know M |= ∃wφ(b, w). Suppose
M |= φ(b, d). Since φ(v, w) isolates a type tpM(a, c) = tpM(b, d), so a, c 7→ b, d is
elementary. This shows that M is homogeneous.

Finally, if we have M, N prime models of T , we know that they realize the
same types and are countable homogeneous models, so by the previous theorem,
M∼= N . �

4. Vaughtian Pairs

Given some formula φ in n free variables and an L-structure M, let φ(M) =
{x ∈Mn|M |= φ(x)}. This is called the set defined by φ in M.

Definition 4.1. Let κ and λ be cardinals with κ > λ ≥ ℵ0. An L-theory T has
a (κ, λ)-model if there is an L-structure M so that M |= T and |M | = κ and an
L-formula φ(v) with |φ(M)| = λ.

Definition 4.2. A Vaughtian pair is a pair of models of T , (N ,M), for which the
following hold:

(1) there is an elementary embedding j :M→N
(2) M 6= N
(3) there is an LM -formula φ such that φ(M) is infinite and φ(M) = φ(N )

Lemma 4.3. If T has a (κ, λ)-model where κ > λ ≥ ℵ0, then there is (N ,M), a
Vaughtian pair of models of T .

The notions of Vaughtian pairs and (κ, λ)-models naturally arise in a discussion
of categoricity because their presence is a sure indicator that the theory is not
categorical. If M is a (κ, λ)-model with φ(M) = λ, then one can add κ-many
constants to the language and add an axiom schema to the theory asserting that
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φ holds on all of these constants. Since λ is infinite, this will be finitely-satisfiable.
Thus, compactness guarantees that there is a model N of the theory where the set
φ(N ) has cardinality κ. This shows that there are two non-isomorphic models of
size κ, since any isomorphism M→ N would have to bijectively map φ(M) onto
φ(N ), which is impossible since these definable sets have different cardinalities.

Proof. Let N be a (κ, λ)-model and let X = φ(N ). Suppose that |X| = λ. Since
X ⊆ N , by Löwenheim-Skolem, there is an elementary submodel M of N so that
X ⊆ M and |M | = λ. But, since X ⊆ M , we have φ(M) = φ(N ). Therefore, the
pair (N ,M) forms a Vaughtian pair. �

Observation 4.4. Although (N ,M) is a pair of L-structures, it is often useful to
consider them as a single structure in a suitable language, given by the following
construction.

Let L′ = L ∪ {U}, where U is a unary relation symbol. If M is an elementary
substructure of N , we can regard (N ,M) as a single L′-structure by interpreting
U (N ,M) = M . Given φ(v1, . . . , vn), an atomic L-formula, we can define the restric-
tion of φ to U by letting φU be U(v1)∧. . .∧U(vn)∧φ. We can extend this definition
to all formulas by letting φU be ¬ψU whenever φ is ¬ψ and letting φU be ψU ∧ θU
whenever φ is ψ ∧ θ. Furthermore, if φ is ∃vψ, we can let φU be ∃vU(v) ∧ ψU .

Although we omit the proof, ifM is an elementary submodel of N and a ∈Mn,
then

(N ,M) |= φU (a) ⇐⇒ M |= φ(a).

This construction will be very helpful in the proof of the following lemma.

Lemma 4.5. Suppose T is a theory in a countable language. If (N ,M) is a Vaugh-
tian pair for T , then there is a Vaughtian pair (N0,M0) where N0 is countable.

Proof. Since (N ,M) is a Vaughtian pair, we may find some φ ∈ LM , where LM is
the enrichment of L by M , so that φ(M) is infinite and φ(M) = φ(N ). Let Y be
the set of parameters of M contained in φ. Since Y must be finite, we may apply
Löwenheim-Skolem to get (N0,M0), a countable L′-structure so that Y ⊆ M and
(N0,M0) is an elementary substructure of (N ,M).

Because M is an elementary substructure of N , for any formula ψ(v1, . . . , vn),
we have

(N ,M) |= ∀v

((
k∧
i=1

U(vi) ∧ ψi

)
→ ψU (v)

)
.

Because (N0,M0) is an elementary substructure of (N ,M), the above formula
is also satisfied in (N0,M0). Therefore, N0 is an elementary substructure of M0.

Since the pair (N ,M) forms a Vaughtian pair, there is an LM formula φ so that
φ(M) = φ(N ) and φ(M) is infinite. Consequently, we may find such a φ with
infinitely many realizations in M and none in N \M . For each k, then, we know
the following three sentences hold in (N ,M):

∃v1 . . . ∃vk
(∧

i<j vi 6= vj ∧
∧k
i=1 φ(vi)

)
∃x¬U(x)

∀v (φ(v)→ ∧U(vi)) ,

since these reflect the defining conditions of a Vaughtian pair. But these sentences
also hold in (N0,M0), so (N0,M0) is a Vaughtian pair. �
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Lemma 4.6. Suppose that M0 is an elementary substructure of N0, where each
is a countable model of T . If a ∈ Mn

0 and p ∈ Sn(a) is realized in N0, then there
is a pair of models (N ′,M′), which, when considered as a single L′structure, is an
elementary extension of (N ,M), so that p is realized in M′.

Proof. Let the 1−type Γ(v) be defined by

Γ(v) = {φU (v, a)|φ(v, a) ∈ p} ∪ {φ(m1, . . . ,mn)|(N0,M0) |= φ(m1, . . . ,mn)}.

If φ1, . . . , φm ∈ p, then we have

N0 |= ∃v

(
m∧
i=1

φi(v, a)

)
so we know

M0 |= ∃v

(
m∧
i=1

φi(v, a)

)
and (N0,M0) |= ∃v

(
m∧
i=1

φUi (v, a)

)
.

This shows that Γ(v) is satisfiable, by compactness. We,then, know that there exists
(N ′,M′), a countable elementary extension of (N0,M0) realizing Γ(v), which is
what we want. �

Lemma 4.7. Suppose that M0 is an elementary substructure of N0, where each
is a countable model of T . If b ∈ N0 and p ∈ Sn(b), then there is a pair of models
(N ′,M′), which, when considered as a single L′ − structure, is an elementary
extension of (N ,M) so that p is realized in M′.

Proof. Let Γ(v) be defined as in the previous lemma. If φ1, . . . , φm ∈ p, then we
have

N0 |= ∃v

(
m∧
i=1

φi(v, b)

)
,

so we can find a countable elementary extension of (N0,M0) realizing p. �

Lemma 4.8. Suppose that M0 is an elementary substructure of N0, where each is
a countable model of T . Then we can find N andM so that the pair (N ,M), when
considered as a single L′-structure, is an elementary extension of the pair (N0,M0)
and each is a countable, homogeneous model that realizes the same types in Sn(T ).

Proof. Using the two lemmas above, we can build a chain of pairs of models
(Nα,Mα) so that (Nα+1,Mα+1) is an elementary extension of (Nα,Mα)α<ω for
each α and each of the following conditions hold:

• if p ∈ Sn(T ) is realized in N3i, then p is realized in N3i+1,
• If a, b, c ∈ M3i+1 and tpM3i+1(a) = tpM3i+1(b), then there is a d ∈ M3i+2

so that tpM3i+2(a, c) = tpM3i+2(b, d),
• if a, b, c ∈ N3i+2 and tpN3i+2(a) = tpN3i+2(b), then there is a d ∈ N3i+3 so

that tpN3i+3(a, c) = tpN3i+3(b, d).

Lemma 4.6 proves that the first two conditions can be met, and the Lemma 4.7
tells us that the third can be satisfied.

Let

(N ,M) =
⋃
α<ω

(Nα,Mα).
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Since this is a countable union of countable models, (N ,M) is a countable Vaugh-
tian pair. By the first condition, M and N realize the same types. By the second
and third condition, M and N are homogeneous and, therefore, isomorphic, by
Theorem 3.7. �

The previous results will allow us to prove the following theorem, which shows
that the presence of a (κ, λ)-model can always be witnessed by a model of size ℵ1
and a countable definable set.

Theorem 4.9 (Vaught’s Two-Cardinal Theorem). Suppose T is in a countable
language. If T has a (κ, λ)-model where κ > λ ≥ ℵ0, then T has an (ℵ1,ℵ0)-model.

Proof. Suppose T has a (κ, λ)-model. By earlier results, we can find (N ,M), a
countable Vaughtian pair so that M and N are homogeneous models realizing the
same types. Let φ(v) be an LM -formula with infinitely many realizations in M and
none in N \M .

We build an elementary chain (Nα)α<ω1 so that for each α we have isomorphisms
Nα ∼= N and (Nα+1,Nα) ∼= (N ,M), and with the property thatNα+1\Nα contains
no elements satisfying φ.

To this end, let N0 = N . If α is a limit ordinal, we set

Nα =
⋃
β<α

Nβ .

Because Nα is a union of models isomorphic to N , we know Nα is homogeneous
and realizes the same types as N . Consequently, there is an isomorphism Nα ∼= N
by Theorem 4.7.

Given any Nα isomorphic to N , since there is an isomorphism N ∼=M, there is
an elementary extension Nα+1 of Nα so that (N ,M) is isomorphic to (Nα+1,Nα).

In this case, we have Nα+1
∼= N . Let

N ∗ =
⋃
α<ω1

Nα.

Then we have |N∗| = ℵ1 and, if N ∗ |= φ(a), then a ∈ M , so N ∗ is an (ℵ1,ℵ0)-
model. �

Lemma 4.10. Suppose that T is ω-stable, M |= T , and |M | ≥ ℵ1. There is
an LM -formula φ(v) so that |[φ(v)]| ≥ ℵ1 and for all LM -formulas ψ(v), either
|[φ(v) ∧ ψ(v)]| ≤ ℵ0 or [φ(v) ∧ ψ(v)]| ≤ ℵ0.

Proof. If φ is the formula v = v, then clearly φ holds for every element in M so we
have |[φ]| = |M | ≥ ℵ1.

To see that for every LM formula ψ(v) either [φ(v) ∧ ψ(v)] or [φ(v) ∧ ¬ψ(v)] is
countable, we will do a proof by contradiction. Suppose that for any LM formula
θ(v) with |[θ(v)]| ≥ ℵ1, there is a formula ψ(v) so that both [θ(v) ∧ ψ(v)] and
[θ(v) ∧ ¬ψ(v)] are uncountable. To generate a contradiction, we will utilize the
ω-stability of T and build a tree.

Let θ∅ be φ as above, the formula v = v. By our supposition, for any σ ∈ 2<ω,
we can find a ψ(v) so that [θσ(v) ∧ ψ(v)] and [θσ ∧ ¬ψ(v)] are both uncountable.
Setting θσ_0(v) = θσ(v) ∧ ψ(v) and θσ_1(v) = θσ(v) ∧ ¬ψ(v) for such a ψ, we
obtain a tree (θσ)σ∈2<ω so that |[θσ]| ≥ ℵ1 and [θσ_0] ∩ [θσ_1] = ∅.
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Letting A be countable set of parameters occurring in all of the θσ, we can count
branches to determine that |SM1 (A)| = 2ℵ0 , which contradicts the ω-stability of T .
This completes the proof. �

Lemma 4.11. Suppose T is ω-stable, M |= T and |M | ≥ ℵ1. There is a proper
elementary extension N of M so that if Γ(w) is a countable type over M realized
in N , then Γ(w) is realized in M.

Proof. As in the previous lemma, let φ(v) be the formula v = v. We can define a
type

p = {ψ(v)|ψ(v)an LM -formula and |[φ(v) ∧ ψ(v)]| ≥ ℵ1}.
If ψ1, . . . , ψm ∈ p, then, by the previous lemma, |[φ(v) ∧ ¬ψi(v)]| ≤ ℵ0 for i =
1, . . . ,m. Since we know

m⋃
i=1

[φ(v) ∧ ¬ψi(v)] = [φ(v) ∧
m∨
i=1

¬ψi(v)],

and a finite union of countable sets is countable, we have

|[φ(v) ∧
m∨
i=1

¬ψi(v)]| ≤ ℵ0.

Using DeMorgan’s law and Lemma 4.10 once again, this shows that
∧m
i=1 ψi(v) ∈ p

and p is finitely satisfiable. Since [φ(v)] is uncountable, for each LM -formula ψ(v),
exactly one of ψ(v) or ¬ψ(v) is in p, so p is a complete type over M .

Let M′ be an elementary extension of M containing c, a realization of p. By
Theorem 3.5, there is an elementary substructure N of M′ which is prime over
M ∪ {c} such that every a ∈ N realizes an isolated type over M ∪ {c}.

Let Γ(w) be a countable type overM realized by b ∈ N . There is an LM -formula
θ(w, v) so that θ(w, c) isolates tpM(b/M ∪ {c}). Note that ∃wθ(w, v) ∈ p and also,
since θ isolates a type, we have

∀w(θ(w, v)→ γ(w)) ∈ p,

for all γ(w) ∈ Γ. Let

∆ = {∃wθ(w, v)} ∪ {∀w(θ(w, v)→ γ(w))|γ ∈ Γ}.

We then know that ∆ ⊂ p is countable and, if c′ realizes ∆, then ∃wθ(w, c′), and if

θ(b
′
, c′), then b

′
realizes Γ.

Since ∆ is countable, we can write ∆ = {δn(v)|n ∈ N}. By the construction of
p, we have |{x ∈M |φ(x)}| ≥ ℵ1 and, additionally,

|{x ∈M |φ(x) ∧ ¬(δ0(x) ∧ . . . ∧ δn(x))}| ≤ ℵ0,

for all n ∈ N. By a similar argument as above, we can then conclude

|{x ∈M |φ(x) and x realizes ∆}| ≥ ℵ1.

Let c′ ∈ M realize ∆ and choose b
′

so that M |= θ(b
′
, c′). In this case, b

′
is a

realization of Γ in M. �

Theorem 4.12. Suppose that T is ω-stable and there is an (ℵ1,ℵ0)-model of T . If
κ > ℵ1, then there is a (κ,ℵ0)-model of T .
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Proof. Let M |= T with |M | ≥ ℵ1 and pick φ so that |φ(M)| = ℵ0. Furthermore,
let N be an elementary extension of M as in Lemma 4.11.

The type Γ(v) defined as

Γ(v) = {φ(v)} ∪ {v 6= m|m ∈M and M |= φ(m)}
is a countable type omitted in M and hence in N . Therefore, φ(N ) = φ(M).

We can utilize this method to build a chain (Mα)α<κ in the following manner:
letM0 =M and letMα+1 be an elementary extension ofMα so thatMα+1 6=Mα

and φ(Mα+1) = φ(Mα).
Let N =

⋃
α<κMα. then N is a (κ,ℵ0)-model of T . �

5. Order indiscernibles

In this section, we utilize Vaught’s Two-Cardinal Theorem and related results to
show that a theory categorical in some uncountable power must be ω-stable and can
have no Vaughtian pairs. Before we can prove that, however, we need to introduce
the notion of order indiscernibles.

Definition 5.1. Let (I,<) be an ordered set and let (xi)i∈I be a sequence of
distinct elements of M . We say (xi)i∈I is a sequence of order indiscernibles if
whenever i1 < i2 < . . . < im and j1 < j2 < . . . < jm are two increasing sequences
from I, then we have

M |= φ(xi1 , . . . , xim)↔ φ(xj1 , . . . , xjm).

The order type of a set of indiscernibles (I,<) is the ordinal α so that (I,<) is
isomorphic to (α,∈).

Order indiscernibles are sequences that can not be detected as different by for-
mulas, so long as any two sequences are ordered the same. They are, for this reason,
“indiscernible.” We omit the argument, but indiscernible sequences exist in some
model of any given theory by compactness and Ramsey’s theorem.

Definition 5.2. SupposeM |= T ∗ and X ⊆M . Let H(X) be the L∗-substructure
of M generated by X. We call H(X) the Skolem hull of X.

Theorem 5.3. Let L be countable and T be an L-theory with infinite models. For
all κ ≥ ℵ0, there is a model M so that M |= T ∗ with |M | = κ and if A ⊆M , then
M realizes at most |A|+ ℵ0 types in SMn (A).

Proof. The strategy of this proof is to define equivalence classes of elements that
satisfy the same formulas, and then count them to determine the maximum number
of realized types. Throughout, we’ll work only with 1-types, although the proof will
generalize in an obvious way. Let L∗ and T ∗ be as above. LetM such thatM |= T
be the Skolem hull of a sequence of order indiscernibles I of order type (κ,<), so
that |M | = κ.

Given A ⊆ M , for each a ∈ A, there is a term ta and sequence from I so that
xa so that a = ta(xa). Let X = {x ∈ I|x occurs in some xa}. Then we have
|X| ≤ |A|+ ℵ0.

Given X as above, we can create an equivalence relation on sequences as follows:
if y1 < . . . < yn and z1 < . . . < zn, say y ∼X z if, for all x ∈ X,

(1) yi < x if and only if zi < x
(2) yi = x if and only if zi = x,
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where i = 1, . . . , n. This equivalence relation considers all sequences equivalent if
they are indiscernible - i.e. in the same position with respect to the ordering.

Now we want to show that y ∼X z and t is a Skolem term, then t(y) and t(z)
realize the same type in SM1 (A).

Let a1, . . . , am ∈ A. Because y and z are in the same position in the ordering
with respect to X, by indiscernability, we have

M |= φ(t(y), a1, . . . , am) ⇐⇒ M |= φ(t(y), ta1(xa1), . . . , tam(xam))

⇐⇒ M |= φ(t(z), ta1(xa1), . . . , tam(xam))

⇐⇒ M |= φ(t(z), a1, . . . , am).

Next, we can show that |In/ ∼X | ≤ |A|+ℵ0. For y ∈ I\X, let Cy = {x ∈ X|x < y}.
We call each Cy a cut. Accordingly, we note y ∼X z if and only if

• if yi ∈ X, then yi = zi
• if yi 6∈ X, then zi 6∈ X and Cy = Cz = ∅,

for i = 1, . . . , n. Because I is well-ordered, Cy = Cz if and only if Cy = Cz = ∅ or

inf{i ∈ I|i > Cy} = inf{i ∈ I|i > Cz}.
It is clear that there can be at most |X|+1 possible cuts Cy. Therefore, |In/ ∼X | ≤
|A|+ ℵ0 and M realizes at most |A|+ ℵ0 types over A. �

Theorem 5.4. Let T be a complete theory in a countable language L with infinite
models. If T is κ-categorical, for some κ ≥ ℵ1, then T is ω-stable and has no
Vaughtian pairs.

Proof. We will start by showing that T must be ω-stable. Supposing that it is not
ω-stable, we know that there is a countable model M |= T and A ⊆ M so that
|SMn (A)| > ℵ0. We know that we can find N0, an elementary extension of M,
which has cardinality κ. By Theorem 5.4, we can find a model N1 of cardinality
κ so that N1 |= T and for all B ⊆ M , if B is countable, then N1 realizes at most
countably many types over B. Clearly, N0 6∼= N1, which contradicts the assumption
that T is κ-categorical.

Next, we know from Theorem 4.12 that, since T is ω-stable, if it has a Vaughtian
pair of models, then there is an (ℵ1,ℵ0)-model and, consequently, a (κ,ℵ0) model.
Because we can find a model of T of cardinality κ where every infinite definable set
has cardinality κ, this is a contradiction. �

6. Strong Minimality

Two canonical examples of uncountably categorical theories are algebraically
closed fields and vector spaces over a countable field. In this section, we make
use of the features of each of these structures to handle the case of an arbitrary
uncountably categorical theory. In particular, we show that uncountably categorical
theories admit a notion of dimension which allows one to characterize models up
to isomorphism. Along the way, we introduce a general notion of closure which
mimics that of algebraic closure in the case of algebraically closed fields.

Given an L-structure M, we say that X ⊆ Mn is definable if and only if there
is an L-formula φ(v, w) and b ∈ Mm so that X = {a ∈ Mn|M |= φ(a, b)}. In this
case, we say φ(v, b) defines X. If A ⊆M , we say that X is A-definable or definable
over A if there is an L-formula ψ(v, w) and b ∈ Al so that ψ defines X.
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Definition 6.1. If M is an L-structure and D ⊆ Mn is an infinite definable set,
we say D is minimal in M if, for any definable Y ⊆ D, either Y is finite or
D \ Y is finite. If φ(v, a) defines such a D, then φ(v, a) is also said to be minimal.
Such definable sets and formulas are strongly minimal if they are minimal in any
elementary extension of M.

Definition 6.2. LetM be an L-structure and A ⊆M . We say b ∈M is algebraic
over A if there is an L-formula φ(v, w) and a ∈ A so that M |= φ(b, a) and

φ(M, a) = {y ∈M |M |= φ(y, a)}
is finite.

It is usual to define an algebraic closure operation by setting

acl(A) = {x|x is algebraic over A}.
We, however, will need to restrict this operation to strongly minimal sets. If D ⊆M
is strongly minimal, then given A ⊆ D, we set

aclD(A) = {b ∈ D|b is algebraic over A}.
We note that this algebraic closure operation has the following property, called

the exchange principle: if D ⊂ M is strongly minimal, A ⊆ D, and a, b ∈ D, then
b ∈ acl(A ∪ {a}) whenever a ∈ acl(A ∪ {b}) \ acl(A).

Definition 6.3. Let M |= T and D ⊆ M be a strongly minimal subset. We say
A ⊆ D is independent if a 6∈ acl(A \ {a}) for all a ∈ A. If C ⊂ D, we say A is
independent over C if a 6∈ acl(C ∪ (A \ {a})) for all a ∈ A.

Definition 6.4. A set A is a basis for Y ⊆ D if A ⊆ Y is independent and
acl(A) = acl(Y ). The dimension of Y is the cardinality of a basis for Y , denoted
by dim(Y ).

If A and B are bases for Y ⊆ D, then it is easy to check that |A| = |B|, so the
notion of dimension is indeed well-defined.

The idea of the above definitions is that we can abstract from familiar structures
- polynomials and their roots, in the case of the algebraic closure operation, and
vector spaces, in the case of bases and dimension - to the much more general setting
provided by first-order formulas.

Lemma 6.5. Suppose thatM,N |= T and φ(v) is a strongly minimal formula with
parameters from A ⊆M0 where M0 |= T and M0 is an elementary substructure of
bothM and N . If a1, . . . , an ∈ φ(M) are independent over A and b1, . . . , bn ∈ φ(N )
are independent over A, then tpM(a/A) = tpN (b/A).

Proof. We prove this by induction. For the n = 1 case, suppose we have a ∈
φ(M) \ acl(A) and b ∈ φ(N ) \ acl(A). Let ψ(v) be a formula with parameters from
A and supposeM |= ψ(a). Because a 6∈ acl(A), we know ψ(M) is infinite. Because
φ is strongly minimal, we know φ(M) \ ψ(M) is finite. Therefore, there is an n so
that

M |= ∃x1 . . . ∃xn

∧
i<j

xi 6= xj ∧
n∧
i=1

φ(xi) ∧ ¬ψ(xi)

∧∀y [φ(y) ∧ ¬ψ(y)→
n∨
i=1

y = xi

]
,

that is, the cardinality of the set defined by φ(x) ∧ ¬ψ(x) has cardinality n.
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Furthermore, because M0 is an elementary substructure of M and N , and b 6∈
acl(A), we have N |= ψ(b). Therefore, we have tpM(a/A) = tpN (b/A).

Assume that it holds for an arbitrary n and consider the n+ 1 case. Suppose we
have a1, . . . , an+1 ∈ φ(M) and b1, . . . , bn+1 ∈ φ(N ) independent sequences over A.
Let a = (a1, . . . , an) and b = (b1, . . . , bn). By the inductive assumption, we have
tpM(a/A) = tpN (b/A). Let ψ(w, v) be a formula with parameters from A so that
M |= ψ(a, an+1). Because an+1 6∈ acl(A, a), we have φ(M) ∩ ψ(a,M) is infinite
and φ(M) \ ψ(a,M) is finite. There is, then, an n so that

M |= |{v|φ(v) ∧ ¬ψ(a, v)}| = n,

where the cardinality of the given definable set is expressed by a first-order sentence
as above.

Because M0 is an elementary substructure of M and N and tpM(a/A) =
tpN (b/A), we know

N |= |{v|φ(v) ∧ ¬ψ(b, v)}| = n.

Finally, because bn+1 6∈ acl(A, b), we have N |= ψ(b, bn+1). Therefore,

tpM(a, an+1/A) = tpN (b, bn+1/A),

which is what we want. �

Theorem 6.6. Suppose T is a strongly minimal theory. If M,N |= T , then
M ∼= N if and only if dim(M) = dim(N). Furthermore, if φ(v) is a strongly
minimal formula with parameters from A, where A = ∅ or A ⊆ M0 for some M0,
an elementary substructure of M and N , then there is a bijective partial elementary
map f : φ(M)→ φ(N ).

Proof. Let B be a basis for φ(M) and C be a basis for φ(N ). If M ∼= N , then it
is clear that |B| = |C|.

For the other direction, suppose that dim(M) = dim(N). We can show that
M∼= N by a Zorn’s lemma argument. In this case, |B| = |C| so there is a bijection
f : B → C. By Lemma 6.5, B and C have the same type over A. This tells us that
f is a partial elementary embedding, since B and C satisfy the same formulas.

Define I by

I = {g : B′ → C ′|B ⊆ B′ ⊆ φ(M), C ⊆ C ′ ⊆ φ(N ), f is partial elementary}
We may apply Zorn’s lemma to get a maximal partial elementary map g : B′ →

C ′. Suppose b ∈ φ(M) \ B′. Because b is algebraic over B′, there is a formula
ψ(v, d) which isolates tpM(b/B′).

Because g is partial elementary, there is c ∈ φ(N ) so that N |= ψ(c, g(d)).
Consequently, tpM(b/B′) = tpN (c/C ′) and g can be extended by setting g(b) = c.
But this contradicts the maximality of g. Therefore φ(M) = B′.

A similar argument can be employed to show that C ′ = φ(N ). �

Theorem 6.7. Let T be an ω-stable theory. If M |= T , then there is a minimal
formula in M.

Proof. Suppose not. Then, as before, we can build a tree. Let φ∅ be the formula
v = v. Then φ∅ is not minimal and φ∅(M) is infinite. If, given τ ∈ 2<ω, φτ is a
non-minimal formula such that φτ (M) is infinite, then because it is not minimal,
there is a formula ψ so that (φτ ∧ψ)(M) and (φτ ∧¬ψ)(M) are both infinite. Let
φτ_0 = φτ ∧ ψ and φτ_1 = φτ ∧ ¬ψ.
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Now, consider the resulting tree (φσ)σ∈2<ω . If τ ⊂ σ, then φσ |= φτ . Further-
more, φσ_i |= ¬φσ_(1−i), and for any σ ∈ 2<ω, φσ(M) is infinite.

Let A0 be the set of parameters occurring in any of the φσ, which is clearly
countable. Then |SM1 (A0)| = 2ℵ0 , contradicting the ω-stability of T . �

Lemma 6.8. Suppose T is an L-theory with no Vaughtian pairs. Let M be an
L-structure so that M |= T and let φ(v, w) have parameters from M . There is
n ∈ N so that if a ∈M and |φ(M, a)| > n, then φ(M, a) is infinite.

Proof. Suppose not. Then for every n ∈ N, there is an an ∈ M so that φ(M, an)
is a finite set of at least size n. As before, let L′ = L ∪ {U}. Let Γ(w) ⊃ T be the
L′-type asserting (the first-order equivalent of):

• U defines a proper elementary submodel
•
∧m
i=1 U(wi)

• there are infinitely many elements v so that φ(v, w)

• φ(v, w)→
∧k
i=1 U(vi).

Let N be a proper elementary extension of M. Because φ(M, an) is finite and
M is an elementary substructure of N , we have

φ(M, an) = φ(N , an).

If ∆ ⊆ Γ(w) is a finite subset, then by choosing a sufficiently large n, an realizes ∆
in (M,N ). This shows that Γ is satisfiable.

Suppose that a realizes Γ(w) in (N ′,M′) where M′ |= T and N ′ is a proper
elementary extension of M′. We then have φ(M′, a) infinite and

φ(M′, a) = φ(N ′, a),

so (M′,N ′) forms a Vaughtian pair, a contradiction. �

Theorem 6.9. If T has no Vaughtian pairs, then any minimal formula is strongly
minimal.

Proof. Let φ(v) be minimal overM. Suppose that there is an elementary extension
N of M, b ∈ N , and an L-formula ψ(v, w) so that ψ(N , b) is an infinite coinfinite
subset of φ(N ).

By the above lemma, there is a number n ∈ N so that for any N ′ which is an
elementary extension of M and a ∈ N ′, ψ(N ′, a) is an infinite coinfinite subset of
φ(N ′) if and only if

|ψ(N ′, a) ∩ φ(N ′)| > n.

and also

|¬ψ(N ′, a) ∩ φ(N ′)| > n.

However, we know that

M |= ∀w(|ψ(M, w) ∩ φ(M)| ≤ n ∧ |¬ψ(M, w) ∩ φ(M)| ≤ n),

so the above formula is also true in N ′. This is a contradiction, so the theorem
holds. �
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7. The Categoricity Theorem

Lemma 7.1. If T is an ω-stable theory with no Vaughtian pairs,M |= T , and X ⊆
Mn is infinite and definable, then M is prime over X and no proper elementary
submodel of M contains X.

Proof. Let φ(v) define X. If N is a proper elementary submodel of M containing
X, then X = φ(M) = φ(N ) and, since X is infinite, (M,N ) form a Vaughtian
pair. Therefore, since T has no Vaughtian pairs, no proper elementary submodel
of M contains X.

Furthermore, theorem 3.5 tells us that, because T is ω-stable, there is an ele-
mentary submodel N of M which is prime over X. Since N cannot be proper, we
know that M itself must be prime over X. �

Theorem 7.2. Let T be a complete theory in a countable language with infinite
models and suppose κ ≥ ℵ1. T is κ-categorical if and only if T is ω-stable and has
no Vaughtian pairs.

Proof. For one direction, suppose that T is κ-categorical. By theorem 5.4, T is
ω-stable and has no Vaughtian pairs.

For the other direction, suppose T is ω-stable and has no Vaughtian pairs. Sup-
poseM and N are models of T , each of cardinality κ ≥ ℵ1. We want to show that
M and N are isomorphic.

By Theorem 3.5, T has a prime model M0 and additionally, by Theorem 6.7,
there is a strongly minimal formula φ(v) with parameters from M0. Consider M
and N as elementary extensions ofM0, so that dim(φ(M)) = dim(φ(N )) = κ. By
Theorem 6.6, there is a partial elementary bijection f : φ(M)→ φ(N ). By Lemma
7.1, M is prime over φ(M) so f can be extended to f ′ : M → N . But we know
N has no proper elementary submodels containing φ(N ), so f ′ is surjective and,
consequently, an isomorphism.

This shows that T is κ-categorical. �

Notice that in the previous theorem, if T is ω-stable and has no Vaughtian pairs,
T is κ-categorical for any given κ. Consequently, we get the immediate corollary:

Corollary 7.3 (Morley’s Categoricity Theorem). Let T be a complete theory
in a countable language with infinite models. T is κ-categorical for some uncount-
able κ if and only if T is λ-categorical for every uncountable λ.
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