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Abstract. In this exposition, we will present the fundamental theorem in

Ergodic theory and its applications.
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1. Introduction to Dynamical System

Originally, dynamical systems is a discipline that studies the movement of some
physical systems through time e.g. the movement of celestial bodies. From mathe-
matical point of view, the movement of physical systems can be described in term of
the self-mapping of a space. Hence, we come to the formal definition of a dynamical
system.

Definition 1.1. A dynamical system, denoted by (X, f), consists of a non-empty
set X called phase space, whose elements represent possible state of the system, and
a collection of self-mapping {f t|f t : X −→ X}.

Note that the collection of maps cannot be arbitrary. In fact, the collection of
maps must have a group or a semigroup structure. That is if fs and f t belongs
to {f t} then fs+t := fs ◦ f t belongs to {f t} where ◦ is standard composition.
The associativity property thus immediately holds. Also we define f0 to be an
identity map. With these properties hold, the collection of maps have a semigroup
structure. If every fs has an inverse denoted by f−s, then such collection becomes
a group.

Although we have defined dynamical systems in a completely abstract setting,
where a phase space X is simply a set, in practice a phase space X usually come
with an additional structure that is preserved under the mapping. For example,
(X, f) could be a measure space and a measure preserving map, a topological space
and a continuous map, a metric space and isometry, or a smooth manifold and a
differentiable map. In this paper, we will be interested in Lebesgue measurable
space.

We can classify dynamical systems according to the group structure of the col-
lection of the maps.
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Definition 1.2. A discrete-time dynamical system is a dynamical systems
whose t ∈ Z. In a discrete dynamical systems, we do not have to specify the entire
member in the collection since {f t} can be generated by single element, f .

Definition 1.3. A continuous-time dynamical systems is a dynamical systems
whose t ∈ R or t ∈ R+

0 .

With the following terminologies we can discuss the behavior of a point or a set
of points through the process of iteration.

Definition 1.4. For x ∈ X, the positive semiorbit O+
f (x) =

⋃
t≥0 f

t(x). Like-

wise, the negative semiorbit O−f (x) =
⋃
t≤0 f

t(x)

Definition 1.5. The orbit of the point x ∈ X is O+
f (x)

⋃
O−f (x) =

⋃
t f

t(x)

Definition 1.6. A point x ∈ X is a periodic point of period T > 0 if fT (x) = x.
The orbits of a period point is called a periodic orbit.

Definition 1.7. A subset A ⊂ X is f-invariant if f t(A) ⊂ A
Example 1.8. (Circular Rotation) Consider the unit circle S1 = {(x.y)|x2 +
y2 = 1} or in complex plane S1 = {z ∈ C| ‖z‖ = 1}. For α ∈ R, let Rα be the
rotation of S1 by an angle α. Its action on a point in a space is given as

Rα(x = eiθ) = ei(θ+α)

If α is a rational number i.e. there exist p, q ∈ Z such that α = p/q, then Rqα =
R0
α = Id. It follows that every point is a periodic point of period T = p. On

the other hand, if α is a irrational number, then there is no periodic orbit i.e.
the original point will move around in the space S1 never to return to its original
position.

However, we can formulate the following questions which are related to the be-
havior of non-periodic point.

Question 1 Suppose that p is a non-periodic point. How close does this point
is to the original point?

Question 2 What is the distribution in the space of such point? Specifically,
does it distribute evenly throughout the space? If not, which part in the space that
such point spend time the most?

These questions aim at describing the statistical behavior of a dynamical system.
We can formulate these questions in a precise way.

Given any function f : X → X, any orbit x0 7→ f(x0) = x1 7→ f(x1) = x2 7→ ...
and any real valued function ϕ : X → R, we can try to form the limit

A(x0) = lim
n→∞

1

n
(ϕ(x0) + ϕ(x1) + ...+ ϕ(xn−1)) = lim

n→∞

1

n

n−1∑
k=0

ϕ(xk)

If this limit exist, then it is called time average of ϕ over the forward orbit of x0
To formulate its counterpart, space average, is a bit more complicated. We

have to borrow a tool from measure theory. Now suppose that (X,B, µ) is a finite
measure space, and that ϕ is an integrable function. Then the space average of
ϕ is defined to be the ratio (

∫
X
ϕdµ)/µ(X).

The basic goal in this exposition is prove the fundamental result, commonly
known as Birkhoff Ergodic Theorem, which, roughly speaking, specifies the condi-
tions under which space averages are equal to time average.
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2. Basics Measure Theory

Let X be a set. A σ-algebra of subsets of X is a set B of subsets of X i.e.
B ∈ P(X) satisfying the following conditions:
(i) X ∈ B.
(ii) If B ∈ B, then so is Bc.
(iii)If Bn ∈ B for all n ∈ N, then so is

⋃
n∈N Bn

These properties imply that
(iv) ∅ ∈ B
(v) If B1, ..., Bn ∈ B, then so is

⋂n
j=1Bj . This is also true for infinite collection.

We denoted such space with its σ-algebra as (X,B), and then called it a mea-
surable space. The elements of B are called measurable set. If X is a topological
space, there is a natural σ-algebra that we want to work with. We shall always con-
sider the σ-algebra of a Borel sets, i.e. the smallest σ-algebra containing all open
subsets of X.

A function, µ, called a measure in X, is a function that assigns to each elements
in set B a non-negative number i.e. µ : B → R≥0. Moreover, such measure have to
satisfying the following condition:
(i) µ(

⋃
n∈N Bn)=

∑
n∈N µ(Bn), if Bi ∩Bj = ∅ for all i6=j.

(ii)µ(∅) = 0

Definition 2.1. A measure µ is finite if µ(X) ≤ ∞. Measurable space together
with finite measure is called finite measurable space.

Definition 2.2. if µ(X) = 1, then a triple (X,B, µ) is called probability space.

Theoretically, our measure can be as bizarre as we want as long as it satisfies
the above conditions. However, in this exposition we will work with Lesbesgue
measure.

Definition 2.3. The σ-algebra of subset of Rn generated by open set and null sets
will be denoted by M. Sets in M will be called Lebesgue measurable.

We can define a measure, µ : M → R≥0, called Lebesgue measure, as the
following.

Definition 2.4. For any subset A of Rn, we can define its outer measure µ∗(A).

µ∗(A) = inf{
∑
B∈C

V ol(B) : C is a countable collection of boxes whose union covers A}

where B is a set, called box, of the form

B =

n∏
i=1

[ai, bi]

The volume vol(B) of this box is defined to be
n∏
i=1

(bi − ai)

This measure also have the following properties.
(i) Suppose that A∈M, and x ∈ Rn, then µ(A+ x) = µ(A)
(ii) µ(

⋃
n∈N Bn) ≤

∑
n∈N µ(Bn)

(iii)If A , B ∈M and A ⊂ B, then µ(A) ≤ µ(B)
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(iv) A is called a null set if and only if µ(A)=0
(v) If A ∈ M , then for any ε > 0, then there exist an open set U containing A
such that µ(U\A) < ε

Not every function are integrable. In fact, there exists a family of function called
measurable function in which we can define the Lebesgue integral.

Definition 2.5. Let (X,B, µ) be a measure space. If f : X → R≥0, we say that f
is B-measurable provided that

f−1(−∞, a) = {x ∈ X|f(x) < a} ∈ B
Now, we can integrate function in this family with respect to the measure we

used. The integral of a measurable function f : X → R ∪ {∞} on a measure space
(X,B, µ) is usually written ∫

X

f dµ

It is defined as the following
(i) If f = χA is the characteristic function of a set A ∈ B, then set∫

X

χA dµ = µ(A).

where

χA(x) =

{
1 when x ∈ A
0 when x ∈ X\A

(ii) If f is a simple function i.e. f can be written as f =
∑n
k=1 ckχAk

where
ck ∈ R for some finite collection Ak ∈ B, then define∫

X

fdµ =

n∑
k=1

ck

∫
X

χAk
dµ =

n∑
k=1

ckµ(Ak).

(iii) If f is a nonnegative measurable function (possibly attaining the value ∞
at some points), then we define∫

X

fdµ = sup

{∫
X

hdµ : h is simple and h(x) ≤ f(x) for all x ∈ X
}
.

(iv) For any measurable function f (possibly attaining the values ∞ or ?∞ at
some points), write f = f+ − f−where

f+ = max(f, 0) and f− = max(−f, 0)

so that |f | = f+ + f−, and define the integral of f as∫
X

fdµ =

∫
X

f+dµ−
∫
X

f−dµ

provided that
∫
X
f+ dµ and

∫
X
f+ dµ are not both ∞

The following theorem addresses the conditions under which the limit and inte-
gral can be interchanged. We will use this theorem in proving the Birkhoff Ergodic
Theorem.

Theorem 2.6. (Lebesgue’s dominated convergence theorem) Let fn : Rn →
R ∪ {±∞} be a sequence of integrable functions which converges on Rn point wise
almost everywhere to a function f : Rn → R ∪ {±∞}. Also, assume that there is
an integrable function G : Rn → R ∪ {+∞} with |fn| ≤ G for all n ∈ B. Then, f is
integrable and

∫
Rn f(x)dx = limn→∞

∫
Rn fn(x)dx
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The proof of this theorem and other topics in measure theory can be found in
[4] and [5].

3. Ergodic Theory

Ergodic theory is the statistical study of groups of motions of a space with mea-
surable structure on it. The word ergodic was introduced by Ludwig Boltzman in
the context of the statistical mechanics of gas particle, and it comes from two Greek
words ”ergon”(work) and ”odos”(path).

However,the mathematical setting in which ergodic theory is studied is (X,B, µ, {Tn})
or (X,B, µ, {f t}), where {Tn} and {f t} are measure preserving transformation.

Definition 3.1. Suppose that B is a σ-algebra of X and µ is a finite measure
defined on B.
(i) A function T : X → X is called a measure preserving provided that for each
B ∈ B the set T−1(B) ∈ B and µ(T−1(B)) = µ(B).
(ii) A function ϕ : X → C which satisfies ϕ(x) = ϕ(T (x)) for µ-almost all x is
called T-invariant.
(iii) A set A is called T-invariant if χA(x) is a T-invariant i.e. χ(x) = χ(T (x)) for
µ-almost all x.

Definition 3.2. Suppose that T : X → X is a µ-measure preserving transforma-
tion. A point x ∈ A ⊂ X is said to be recurrent for T with respect to µ-measurable
set A provided that the set of return times, R(x) = {n|Tn(x) ∈ A,n ∈ N} is infinite.

With the terminology given above we can discuss the solution to the first question
stated in the introduction part.

Theorem 3.3. (Poincaré recurrence) Suppose T : X → X is a µ-measure pre-
serving transformation of a finite measure space and suppose that A ⊂ X is µ-
measurable. Then µ almost all x ∈ A are recurrent for T with respect to A.

Proof. Let Á = A ∩
⋂∞
N=0

⋃∞
n=N T

−n(A). We want to show that µ(Á) = µ(A)
since this implies that the iterates {Tn} map almost every x ∈ A infinitely back

into A. For each x ∈ Á, there exist arbitrarily large m ∈ N with Tm(x) ∈ A, and
the iterates of T thus map any such x infinitely many times to A. Since

T−1(

∞⋃
n=N

T−n(A)) =

∞⋃
n=N+1

T−n(A) ⊂
∞⋃
n=N

T−n(A)

and T is a measure preserving transformation, it follows that

µ(

∞⋃
n=0

T−n(A)) = µ(

∞⋃
n=N

T−n(A)) =

∞⋂
N=0

∞⋃
n=N

T−n(A)for all n ∈ N

and because A ⊂
⋃∞
n=o T

−n(A), therefore µ(Á) = µ(A). �

However, we can answer the same question in a more precise manner.This lead us
to the main theorem in this exposition which aim at answering the second question
stated in the introduction part.

Theorem 3.4. (Birkhoff Ergodic Theorem) Let T be a measure-preserving trans-
formation in a finite measure space (X,B, µ). For any integrable function ϕ i.e.
ϕ ∈ L1(X,B, µ), then the time average
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A(x) = lim
n→∞

1

n
(ϕ(x)) + ϕ(T 1(x) + ...+ ϕ(Tn−1(x)) = lim

n→∞

1

n

n−1∑
k=0

ϕ(T k(x))

exits for almost every x. Moreover, A is integrable with respect to µ and is a T-
invariant function i.e. A ◦ T (x) = A(x) for all most every x, and satisfies∫

X

A(x)dµ =

∫
X

ϕ(x)dµ

The argument used in this proof will be based on the following lemma.

Lemma 3.5. (Existence of the ”positive” orbits) Let T be a measure-preserving
transformation, and let ϕ be integrable with

∫
X
ϕ(x)dµ > 0. Then there exists an

orbit x0 7→ T (x0) = x1 7→ T (x1) = x2 7→ ... which satisfies the inequality

ϕ(x0) + ϕ(x1) + ...+ ϕ(xn−1) > 0

for all n ≥ 1

Proof. (Set up) This lemma can be proved by contradiction. Suppose to the con-
trary. It follows that for every x0 ∈ X there exists an integer n with ϕ(x0)+ϕ(x1)+
...+ ϕ(xn−1) ≤ 0.We must show that

∫
X
ϕ(x)dµ ≤ 0.

(Step 1) Let us suppose for a moment that we have a stronger condition. That
is there exist a constant k > 1 so that for every x0 ∈ X there exists an integer
1 ≤ n ≤ k with ϕ(x0) + ϕ(x1) + ... + ϕ(xn−1) ≤ 0. This assumption guarantees
that our n for each x can not exceed the value k.

(Step 1.1) Under this stronger assumption, we will prove that the inequality

N−1∑
j=0

ϕ(xj) ≤
N−1∑
j=N−k

|ϕ(xj)|

is true for some fixed orbit and any positive integer N . It follows from this assump-
tion that for each integer p > 0, we can always find an integer q with p < q ≤ p+ k
such that

∑q−1
j=p ϕ(xj) ≤ 0. From this relation, we can construct a sequence of

integers 0 = p0 < p1 < p2 < ... with pi+1 ≤ pi + k, and with
∑pi+1−1
j=pi

ϕ(xj) ≤ 0.
Summing this last inequality for 0 ≤ i < l, it follows that

pl−1∑
j=0

ϕ(xj) ≤ 0

Now given an arbitrary large N , we can choose pj so that N − k ≤ pj ≤ N . It
follows that

N−1∑
j=0

ϕ(xj) =

pl−1∑
j=0

ϕ(xj) +

N−1∑
pl

ϕ(xj) ≤ 0 +

N−1∑
pl

(|ϕ(xj)|) ≤
N−1∑
N−k

(|ϕ(xj)|)

This proves the inequality above.
(Step 1.2) Now consider both sides of inequality (3.5) as a function of x0 ∈ X.

We can then integrate both side with measure, µ, over the whole space, X. We
obtain

N

∫
X

ϕ(x)dµ ≤ k
∫
X

|ϕ(x)|dµ



MEASURE THEORETIC ASPECTS OF DYNAMICAL SYSTEMS 7∫
X

ϕ(x)dµ ≤ k

N

∫
X

|ϕ(x)|dµ

Since k is fixed and N can be arbitrary large, this proves that
∫
X
ϕ(x)dµ ≤ 0

(Step 2) We consider the sequence of measurable real-valued functions ϕk where

ϕk(x0) =

{
ϕ(x0) if there exist1 ≤ n ≤ k with ϕ(x0) + ϕ(x1) + ...+ ϕ(xn−1) ≤ 0,

0 otherwise.

From this construction it is clear that ϕk is integrable since |ϕk| ≤ |ϕ|. We can
see that ϕ1 ≤ ϕ2 ≤ ϕ3 ≤ ... ≤ ϕ. Since each ϕk satisfies the assumption assume
in step 1.1, it follows that

∫
X
ϕk(x)dµ ≤ 0. On the other hand, it follows from

original assumption that ϕk converge pointwise to ϕ. Therefore, from Lebesgue’s
dominated convergence theorem,

∫
X
ϕ(x)dµ = limn→∞

∫
X
ϕk(x)dµ ≤ 0. �

We now provide a proof of Birkhoff Ergodic Theorem

Proof. We can form the upper an lower time averages

A+ = lim sup
n→∞

1

n

n−1∑
k=0

ϕ(T k(x)) A− = lim inf
n→∞

1

n

n−1∑
k=0

ϕ(T k(x))

Where

−∞ ≤ A−(x) ≤ A+(x) ≤ +∞

We can see that bothA+ andA− are measurable functions sinceAn = 1
n

∑n−1
k=0 ϕ(T k(x)

is measurable, and that both are T-invariant i.e. A±(T (x)) = A±(x).

Case 1 Suppose that A+ and A− are bounded. Then, they are integrable
because we have assume that µ(X) is finite. We will show that∫

X

A+(x)dµ ≤
∫
X

ϕ(x)dµ.

Suppose not. This implies that we could chose ε > 0 so that∫
X

A+(x)dµ >

∫
X

(ϕ+ ε)(x)dµ.

By lemma 3.4, using A+ as ϕ, we could find an orbit x0 7→ T (x0) = x1 7→ T (x1) =
x2 7→ ... such that

n−1∑
k=0

A+(T k(x0)) =

n−1∑
j=0

A+(xj) >

n−1∑
j=0

(ϕ+ε)(xj) =

n−1∑
k=0

(ϕ+ε)(T k(x0)) for every n > 0

Since A is T-invariant, the LHS of this inequality equals nA+(x0). Now, dividing
by n, this yields

A+(x0) >
1

n

n−1∑
k=0

(ϕ+ ε)(T k(x0))

Now take lim sup

A+(x0) = lim sup
n→∞

A+(x0) > lim sup
n→∞

1

n

n−1∑
k=0

(ϕ+ ε)(T k(x0)) ≥ A+(x0) + ε
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which is impossible. Using analogous statement for the lower time average, we can
show that ∫

X

A+(x)dµ ≤
∫
X

ϕ(x)dµ ≤
∫
X

A−(x)dµ ≤
∫
X

A+(x)dµ

Hence all three integral are equal. Consequently, A+(x) = A−(x) except on a set
of measure zero.

Case 2 Suppose that A+ and A− are unbounded. For each positive integer n,
let Xn be the set of points for which

−n ≤ A−(x) ≤ A+(x) ≤ n
Both A+ and A− defined this way are measurable and T-invariant set. Hence,
we can apply the same argument to conclude that limA(x) exists for almost all
x ∈ Xn, and that

∫
Xn

A(x)dµ =
∫
Xn

ϕ(x)dµ. It follows that this is true for union

of Xn, that is, for the set of all x satisfying

−∞ ≤ A−(x) ≤ A+(x) ≤ +∞
We need only check that the functions A± take finite value, except on a set of
measure zero. Suppose not. Let N be the invariant set consisting of points x for
which A+ = +∞. Since µ(N) > 0, we can choose a finite constant c such that∫
N
c >

∫
N
ϕ(x). Applying lemma 3.4, there exist an orbit in N such that

nc >

n−1∑
j=0

(ϕ(xj)) =

n−1∑
k=0

(ϕ(T k(x0)) for every n > 1

Now, dividing by n and the lim sup, this yields

c ≥ A+(x0)

which contradicts to the assumption that A+(x0) =∞ where x0 ∈ N �

4. Application

Poincaré Recurrence theorem tells us the conditions under which the elements in
a measurable subset A of X return again an again to a measurable set A. However,
using Birkhoff Ergodic Theorem, we can describe such phenomena more precise at
least in the special case where T is an ergodic transformation.(Note that when we
formulate the theorem we require T to be only measure preserving transformation.)

Definition 4.1. Suppose that T : X → X is a measure preserving transformation
for a finite measure µ defined on σ-algebra B of subsets of X. Then, T is called
ergodic if every T -invariant set A ∈ B is either µ(A) = 0 or µ(Ac) = 0.

Proposition 4.2. Suppose that T is a measure preserving in a finite measure space
µ. Then T is ergodic if and only if every measurable function ϕ which is T -invariant
is constant except on a set µ of measure 0.

Proof. (⇐=) Suppose that only T -invariant functions are µ-almost every where
constant. A set A is T -invariant only if the function χA is T -invariant. Since χA(x)
takes on only 1 and 0, the function χA must equal to 0, except on a set whose
measure is 0, or to 1, except on a set whose measure is 0. Hence, µ(A) = 0 or
µ(Ac) = 0.
(=⇒) Suppose not. If ϕ is a T -invariant measurable function that is not µ almost
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everywhere constant, then there is a constant c ∈ R such that if A = ϕ−1([0, c)),
then µ(A) > 0 and µ(Ac) > 0. Hence, the set A is T -invariant. �

We ask the following question. If we consider the {T k(x)|0 < k < n − 1}, the
first n points in forward orbit of x ∈ A where A is a measurable set , and let Nn(x)
denote the number of those points which lie in A, then we would like to know if the
limit

lim
n→∞

Nn(x)

n
exists. If so, how is this value of the limit compare to µ(A). Using Birkoff Er-
godic Theorem, we are able to answer such question in the case that T is ergodic
transformation.

Proposition 4.3. Suppose that T is an ergodic transformation in a finite measure
space (X,B, µ). For any integrable function ϕ(x), then

lim
n→∞

1

n

n−1∑
k=0

ϕ(T k(x)) =
1

µ(X)

∫
X

ϕ(x)dµ

Proof. Using Birkhoff Ergodic Theorem, we get the following∫
X

A(x)dµ =

∫
X

ϕ(x)dµ

Since T is an ergodic transformation, from proposition 4.2, every measurable func-
tion ϕ is constant almost everywhere. This implies that time average is also T-
invariant, and therefore constant almost everywhere.∫

X

lim
n→∞

1

n

n−1∑
k=0

ϕ(T k(x))dµ =

∫
X

ϕ(x)dµ

[ lim
n→∞

1

n

n−1∑
k=0

ϕ(T k(x))]

∫
X

dµ = lim
n→∞

1

n

n−1∑
k=0

ϕ(T k(x))µ(X) =

∫
X

ϕ(x)dµ

Divide the RHS by µ(X),we got the desired result. �

Proposition 4.4. Suppose that T is an ergodic transformation in a finite measure
space and A ∈ X is a µ-measurable. Let Nn(x) denote the number of points in the
set A ∩ {T k(x)|0 < k < n− 1}. Then for µ almost all x ∈ X

lim
n→∞

Nn(x)

n
=
µ(A)

µ(X)

Proof. Let ϕ(x) = χA(x). We then apply Birkoff Ergodic Theorem and corollary
4.3. We get the following

lim
n→∞

1

n

n−1∑
k=0

χA(T k(x)) = lim
n→∞

Nn(x)

n
=

∫
χA(x)dµ

µ(X)
=
µ(A)

µ(X)

�

Poincaré Recurrence theorem asserts that for µ almost all point x ∈ A the
forward orbit of x for a measure preserving transformation T returns to A infinitely
often. However, for an ergodic transformation T we can do much better that is we
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can measure how often the forward orbit of a point x not necessarily in A visits the
set A.
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