EXPANDER GRAPHS AND PROPERTY (T)

IAN ALEVY

ABSTRACT. Families of expander graphs are sparse graphs such that the num-
ber of vertices in each graph grows yet each graph remains difficult to dis-
connect. Expander graphs are of great importance in theoretical computer
science. In this paper we study the connection between the Cheeger constant,
a measure of the connectivity of the graph, and the smallest nonzero eigen-
value of the graph Laplacian. We show for expander graphs these two numbers
are strictly bounded away from zero. Given a finitely generated locally com-
pact group satisfying Kazhdan’s property (T), we construct expanders from
the Cayley graphs of finite index normal subgroups with finite generating sets.
We follow Alexander Lubotzky’s treatment in [7].
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1. INTRODUCTION

In this expository paper we explicitly construct expander families. Expander
graphs solve the most basic problem in the design of networks; designing a robust
network to connect a large number of disjoint sets of users. Expander graphs
strike the ideal balance between the number of connections between nodes and the
reliability of the network as the number of nodes grows.

The method of construction we will employ follows A. Lubotzky’s onstruction
in chapter 4 of [7]. In the construction we exploit the connections between graphs
and representations of locally compact topological groups. In order to translate
the problem of constructing expander graphs to an algebraic one we will look at
the smallest nonzero eigenvalue of the graph Laplacian. To translate back to the
world of graphs we will construct a graph by taking the Cayley graph of a group
satisfying property (T) where the edges represent elements of a finite generating
set.
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It is desirable to explicitly construct expander graphs because of their numerous
applications in the field of theoretical computer science. We briefly summarize M.
Klawe’s excellent review of these applications which can be found in the introduction
of [6]. Expander graphs are used in the construction of sparse graphs with dense
long paths, the design of fault-tolerant microelectronic chips, and in an algorithm
that reduces the number of calls to a random number generator made by almost
any Monte-Carlo algorithm while still running in polynomial time. Throughout
this paper we will primarily be concerned with regular graphs because these are
the most useful in applications.

The author owes a great intellectual debt to A. Lubotzky’s treatment of expander
graphs and property (T) in chapters 3 and 4 of [7]. The author has tried to present
the basic theory of expander graphs in a self-contained paper while providing mo-
tivation and more detailed explanations.

2. BASIcS OF EXPANDER (GRAPHS

The most intuitive definition of expanders is purely combinatorial. Eventually
when we explicitly construct expanders we will have to translate to the language of
algebra. The most natural object of study is the smallest nonzero eigenvalue of the
graph Laplacian, A;. The first definition does not provide us with any obvious way
of connecting these two properties of a graph. We introduce a number associated
with every graph, the Cheeger constant, which allows us to compare the expansion
properties of different graphs. A family of graphs is an expander graph family if
the Cheeger constant is bounded away from zero. Later we will prove the Cheeger
constant is bounded away from zero for an expander family if and only if Ay is
bounded away from zero.

Definition 2.1. Given a k-regular graph X = (V, E) with |V| = n vertices we call
it an (n, k,c) expander if there exists ¢ > 0 such that

(2.2) 0A] > ¢ (1 - |‘:|) Al

for all subsets A C V where we have denoted the boundary of A by 94 ={v eV |
d(v, A) = 1}.

While this definition is only valid for finite graphs, we are primarily interested
in infinite graphs. Finite graphs are uninteresting because for every finite graph we
can find ¢ > 0 such that the graph is an expander graph for that c. If we allow
ourselves to consider infinite graphs, for instance the Cayley graph of Z/nZ with
generators 1 and —1 as n goes to infinity, we see that there is no ¢ such that this
graph is an expander graph for all n. In order to approximate infinite graphs we will
consider families of finite graphs without a finite bound on the number of vertices
in each graph.

Definition 2.3. A family of expander graphs {X; };c; is a collection of graphs such
that each X; is a (ny, k, ¢)-expander where k and c are fixed for all X; and n; goes
to infinity.

Next we introduce a constant associated with a graph that measures its expansion
properties. In an expander graph for any proper subset, A, of the vertices there is
a vertex outside of A connected by an edge to a vertex in A. When c is large there
are more vertices outside of A connected by an edge to vertices inside A. More
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edges must be removed from the graph in order to disconnect it into two disjoint
pieces. In order to measure the difficulty required to disconnect the graph we assign
a number, the Cheeger constant, to each graph. This number will be essential in
the construction of expander graphs.

Definition 2.4. For a graph X = (V, E) and A a subset of the vertices define the
Cheeger ratio to be

; __BAAY]
(2.5) halX) = Ctian A

where E(A, A°) denotes the edges between A and A°. The Cheeger constant is
defined to be

h(X) = inf ha(X).

The Cheeger ratio will be useful when we wish to show an upper bound on the
Cheeger constant because for any subset of the vertices, the inequality ha (X) >
h(X) holds. We can use the definitions to show constructing a family of (n, k, ¢)-
expander graphs for a given ¢ > 0, fixed k, and n going to infinity is equivalent to
constructing an infinite family of k-regular graphs with a Cheeger constant strictly
greater than zero.

Proposition 2.6. Let X be a k-regular graph with n vertices.
i) If X is an (n, k,c)-expander then h(X) > §.
i) If X is an (n,k,c) expander then X is an (n, k, @)—el’pander.

Proof of (i). Pick a subset, A, of the vertices such that the Cheeger ratio calculated
for the set A is equal to the Cheeger constant.

BAB| . IBAB)]|
min{|A[, |A¢|}  ACV min{|A], |A¢|}
Notice the inequality |0A| < |E(A, A%)| must hold. In addition max{|A[, |A°|} >
n/2 because AU A° = V. Next a simple calculation shows
n0A] _n 9A] _ n|B(AAY) _ [B(AAY)
(n—[A[) 214 2]A[|A¢] = 2 [A[|Ae] — min{[A[,[A°}

h(X)

<

g h(X).

d

Proof of (ii). Let A be a subset of the vertices. Without loss of generality assume
|A| < mn/2. If this is not true then |A¢| < n/2 and we apply the method of the proof
to A°. By definition we can bound the Cheeger constant by the ratio

B(AA) koAl
h(X) < - < .
) < Sn{an Ay < 4

We need to show that if we substitute h(X)/k for the constant in the definition of
an expander graph than the inequality still holds.

%X) (1 - 2‘) 4] < [04] (1 - ";") < |04]
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2.1. Existence of Expander Graphs. The goal of the paper, explicit construc-
tion of expander families, is very difficult to achieve. However, the existence of
expander families can be shown with combinatorial methods. In fact one can prove
most k-regular graphs are expander graphs. The proof can be found in section 1.2
of [7]. We have omitted the proof because the argument shares no similarities with
the construction we will present. It is interesting to note the problem of construct-
ing expanders is stated in purely combinatorial language yet there is no known
combinatorial method to construct them. Instead we must translate this problem
into an algebraic one in order to use group theory to present the solution to the
problem.

3. GRAPH LAPLACIAN

In addition to [7], we give credit to [4, p. 472] for this explanation of the graph
Laplacian. We would like to define the graph Laplacian in a similar manner to the
Laplacian defined in elementary vector calculus for a real valued function. Namely
for a real valued function f the Laplacian of f is equal to the divergence of the
gradient of f. We can define analogous notions of the gradient and divergence for
functions that assign a number to every vertex of a graph.

The derivative measures rate and direction of change. Just as in Euclidean
space we arbitrarily define an orientation to make simplifications, for graphs we
can make the notation simpler by defining an orientation on the edges of the graph.
The particular orientation chosen will have no effect on the results presented in
this section. Given a graph X = (V, E), for every edge e, we denote the terminal
vertex of the edge with respect to the orientation by et and the initial vertex of
the orientation by e~. We can represent this orientation with the matrix D, , =

+1 ifv=et

-1 ifv=e"

0 else .

In vector calculus we think of the gradient as measuring the change in the func-
tion as we move along the coordinate axes. Likewise we should expect the com-
binatorial gradient to measure the change in our function as we move along each
edge from a given vertex.

Definition 3.1. Given a real-valued function f on the vertices of the graph,
X(V,E), we define the operator d : R(V) — R(E) by df(e) = f(et) — f(e7).
We use R(V') to denote the set of real-valued functions on the vertices of the graph
and R(FE) to denote the set of real-valued functions on the edges of the graph.

We can think of this one form as a row vector where each entry corresponds
to the value of f at a vertex. In matrix notation we can write this operator as
(fD). = f(eT) — f(e™). Likewise we can define a notion of the divergence. Let
g € R(E). We can think of g as a column vector where each entry corresponds to
the flow out of a vertex.

Definition 3.2. The divergence of g is defined by
(Dg)o = > gle)— > gle)
{e€Elv=e—} {e€Ev=et}

Now we are prepared to define the Laplacian of a function f € R(V). As men-
tioned earlier the Laplacian does not depend on the orientation of the graph.
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Definition 3.3. The Laplacian operator is defined by A = D*D where D* denotes
the transpose of the matrix D.

A simple calculation shows we can equivalently define the graph Laplacian in a
manner that is simpler to compute and does not require the choice of an orientation
on the graph.

Proposition 3.4. Let X = (V,E) be a graph. Then A = S — §;; where d;; is
L ifi~ g,
0 else.

diagonal entry is equal to the degree of the vertex. The notation i ~ j means the
vertices i and j are joined by an edge.

the adjacency matriz 0;; = and S is a diagonal matriz where each

Proposition 3.5. Given two functions, f,g € R(V) such that (f, f) and (g, g) are
finite, the Laplacian satisfies (f,Ag) = (df,dg) where we use (-,-) to denote the
inner product, (f,g) = >, cyv f(v)g(v). From this we conclude the Laplacian is a
positive self-adjoint operator. Therefore its eigenvalues are real and nonnegative.

Proof. We can write out the Laplacian operator in the form of a sum
Af(v) = deg(v) f(v) = Y Suuf () =Y Suulf(v) — f(u)).
ueV ueV

Where we have used deg(v) to denote the degree of the vertex v. Next by a compu-
tation we show the Laplacian is self-adjoint and the two definitions are equivalent

(f,(S=0)g) = fv (deg = > dpug(u )

veV ucV
=" deg(v) f(v)g(v) = > > duuf(0)g(v)
veV veV ueV
(df,dfy =Y (df(e) - (dg(e)) = D (f(e¥) = fle™))(g(e™) = g(e7))
ecE ecE
= > )+ fle)gle)) = D _(f(eM)gle™) + fe)gle))
eckE eck
=" deg(v)f(v)g(0) = Y Y dpuf(v)g(w)
veV veV ueV

(df,df) = (f,(S = d)g) = (f, Ag).
]

Now we need to find a way to compute \;, the smallest nonzero eigenvalue of
the graph Laplacian. We will use the graph theory analog of the Rayleigh Quotient
method.

Proposition 3.6.

inf
feRo(V)< (1)
where Ro(V) denotes the space of real-valued functions on the vertices such that

ZUEV f(U) = 0.
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Proof. The constants are orthogonal to the functions in the space Ro(V) because
for some constant ¢ € R and f € Ro(V') we can compute

H=cd flv)=
veV

This combined with the fact A is self-adjoint imply A;(X) is the smallest positive
eigenvalue of A on L3(X).
In order to compute A1 (X) we will use the Rayleigh quotient method.

w0 =, (G57) =t (777)

Next we show why this method works. Let f,g € L?(X) and f a minimizer of
the Rayleigh Quotient. The graphs and sums are finite allowing us to ignore issues
of convergence. Define w.(x) = f(z) + eg(z). Then the Rayleigh Quotient is

D sev (dwe(e))?
Yeev we(x)
By assumption this function has a minimum at € = 0.
Yeer ((df(e))” + € (dg(e))” + 2¢df (e)dg(e))
Dzev [2(@) + 293(x) + 2 f(z)g(x)

If we differentiate with respect to € term by term we find

(e 26(dg(e))? + 2df (e)dg(e)) (X,ev f2(x) + g (x) + 2¢f(2)g(2))

Quwe) = hle) =

h(e) =

h(e) = 5
. (Coev (f2(x) + g2(x) + 2¢f (x)g()))
 (Zeev (268 (@) + 2f(2)9(2))) (Eeer ((df () + €*(dg(e))* + 2edf (e)dg(e)))
(Saev (f2(2) + 2g%(x) + 2¢f (2)g(x)))”
0= K(0) = (Xeer 2df(e)dg(e)) (Xoey £2(@) = (Coey 2/ (@)9(@)) (X p(df(€))?)
(Caey f2(2))
Seen(df(e)?) Dl
;Edf e)dg(e <§f ) (erv ) ) =Q(f) (;f( )a( >>
= > QU f(x)g(x)

zeV

eV yeV

This must hold for all graphs. In particular, it should hold for any subset of the
vertices of a graph because the sums will also be finite on these subsets. Therefore
we have the equality

deg(z = > bayf(@)g(y) — Q) f(2)g(x) = 0.

yeV
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This is true for all g € R(V) and if we pick g(x) = f(x) then

0= deg(x)fQ(;v) — Z Suy f () f(y) — Q(f)fQ(gc)

yeVv

Q(f)f = deg(x)f(x) = D Suyf(y) = Af(2).

yeVv

Now we begin the process of connecting A (X) and h(X). We desire to show
bounding A;(X) away from zero is equivalent to bounding h(X) away from zero.
Then if we construct graphs such that A;(X) > 0 we know they are expander graphs.
The next two propositions can be found as 4.2.5 and 4.2.6 of [7]. In addition the
author has relied on Theorem 2.3 of [2] for guidance.

Proposition 3.7 (Cheeger’s Inequality for Graphs). Let X be a finite graph with
2
deg(x) < m for every vertex xz. Then A\ (X) > %

Proof. Consider g € Ry(V') an eigenfunction of the Laplacian with eigenvalue A1 (X)
and ||g|] = 1. It will be easier to bound the Cheeger constant from below if we
consider a subset of the vertices that is less than or equal to half of the total
number of vertices. The Cheeger constant is a ratio of the edges between a subset
of the vertices and the complement of the subset divided by the number of vertices
in the smaller subset and its complement. If we consider a subset with at most half
the total number of vertices, then the Cheeger ratio for this subset will always be
greater than the Cheeger constant. One method to do this is to consider the set of
vertices on which f is strictly positive. Define the set of positive values of g to be

glv) ifvevt

Vt={veV]g()>0}. Now we take a new function f(v) = 0 |
else.

We can assume without loss of generality [V | < |V|. If V| > 1|V| then we can
consider the set V= = {v €] g(v) < 0} of cardinality less than or equal to |V|.

In order to get the best bound possible on the Cheeger constant we must choose
these subsets properly so that we get a relation between A\ (X) and the Cheeger
constant. We get such a relation if we choose our subsets to be L; = {z € V|
f(x) > B;} where the §; denote the sequence of finitely many distinct values of
f union 0. We define the sequence {3;}7_; by Bp = 0 and 8; < Bi41 for i > 0.
The L; provide us with a lower bound on the Cheeger constant because our earlier
assumption V| < 1|V| implies |L;| < 1|V|. For each L;, h(X) < W
In order to relate hA(X) to A\ (X) we need to relate h(X) to the values of the
eigenfunction. We will need to define the proper constant in order to do so. Before
defining this constant we provide some motivation behind the choice of constant.
While f is not an eigenfunction, we can say something about the Laplacian of f in
relation to A\1. In order to do this we will take the inner product of f and Af and
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relate this to the eigenfunction g for which we know Ag = A\ g.

(df.df) = > f(@) > 0uy(f(@) = f(y)

eV yeVv
=D 9@) Y duylg@) —gw) = D g(@) Y Suyla(x) = g(y))
zeV+ yev zeV+ yeV—
< > g9(@) Y duylg(e) — g(y))
zeVt yev
=Y g@)Ag@) = (X)) > g* (@) = M) f)
zeV+ veV+

In order to get the inequality in the third line we used the fact g(y) < 0 fory € V—
and therefore the right hand side is always negative.
Now we can see we must bound the Cheeger constant above by something in-

volving the ratio %. The constant A =" __ . [f?(et)— f?(e7)| is a good choice

because if we expand it out to understand what it means we will see that A2 is
bounded above by some constant times the product (df,df) - (f, f).

A=D1 M) = ) =D If ) + fle)lIf(eh) = fe)]

b 1e/€2E 1/2
< <Z(f(e+) + f(e))2> <Z(f(e+) - f(e))2>
ecE e€E

1/2
= <Z(f2(e+) +f2e7) + 2f(6+)f(6))> (df. df)'/?

eckl

1/2
< <22(f2(6+) + f2(6‘))> (df, df)'’?

ecE
S\/%<faf>1/2v>\l(X)<f7f>l/2: 2m)\1(X)<f7f>
A2
M2 g

We used the Cauchy-Schwarz Inequality to get the second and fourth lines. To get
from line 4 to line 5 we noticed in the sum Y ., f2(e™) — f(e™) each vertex gets
counted as many times as its degree and the degree of each vertex is at most m and
the fact proved earlier, (df,df) < M\ (X)(f, f).

Next we need to relate A to the Cheeger constant to complete the proof. Now
we return to the family of sets {L;} which we carefully defined before and show
their importance.

We will desire to compute f%(z) — f?(y) for x and y adjacent vertices. It may
seem like a complicated process to go through and find which 3; corresponds to
f(z) and likewise for f(y). However, we can use the identity

B =Bl = (B — BE1) + By — Bia) + - + (B ;-1 — BE)
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and we see how advantageous this is to simplify our notation when computing a
sum.

A=>"0 N BBl =) |B(L, L8 - B71)
i=1 e€ E(L;,L¢) i=1

As we commented before about the Cheeger ratio we know |E(Ly, LS)| > h(X)|L;|

for ¢ > 0.

T r—1
A> (X)) LB - BEy) = h(X) ('Lr|ﬂ3 +Y AL - |Li+1)>
i=1 i=1

h(X)(g,9) = M(X)(f. f)

In the first line we used summation by parts and in the second line we used the
observation a vertex, z, is in L; \ L;11 exactly when f(x) = f; for some i. Therefore

we have shown A\ (X) > % O

m

Proposition 3.8 (Reverse Cheeger’s Inequality.). Under the same conditions,
hX) > M (X)/2.

Proof. Given a finite graph, X = (V, E) with deg(v) < m for all vertices, we place
an upper bound on A\;(X) based on the Cheeger constant, h(X). In order to show
this we construct a function whose Rayleigh Quotient only picks up values of f on
vertices that have an edge connecting them to the other set. This gives us a way to
count the number of edges between the two sets which is exactly what the Cheeger
constant measures.

Assume |V| = n, and the graph is connected. Divide V into two disjoint subsets
A, B such that the union of A and B is all of V. Define |A| = a and |B| = b.
b ifveA,
—a ifveB.
g € Ro(z). Then if we take the Rayleigh quotient we can bound A;(X) from above

o)~ M Yecplole) o))
serov) [IfI2 7 Xoea 92 (v) + Xpep 97 (v)
|E(A,B)|n*  |E(A, B)|n?

T ata? nab '

For every subset of V' we can estimate

[B(A,B)ln> __n/2  2[B(a,b)| _ 2|E(A,B)|

Assume without loss of generality a < 5. Define g(v) = Notice

nab ~ max(a,b) min(a,b) ~ min(a,b)
because the inequality max(a,b) > % holds. In particular the set V' is finite,
therefore this inequality also holds for the infimum over all subsets A of the vertices.
Therefore the inequality can give us a lower bound on the Cheeger constant

M) iy

(]

Thus we have proven an expander graph is a graph whose Cheeger constant is
bounded away from zero or equivalently a graph whose smallest nonzero eigenvalue,
A1(X), is bounded away from zero.
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4. CAYLEY GRAPHS AND EXPLICIT CONSTRUCTION OF EXPANDER FAMILIES

We present the construction of expander graphs but reserve the proof for the
next section of the paper. Let G be a finitely generated group, and S = {s1,...5,}
a finite generating set. We can associate to the group the Cayley graph, X (G, S)
whose vertices represent elements of the group. Two vertices, g, h € G are joined
by an edge if there exists some s; € S such that g = s;h. In order to explicitly
construct expander families we rely on the ability to examine Cayley graphs from
both graph theoretic and algebraic perspectives.

In the later sections of the paper we will prove Cayley graphs of groups satisfying
relative property (T) are expander graphs. In particular we show the group SL, (Z)
has property (T) for n > 3. We fix n and take a finite generating set S,,. It is proven
in proposition 5 of [9] that two elements suffice to generate SL,,(Z) for n > 3. In
fact the set S,, = {A,, B, } where

1
1 1 D Oax(no2) vV
: IR |
0(n72)><2 . In—2 (—l)n_l 0

generates SL,(Z).

We construct an expander family from the Cayley graphs X(SL,(Z/pZ),S,)
where the vertices are finite index normal subgroups from the reduction modulo a
prime p maps and p runs over all prime numbers.

5. PROPERTY (T) AND RELATIVE PROPERTY (T)

The first explicit construction of an expander family was discovered by Margulis
in [8] who relied on Kazhdan’s property (T) [5].

Definition 5.1. A locally compact group G has property (T) or is a Kazhdan group
if there exists € > 0 and a compact subset K of G such that for every continuous
nontrivial irreducible unitary representation (#, p) of G and every vector v € H of
norm one then ||p(k)v — v|| > € for some k € K.

There is an equivalent definition of property (T) that is easier to use in practice.
Before we can state the definition we must introduce the notion of weak contain-
ment.

Definition 5.2. Let G be a locally compact group and ¢ and p two continuous
unitary representations of G' on a Hilbert space, o, p : G — U(H). For every vector
v in Hilbert space of norm 1 we associate a coefficient of p by by the function
G : g — (v,p(g)v) where the bilinear form is the scalar product in the Hilbert
space. This measures the difference in angles and in essence how much the vector is
moved by the representation. We say p is weakly contained in o, denoted by p < o
if every coeflicient of p is a uniform limit on compact sets of G of coeflicients of o.

We will use pg to denote the trivial representation throughout the paper. If
p = po then it is clear py x o if and only if for every ¢ > 0 and compact subset
K of G then there exists v € H, such that |[v|| = 1 and ||o(g)v — v|| < € for all
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g € K. When a representation weakly contains the trivial representation we say it
has almost invariant vectors. A group has property (T) if and only if every unitary
representation with almost invariant vectors contains a nonzero invariant vector.

Property (T) is in fact a stronger condition than we need for the remainder
of the paper. We only need the condition in 5.1 to hold for some subset of the
representations of G. We call this weaker condition relative property (T). First we
define what we mean by the set of representations of G.

Definition 5.3. Let G be a locally compact group. A unitary representation (#, p)
of G is called irreducible if the only G-invariant closed subspaces of H are the trivial
ones, {0} and H. The set of equivalence classes of irreducible representation of G
is called the unitary dual of G and denoted by G. Tt is not immediately clear why
this is a set. For the proof see Remark C.4.13 in [1].

Definition 5.4. If R is a subset of G we say G has property (T : R) or relative
property (T) with respect to R if there exists an ¢ > 0 and compact subset K of
G such that for every nontrivial irreducible unitary representation (H,p) € R and
every vector v € H of norm one, ||p(k)v — v| > € for some k € K.

Definition 5.5. Given a finitely generated group I' and a family of finite index
normal subgroups £ = {N;}, let R = {¢ € T' | ker¢ D N; for some i}. We say T’
has property (7) if I' has property (T : R) with respect to the family of all finite
index normal subgroups.

With this condition in hand we are finally ready to prove that we can construct
expanders from the Cayley graphs of quotient subgroups of groups satisfying prop-
erty (T).

Theorem 5.6. Let I be a finitely generated group and S a finite set of generators
including the inverse of each element. Let L = {N,} be a family of finite index
normal subgroups of I'. Then the following conditions are equivalent:

i. The group T' has property (1) with respect to L.
it. There exists ea > 0 such that all the Cayley graphs X, = X(I'/N;,S) are
(T : N,],|S], €2) -expanders.
iti. There exists e3 > 0 such that h(X;) > €.
iv. There exists €4 > 0 such that A\ (X;) > €.

Proof. The equivalence (i) <= (ii¢) is proved in 2.6. The proof of the equivalence
(#91) <= (4v) is shown in 3.7 and 3.8.

Now we prove the implication (i) = (¢i7). The strategy is very similar to the
proof of the reverse Cheeger’s Inequality. We take our vector in the Hilbert space
to be a function on the vertices of the graph whose Rayleigh Quotient only picks
up values on vertices in one of the two subsets connected by an edge to the other
subset and vice versa. In essence this function is a minimizer for A;(X). Finally,
we use property (7) to show that the expander inequality must be satisfied for this
graph.

Let N € L and H = L?(T'/N) the vector space of complex valued functions on the
finite set V' = I'/N with the norm || f||* = > . |f(2)]>. Now we can decompose
H as the direct sum H = Ho © C where Ho = {f € H | > o f(z) = 0} and C
denotes the constant functions on the vertices. In other words we can represent
any function f € H as a pair (u,v) where u is a function with average value 0 and
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v is a constant function with average value equal to the average value of f. The
vector space H is a I'-module and y € T" acts on H by (vf)(x) = f(z7y). The action
of I"on I'/N is transitive. Therefore, only the constant functions C are I'-invariant
functions on V and H does not contain the trivial representation. The group I'" has
property (7) which enables us to conclude Hy does not have invariant functions.
Given the group I' and finite generating set S, we can find an € > 0 such that for
every N; and f € Ho, ||[vf — fll > €|/ f|| for some v € S.

Now we will construct a function, f that is a minimizer for A;(X). Break up
the graph into disjoint subsets of the vertices A and B where |A| = a, |B| = b,
and |V| = n. Then define f(v) = {b %fv €4 and let v € I'. We see by a

—a ifveB
computation
lvf = fI? = (b + a)?| E5(A, B)|
where E,(A,B)={veV]|veAandvye B}U{v eV |v e Band vy € A}. By
property (7) we know there is some € > 0 such that ||vf — f||* > €2|f||*. Notice
{veV]|veAand vy e B} <|04|

{veV|veBandvye A} <|04]
1
LB, (4.B) < oAl

Then by property (1) we know
12 < llvf = £IIP = (b +a)*| By (A, B)| < 2n?|04]

201 £112 20,52 2
ef|lfII? _ ef(ab®+ba”)  ,ab _ sn—a |4
|6A|2 m2 22 _61%_61 n a=¢ 1_7 |A|
Therefore the Cayley graph is an expander graph for the group satisfying Property
(7).
To conclude the proof of the theorem we must prove the implication (iv) = (4).

If f € L§(X;) we can alternatively think of f as an element of C[['/N;] = ° . v
where a, € C. This holds because of the isomorphism L?(X;) ~ C[['/N;]. We
assume ||f|| = 1 and [|[Af|| > e4. The action of the Laplacian on an element of
the group algebra of I'/N; is right multiplication by k- e — > _os where e is the
identity element of I', k£ = |S|, and each s acts on f(x) to evaluate f at a vertex
adjacent to z. Then if we apply the triangle inequality we find

<ALl =1 - Se - =13 - < S~ 15l
ses s€S ses
There is at least one s € S such that ¢ < [|f — f - s||. By definition f -s = R(s)f
where R(s) denotes the right regular representation of I' on L3(I'/N;). The finite
quotient I'/N; appears in the right regular representation because p factors through
it. Therefore we can choose €; = e4/k in order to satisfy e; < ||f — pf|. O

Nothing has been said in this proof about the selection of the generating set. In
the next lemma we show the selection of the generating set does not matter.

Lemma 5.7. If T’ is a finitely generated discrete group with property (T') then
for every finite set S of generators of I' every nontrivial irreducible representation
(H,p) of T there exists an s € S such that for every vector v € H with ||v|]| = 1,
lo(s)o — vl > e.
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Proof. By definition of property (T') there exists ¢ > 0 and compact subset K of
I such that for every nontrivial irreducible unitary representation (#, p) of I' and
vector v € H, there exists k € K such that ||p(k)v—v| > €||v]|. We can write w € K
as a word in the elements of S of at most finite length because a compact subset
of a discrete group contains finitely many elements. Call [ the maximal length of
an element of K in words from S. If (H, p) is a representation and v € H a vector
such that ||p(s)v — v|| < €l|v|| for every s € S, then ||p(k)v — v|| < le|jv] for every
k € K. This means if S has almost invariant vectors then K must also have almost
invariant vectors. Equivalently, if K does not have almost invariant vectors then S
also does not have almost invariant vectors. (I

6. SL3(R) HAS PROPERTY (T)

Now we must show the group chosen in our construction of expanders has prop-
erty (T). In order to do so we first show R? x SLo(R) has property (T : R) where
R={peR?x SLy (R) | p |rz is nontrivial }. Before we can start we need to intro-
duce the notion of an amenable group. The proof will hinge on the fact R? xS Ly(RR)
is not amenable. It is interesting to note, the Cayley graph of an amenable group
is the exact opposite of an expander graph.

Definition 6.1. A locally compact group G is called amenable if given € > 0 and
a compact subset K C G, there exists a Borel set U C G of positive finite left Haar
measure A(U) such that
AMzUAU)
A(U)
where we have used AAB to denote the symmetric difference, tUAU = (U \U) U
(U\ zU).

< €, Vo € K.

In this case the Cayley graph X(G; K) is not an expander graph because for
every € > 0 and compact subset K the graph has a finite subset U of the vertices
such that ||OU|| < €||U]||. We are finally ready to begin the proof.

Proposition 6.2. For notational convenience let G = R?xSLy(R), the semi-direct
with the standard action of SL2(R) on R2. Let R={p € G | p |g= is nontrivial }.
Then G has property (T : R).

Proof. Let p € R be an irreducible unitary representation of G. Notice for any
irreducible unitary representation m of G, the restriction of 7 to R? is a unitary
representation of an abelian group which implies it is the directed integral of one-
dimensional characters of R2. For finite groups this follows by an application of
Schur’s Lemma [3, p. 20]. Let x be one of these characters in the integral and
let M be its stabilizer in SLs(R). Observe M also acts on the group of characters
of R2. Next we apply Mackey’s theorem [10, Th. 7.3.1] which states we can
write p = indg: ., 5, (xo) where ¢ is an irreducible representation of M and xo the
representation of R? x M defined by (xo)(r,m) = x(r)o(m). By definition of the
set R, x is nontrivial which implies M is a proper subgroup of SLy(R). In addition
M is conjugate to the set { <(1) i) |t e R}. The group M; = R? x M is nilpotent
because there is a short exact sequence 1 < R? < R2 x M < M < 1. The fact
abelian groups are amenable allows us to induct on the step size to prove nilpotent
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groups are amenable. We can apply Hulanicki’s Theorem [7, Th. 3.1.5] which states
the trivial representation py is weakly contained in the left regular representation
Ly, if and only if M; is amenable because R? x M is nilpotent. An application of
this fact shows

xo = (xo ® pg) x (xo @ Lps,) =~ dim(xo) - Ly, -
The last relation indicates isomorphism and the dim(yo) refers to the number
of copies of the left regular representation yo is contained in. The isomorphism
holds because for every representation (W, ) we get an isomorphism 6 : L?(G) —
L?(G,w) defined by
0(f @v)(g) = f(9)(r(g)v)

where
D(GW) = (7G> W | [ |f(g)]df < oc).
Induction respects weak containment implyingG
p= ind%1 (xo) x 00 - ind]\G/ll =00 Lsr,(w)

where Lgy,r) denotes the left regular representation of SLy(R).

If po < p we have pg «x Lg. This is a contradiction because it cannot be
that the left regular representation of G weakly contains the trivial representation.
This means G is amenable (result originally due to Hulanicki, can be found in [7,
3.1.5]). This is a contradiction because G is not amenable. To show this we notice
the fractional linear transformation associated with each matrix in SLs(R) acts
transitively on R U {oo}. Therefore we must prove a non-zero SLs(R) -invariant
Borel measure on R U {oo} does not exist. Assume an invariant measure exists
called v. The measure v must be invariant under translations x — x+1t for t,x € R

1 ¢ . .
0 1) The Lebesgue measure is the unique
translation invariant measure on R up to scaling. This means v = ¢; 4+ ¢20o, Where
1 is the Lebesgue measure on R, 4 is the Dirac measure of the point at infinity, and

¢y and ¢y are positive constants. v also must be invariant under the transformation

x — —1/x represented by the matrix ( 0 1

which are represented by the matrices <

-1 0
under this transformation. Thus ¢; = ¢o = 0 and v = 0 which implies R? x SL, (R)
is not amenable.

> but neither p nor ., are invariant

]

Lemma 6.3. Let N = {((1) i) } If p is a unitary representation of E, then

every vector fized by p(N) is also fized by p(SLa(R)).
Proof. Define f(g) = (p(g)v,v). We will show f(g) is constant for all g € SLy(R).

If we show this then if e = <(1) (1)> is the identity in SLy(R) we have f(g) =

(p(g)v,v) = f(e) = (v,v) and this implies p(g)v = v.
First notice f(g) = f(nigns2) so f is constant on the double cosets N\E/N.
f(nigna) = (p(n1gna)v, nigna) = (p(n1)p(g)p(n2)v, v) since p is a homomorphism
= (p(n1)p(g),v) = {p(g), p(n1)~tv) = (p(g),v) = f(9)

Where we have used the identity for unitary representations, p(g)* = p(g) .
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SLy(R) acts transitively on R? \ {0} and N stabilizes the vector (é) allowing

us to identify E/N with R?\ {0}. We have already decided f is constant on the
double cosets N\E/N so we can view f as a function on R?\ {0} constant on the
orbits of N. If we calculate the action of N

b 1)) -(3")

we see the orbits of N in R?\ {0} are the points on the x-axis and the lines parallel
to the x-axis. It is clear f is constant on the x-axis as well by continuity of f. We
have shown if p € P = {(g Z) € SLQ(R)} then f(p) = f(e) in other words v is
an invariant vector under P.

Next we show f is constant on the double cosets P\SLy(R)/P. This is the exact
same calculation done when we showed f is constant on N\SLy(R)/N except that
here we used the fact our vector,v, is fixed by P which we have just shown.

Next we notice we can identify SLy(R)/P with the projective line P1(R) =

Then we have two

b +b
d (2) = a
orbits, R and oo where the oo orbit comes from those matrices such that d = 0.
The function f is continuous and constant on the real line therefore f is constant

on all of SLy(R). ]

1 0 s
Lemma 6.4. Let J = 0 1 ¢
0 0 1
sentation of G, every vector fixed under J is fired under

R U {oo} by the Mobius transformations

s,t € R 3 C SL3(R). For any unitary repre-

G.
a 0 b
Proof. The set of matrices generatedby E1 =< A=({0 1 0] |a,b,¢c,d € R and
c 0 d
1 0 0
and s =< A=|(0 a b
0 ¢ d
group of SL3(R). This is clear by Lie Theoretic methods. Define Ny = E; N J for
i = 1,2. Then we can see by the previous lemma any vector fixed by N; is also
fixed by F;. Thus if a vector is fixed by J it must also be fixed by both E; and F,

and therefore it is also fixed by SL3(R). O
Theorem 6.5. SL3(R) has property (T).

a,b,c,d € R and det(A) =1 p generate a dense sub-

Proof. Let p be a unitary representation of SL3(R) that weakly contains the trivial
representation, pg. We must find a nonzero invariant vector.

a b r
Let H = c d s|€Gp ~JxSLyR) ~R?x SLy(R). By assumption
0 0 1

p restricted to H weakly contains the trivial representation. By proposition 3.1.11
p |z contains a vector invariant under J ~ R? and by the previous Lemma this
vector is invariant under SL3(R). Therefore SL3(R) has property (7). O

Definition 6.6. A subgroup I' of a locally compact group G is called a lattice
subgroup if T" is discrete and G/T" has a finite G-invariant measure.

det(A) =1
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It is difficult to construct an expander family from SL,(R) because it does not
have a finite generating set. It is reasonable to ask if a simpler group, for instance
SL,,(Z) has property (T). It turns out if we consider the lattice subgroup of a group
then the lattice has property (T) if and only if the full group has property (T). In
order to show this we will need to introduce the concept of a cocycle to better
examine the group action.

Definition 6.7. If X is a G-space a Borel function a: X x G — U(H) is called a
cocycle if for all g, h € G the identity a(z, gh) = a(z, g)a(xg, h) holds for almost
every x € X. If this identity holds for all x € X then the cocycle is said to be
strict.

Definition 6.8. A function f : X — H is called a-invariant for a cocycle a :
X xG — U(H) if for each g € G, a(x, g) f(xg) = f(x) for almost every x € X. The
function f is said to be strictly a-invariant if the equation is true for all x € X.

Proposition 6.9. Let ' be a lattice subgroup of a locally compact group G. If G
is a Kazhdan group then I is also a Kazhdan group.

Proof. The proof, originally due to Kazhdan, can be found as Proposition 7.4.3 in
[10].

Before beginning the proof we must mention a minor caveat. We will need to
use a measurable section of the natural projection map G — G/I" which is only
defined almost everywhere. The most we can say about the following proof is the
equations and discussion are valid almost everywhere.

Let p be a representation of I' that weakly contains the trivial representation.
We can apply proposition 7.3.7 of [10] which tells us Ind{ (po) o Ind (p) because
the group I is a closed subgroup of G. The quotient G/T" has a finite G-invariant
measure which means the constants are in the space L?(G/I') and the trivial repre-
sentation is contained in Ind? (p). By assumption G is a Kazhdan group therefore
Ind{ (p) has an invariant vector or function to be more precise in this case. Now
we show this implies p has invariant vectors.

Take a representation p : I' — U(H). There is a simple way to get a cocycle,
a: G/T'x G — U(H), from p. We will use a fact about the composition of the
natural projection map, p : G — G/I' with a measurable section of it, s : G/I' - G
such that s([e]) = e. By definition for any [g] € G/T then po s(lg]) = g. It
will be useful if the cocycle encodes information about how far apart the cosets
s(z)g and s(zg) are. Both cosets project to the same element of G/T" under the
projection map p because g acts on the right and I' mods out on the left. Therefore
I's(z)g = I's(zg) and we can find v € I such that es(x)g = ys(xg) where e denotes
the identity element in I's(z)g. Let 8 : G/T x G — T be the function that satisfies

s(x)g = B(x, g)s(zg)
Bz, g) = s(x)gs™ (zg).

Notice 8 must be a cocycle. It is a function of two variables and we can check that
it satisfies the cocycle identity. Let g,h € G

B(x,gh) = s(x)ghs™ " (xgh)
= s(x)gs™ ' (zg)s(xg)hs™" (xgh) = B(z,9)B(xg, h).
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Each strict cocycle corresponds to a homomorphism from h : T' — T if we set h(g) =
B(le],g). For our original homomorphism p, we get a corresponding cocylce a by
setting a(z, g) = p (s(z)gs~*(zg)). One can check to make sure a(le], g) = p(g).

Let vo be the invariant vector in Ind$ (p) and define a function ¢ : G/T — H.,
by ¢(x) = a~ (e, z)vg. The correct notion of a invariant we want is a(x, g)¢(zg) =
#(x) for all g € G. From the cocycle identity we know a~!(e,x) = a(z, g)a" (e, zg).
Therefore

a([z], 9)6(zg) = a(lz], 9)a” ([e], z9)vo = a” ' ([e], x)vo = ().
The a-invariance equation along with the property ¢([e]) # 0 allow us to solve for ¢.
The group G acts transitively on G/T" implying ¢ # 0 on a set whose complement

is measure zero.
We can solve for « in terms of p

a([z], 9) = a([e]z, g) = a7 ([e], z)a([e], zg) = p~ " (x)p(zg).
The function ¢ is a-invariant which helps us to compute

a([z], g)#([x]g) = ¢([=])
pH(@)p(zg)d([z]g) = o([x])
p(rg)e([x]g) = p(z)o([z]).

This can only be true if

p(y)o([y]) = p(x)o(ly])

for almost every y € G because G acts transitively. We are looking for a unit
vector. In order to ensure we find a vector of norm one we instead consider the
function ¥ (x) = ¢(z)/||¢(x)| which maps G/T into the unit ball in H. Notice v
is also a-invariant and therefore p(y)¥([y]) = p(x)y([y]) for almost every y € G.
Define the vector a = p(z)v([z]) which by construction is of norm 1. The following
calculation shows for h € T', the vector a is invariant and p(h)a = a. Let h € T'. For
almost every y € G we see p(hy)iy([hy]) = a. By the property of a homomorphism
we know p(h)p(y)¥([y]) = a because we mod out on the left. We can combine this
with the fact p(y)¥([y]) = a for almost every y to conclude p(h)a = a. O

Corollary 6.10. SL3(Z) forms a lattice in SL3(R) therefore SL3(Z) has property
(T).
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