
SPECTRAL RIGIDITY ON Tn

JAHAN CLAES

Abstract. We review the basic notions of lattice, torus, and length spectrum,
proving a few basic results. We then define higher-dimensional spectra on tori,

leading to higher dimensional rigidity results.
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1. Introduction

The notion of a ”spectrum” of a manifold generally arises in two contexts. Com-
monly, the spectrum of a manifold refers to the eigenvalues of the laplacian; two
manifolds are considered isospectral when the laplacian has the same set of eigen-
values on both manifolds. An overview of such rigidity is given in [2] and [5], with
more detailed discussion in [3]. We can also consider the length spectrum of a
manifold. This is a spectrum defined as the set of lengths of the shortest closed
geodesics–the ”straight lines” of the manifold. In general, isospectral manifolds are
not necessarily length isospectral, nor vice versa; however, restricted to the space
of tori, there is in fact an explicit bijection between the laplacian spectrum and
length spectrum (see [5]). We thus have that two toruses are isospectral iff they are
length isospectral. The focus of this paper, then, will be on the length spectrum of
tori.

We will first establish preliminaries: definitions of a flat torus, isometries of tori,
and proofs of simple propositions regarding tori that will prove useful. We then
formally define the length spectrum, and define higher dimensional spectra as well;
the utility of these higher-dimensional spectra will become apparent as we move into
higher-dimensional tori. With these tools in hand, we then prove rigidity results
for tori: specifically, we consider equivalencies of spectra that ensure two tori are
isometric.

It is worth noting that, in general, neither isospectrality nor length isospectral-
ity is sufficient to ensure isometry; Sunada (see [3]) developed a construction of
nonisometric manifolds with the same laplacian spectrum, while explicit examples
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of length isospectral, nonisometric tori are known as well (see [1], [6]). However,
restricted to certain types of manifolds, rigidity can be established. In section 4, for
example, we will prove isospectral 2-tori are isometric. Croke (in [4]) established a
similar result for length isospectral compact manifolds without boundary, provided
they were of genus ≥2 and of negative curvature. However, his result depended on
a marked length spectrum–each length was paired with a conjugacy class of closed
curves. He notes that without the marking of the length spectrum, such rigidity
fails.

2. Preliminaries

We begin by defining the notion of an n-dimensional Lattice and its associated
torus.

Definition 2.1. Given n linearly independent vectors v1, v2,..., vn, we define the
n-dimensional lattice L generated by {v1, v2,..., vn} to be Z[v1, v2,..., vn], the

integer span of the vectors. In other words, L = {
n∑

i=1

aivi : ai ∈ Z}.

We note that two distinct sets of vectors may produce the same integer span. For
example, in R2, both {(1,0), (0,1)} and {(1,0), (1,1)} generate Z2 as their lattice.
However, if we define the matrix

Mv =

v1 v2 · · · vn


we do have the following result.

Proposition 2.2. {v1, v2,..., vn} and {w1, w2,..., wn} generate the same lattice
L iff there exists a unimodular matrix transforming Mv to Mw.

Proof. If Mv and Mw generate the same lattice, there exist aij , bij such that vj =
n∑

i=1

aijwi and wj =
n∑

i=1

bijvi for each j. We then have

vj =
n∑

k=1

akjwk

=
n∑

k=1

akj
n∑

i=1

bikvi

=
n∑

i=1

(
n∑

k=1

akjbik)vi

Since the vis are linearly independent, this implies that
n∑

k=1

akjbik = δij . If we

define A=(aij) and B=(bij) to be n-by-n matricies, this equation means AB=Id.
Given that A and B have all integer entries, their determinants must be integers.
Since det(A)det(B)=1 we have that det(A)=det(B)=±1. Futhurmore, inspection
reveals Mv = MwA.

Now, say Mv = MwA for some unimodular A. Then vj =
n∑

i=1

aijwi, and so each

vj is certainly in the integer span of the wis. Now, let A−1 = B = (bij). Note that
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B is also unimodular. Then
n∑

k=1

bjkvk =
n∑

k=1

bjk
n∑

i=1

akiwi

=
n∑

i=1

(
n∑

k=1

akibjk)wi

=
n∑

i=1

δijwi

= wj

Thus, each wj is in the integer span of the vis as well. �

We thus have an infinate family of basis for any given lattice. However, we
may prefer one basis over another; in particular, we will be concerned with taking
minimal bases. An n-dimensional minimal basis is formed by taking v1 to be a
minimal vector in L, v2 to be a minimal vector in L/Z[v1], and in general vi to be
a minimal vector in L/Z[v1,v2, ...,vi−1] for all i≤n.

Given an n-dimensional lattice L, we can of course define an equivalence relation
on Rn as follows: for wi, wj ∈ Rn, wi ∼ wj iff (wi-wj) ∈ L. This leads us to our
definition of a torus.

Definition 2.3. Given an n-dimentional lattice L, we define the n-dimensional
torus Tn generated by L to be Rn/L, the quotient of Rn by the lattice L.

We would of course like to have some notion of equivalence when discussing
tori. We first note that if T1 and T2 are tori generated by {v1,v2, ...,vn} and
{w1,w2, ...,wn}, respectively, the linear map formed by sending each vi to wi is a
homeomorphism from T1 to T2 (with respect to the quotient topology). Furthur,
this map is in fact a group homomorphism from (T1,+) to (T2,+), considered as
quotient groups of Rn. Thus, all n-dimensional tori are both homomorphic and
homeomorphic; this equivalence is far too weak for our purposes.

However, we may construct a metric on T as follows: for any equivalence classes
[x], [y] in T, dT([x], [y]) = infx∈[x],y∈[y]‖x − y‖. Later it will be proven that L is
necessarily closed and discrete; the inf may then be replaced by a min. Simple
inspection should reveal the topology induced by dT is equivalent to the quotient
topology on T. We thus have the following equivalence relation on tori:

Definition 2.4. Given two tori T1 and T2, generated respectively by L1 and L2,
we say T1

∼= T2 if T1 and T2 are isometric with repsect to the metrics dT1 and dT2 .

Theorem 2.5. T1
∼= T2 iff there exists an A ∈ O(n) such that A(L1) = L2.

Proof. If A is an orthogonal map that sends L1 to L2, then A is well defined on
T1,T2, as it sends every element in an equivalence class [x] in T1 to an equivalence
class A[x] in T2. This map from [x] into A[x] is in fact bijective. Furthermore, since
orthogonal maps preserve dot products, they preserve the metric on Rn. Then
if a ∈ [a], b ∈ [b], d(a,b)=d(Aa,Ab), and the metric induced by the tori are thus
preserved as well.

Conversly, if A is an isometry from T1 to T2, we may extend it to an orthogonal
map from L1 to L2. Consider v1,v2, ...,vn a basis for L1. Then every equivalence

class of T1 contains a unique vector of the form
n∑

i=1

αivi, where 0 ≤ αi < 1. Pick

an N sufficiently large to ensure that vi/N is the unique vector of smallest norm in
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[vi/N ] and (vi + vj)/N is the unique vector of smallest norm in [(vi + vj)/N ] for
all 0 < i < j ≤ n. Then we may define wi as N times the unique vector of smallest
norm in A[vi]. Since A is an isometry, ‖vi‖ = ‖wi‖. Furthur, ‖vi+vj‖ = ‖wi+wj‖,
implying vi · vj = wi ·wj and the wis are linearly independent. By construction

of the wis, we know Z[w1, ...,wn] ⊆ L2. Now, if a /∈ Z[w1, ...,wn], a =
n∑

i=1

aiwi,

where the αi are not all integers, [a] contains
n∑

i=1

αiwi, where 0 ≤ αi < 1. However,

this implies [a] is the image of some nonzero equivalence class in T1, [
n∑

i=1

αivi], and

thus ‖[a]‖ > 0 and a is not a lattice point. �

Theorem 2.6. T1
∼= T2 if there exist Z-bases {v1, v2,..., vn} and {w1, w2,...,

wn} generating T1 and T2, respectively, such that vi · vj = wi ·wj for all i,j ≤ n.

Proof. The map formed by sending vi to wi and extending linearly is an orthogonal
map.

Conversely, if T is an orthogonal map that sends L1 to L2 and v1,v2, ...,vn

is a basis for L1, Tv1, Tv2, ..., Tvn is a basis for L2 that satisfies the required
properties. �

3. Spectrums on Tori

We wish to define the length spectrum of a torus; that is, the set of possible
lengths of closed curves. Additionally, we want this set to count multiplicities. We
do this as follows.

Definition 3.1. For a torus T generated by a lattice L, define m`=|{v ∈ L: ‖v‖ =
`}|

Definition 3.2. For a torus For a torus T generated by a lattice L, define L(T)={(‖v‖,m‖v‖)
: v ∈ L}. We call L(T) the geodesic length spectrum of T. We will also occasionally
denote the length spectrum by L(L).

Proposition 3.3. If T1
∼=T2, then L(T1)=L(T2).

Proof. Orthogonal transformations preserve both norm and multiplicities. �

Theorem 3.4. {‖v‖ : v ∈ L} is a discrete, closed set in R.

Proof. We will prove {‖v‖ : v ∈ L} has no accumulation points; closure and dis-
creteness readily follow. We first show that there exists a positive lower bound
for the norms of nonzero vectors in L. Consider {v1, v2,..., vn}, a basis for L.
Consider the orthogonal component of vi, v⊥i =vi −

∑
j 6=i

vj ∗ (vi · vj)/‖vj‖2. Since

the vis are linearly independent, this vector is necessarily nonzero. Furthermore,
every linear combination involving vi must have norm at least ‖vi

⊥‖. Taking
ε = min1≤i≤n ‖vi

⊥‖, we see that any nonzero element of L must have norm at least
ε.

This implies that for any two vectors v, w ∈ L, ‖v −w‖ ≥ ε, since v - w ∈ L.
Thus, there is a minimum distance between all vectors in L. Thus, given any N, {v
∈ L : ‖v‖ ≤ N} is a finite set. Then for any N, there can be no accumulation point
in {‖v‖ : v ∈ L} less than N, and so no accumulation point exists. �
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Corollary 3.5. m` is finite for all `.

For higher dimensional tori, we may define additional spectra as well. Consider
some Tn generated from a lattice L. If {v1,v2, ...,vk} is a linear independence subset
of L, {v1,v2, ...,vk} can be considered to generate a k-dimensional sub-torus of Tn.

Definition 3.6. For an n-dimensional torus Ln generated from a lattice L, we
define Lk(Tn) = {(T,mT) : T is a k-dimensional sub-torus of Tn}. We call Lk(Tn)
the k-torus spectrum of Tn.

In this case, mT is the number of subtori isometric to T. We note that, since
there are only a finite number of vectors of length `i in any Tn, there are only a
finite number of k-tori with a preferred basis of vectors with norms `1, `2, ..., `k, and
thus mT is finite.

4. Length Spectrum Rigidity

How much information is encoded in the length spectrum alone?

Theorem 4.1. If T1 and T2 are 2-dimensional tori, and L(T1)=L(T2), then
T1
∼=T2.

Proof. By Thm 2.4, there exists a minimal nonzero vector in L1, and a minimal
nonzero vector in L2. Call these vectors v1 and w1 respectively. Note that ‖v1‖ =
‖w1‖ necessarily, since their norms are minimal in equivalent sets.

Define L1
′=L1 - Z[v1], L2

′=L2 - Z[w1]. L1
′ and L2

′ are no longer lattices, of
course, but we may still discuss the length spectrum of these sets, L(L1

′) and L(L2
′).

In constructing L1
′ from L1, we removed one vector of length zero, two vectors of

length ‖v1‖, and in general two vectors of length k‖v1‖. Similarly, in constructing
L2
′ from L2, we removed one vector of length zero, two vectors of length ‖w1‖, and

in general two vectors of length k‖w1‖. Since ‖v1‖=‖w1‖, the lengths of vectors
removed from L1 and L2 are identical in both magnitude and multiplicity. Thus,
L(L1

′)=L(L2
′).

Since {‖v‖ : v ∈ L1
′} ⊆ {‖v‖ : v ∈ L1}, we know {‖v‖ : v ∈ L1

′} is a discrete
set as well; the same holds for L2

′. We can thus again pick minimal nonzero vectors
in L1

′ and L2
′. Call these vectors v2 and w2, respectively. Naturally, ‖v2‖=‖w2‖.

Note that v1 and v2 are linearly independent by construction, as are w1 and w2.
Define L1

′′=L1
′ - Z[v2], L2

′′=L2
′ - Z[w2]. By the same argument as above,

L(L1
′′)=L(L2

′′), and the set of lengths in L1
′′ or in L2

′′ are discrete. Thus we can
once more pick minimal vectors, v3 and w3.

We claim that {v1, v2} is a Z-basis for L1; that is, Z[v1, v2]=L1. Since they are
linearly independent, we know for any v ∈ L1, v=α1v1+α2v2 for some α1,α2 ∈ R.
Since L1 is closed under vector addition, (α1+m)v1 + (α2+n)v2 ∈ L1 for all m,n
∈ (Z). Pick m, n such that |α1 +m|≤ 1/2 and |α2 +n|≤ 1/2 . Then v′=(α1+m)v1+
(α2+n)v2 ∈ L1. Since v1 and v2 are linearly independent, strict inequality holds
in the triangle inequality; we thus have

‖v′‖ � |α1 +m |‖v1‖+ |α2 + n |‖v2‖ ≤ ‖v1‖/2 + ‖v2‖/2 ≤ ‖v2‖
This contradicts the minimality of v2 unless v′=0. Thus α1, α2 ∈ Z, and {v1,v2}

is a Z-basis for L1. Similarly, {w1,w2} is a Z-basis for L2.
Now, minimality demands that ‖v1‖2 ≥ 2 |v1 · v2 | . If not, we would have

‖v1 ± v2‖2 = ‖v1‖2 + ‖v2‖2 ± 2(v1 · v2)
< ‖v2‖2
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which of course contradicts the minimality of v2. The same is true for the ws:
‖w1‖ ≥ 2 |v1 · v2 | .

Now, consider v3. We know that v3 = mv1 + nv2 for some m,n ∈ Z− {0}. We
claim |m |= |n |= 1 . Without loss of generality, assume m>0 (if necessary, replace
v3 with its negative). Further, let us restrict n>0 as well. The n<0 case will follow
readily.

If n> 0, then (v1 · v2) ≤ 0, since (v1 · v2) > 0 would imply ‖mv1 − nv2‖ <
‖mv1 + nv2‖, and we specified v3 as minimal. If n≤m, we then have

‖(m− 1)v1 + nv2‖2 = ‖mv1 + nv2‖2 + (1− 2m)‖v1‖2 − 2n(v1 · v2)
= ‖v3‖2 + (1− 2m)‖v1‖2 + 2n |v1 · v2 |
≤ ‖v3‖2 + (1− 2m)‖v1‖2 + n‖v1‖2
< ‖v3‖2

which implies ((m-1)v1 + nv2) /∈ L′′1 , or m=1. Then, we have

‖v1 + (n− 1)v2‖2 = ‖v1 + nv2‖2 + (1− 2n)‖v2‖2 − 2(v1 · v2)
= ‖v3‖2 + (1− 2n)‖v2‖2 + 2 |v1 · v2 |
≤ ‖v3‖2 + (1− 2n)‖v2‖2 + ‖v2‖2
< ‖v3‖2

which implies that n=1 as well. The m≤n case follows similar lines, and the n<0
case simply reverses the signs of both n and (v1 · v2), leaving the overall proof
unchanged. By perhaps replacing v2 by its negative, we thus have v3 = v1 + v2.
We can do the same for the ws, giving w3 = w1 + w2.

We then have that ‖v1‖ = ‖w1‖, ‖v2‖ = ‖w2‖, and ‖v1 + v2‖ = ‖w1 + w2‖,
from which it immediately follows that (v1 · v2) = (w1 ·w2). By Thm 2.6, the tori
are thus equivalent. �

We note that this proof relied heavily on the 2-dimensional nature of the tori,
and is thus difficult to generalize to higher dimensions. In fact, an explicit example
of nonisometric 16-tori with equivalent length spectra due to J Milnor has been
known since the sixties; more recently, Conway and Sloane constructed nonisomet-
ric, length isospectral 4-tori (see [1] and [6] for details). Futhurmore, a construction
by Sunada allows one to find an infinate number of pairs of distinct tori with the
same length spectrum (see [3]).

5. Higher Dimensional Rigidity

We want to prove a slightly weaker rigidity result for 3-dimensional tori; first,
we need a lemma.

Lemma 5.1. Consider two 3-tori, T1 and T2, such that either L(T1) = L(T2) or
L2(T1) = L2(T2). If T1 and T2 are generated by minimal bases {v1,v2,v3} and
{w1,w2,w3} respectively, ‖vi‖ = ‖wi‖, and ‖vi×vj‖ = ‖wi×wj‖, then T1

∼= T2.

Proof. We know ‖vi × vj‖2 = ‖vi‖2‖vj‖2 − (vi · vj)
2; since the norms are equiva-

lent, we then have that |vi · vj |= |wi ·wj | . By replacing w1 with its negative if
necessary, we can ensure that v1 · v2 = w1 ·w2. If the remaining two dot products
are equal, by Thm 2.6 we’re done. If the dot products in L1 are both equal to the
negatives of the dot products in L2, then we can replace w3 with -w3, and the dot
products are then equal.
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If one of the dot products are equal, while one is equal to the negative, we may
take the negative of w3 if appropriate, to ensure that v1 · v3 = w1 · w3, while
v2 · v3 = −w2 ·w3.

Minimality of the bases demands that 2
∣∣w1 ·w2

∣∣≤ ‖w1‖2 , 2
∣∣w1 ·w3

∣∣≤ ‖w1‖2 ,

2
∣∣w2 ·w3

∣∣≤ ‖w2‖2 , and -2(w1 ·w2)− 2(w1 ·w3)− 2(w2 ·w3) ≤ ‖w1‖2 + ‖w2‖2.
These conditions impose a monotonicity on our lattice: ‖aw1 + bw2 + cw3‖ >
‖(a− 1)w1 + (b− 1)w2 + (c− 1)w3‖, for a, b, c > 0. This can be demonstrated by
showing that (2a − 1)‖w1‖2 + (2b − 1)‖w2‖2 + (2c − 1)‖w3‖2 + 2(a + b − 1)(w1 ·
w2) + 2(a + c − 1)(w1 ·w3) + 2(b + c − 1)(w2 ·w3) is greater than zero. We note
this expression is

≥ (2a− 1− a− b+ 1− a− c+ 1)‖w1‖2+
(2b− 1− b− c+ 1)‖w2‖2 + (2c− 1)‖w3‖2

= (−b− c+ 1)‖w1‖2 + (b− c)‖w2‖2 + (2c− 1)‖w3‖2
≥ 0

with equality only holding if −2(w1 ·w2) = ‖w1‖2, -2(w1 ·w3) = ‖w1‖2,−2(w2 ·
w3) = ‖w1‖2 and ‖w1‖ = ‖w2‖, which taken together contradict the first mini-
mality condition.

Similar monotonicity results hold for ‖aw1 + bw2 +w3‖ versus ‖(a−1)w1 +(b−
1)w2 + w3‖. We then have that the minimal vector not in the three 2-tori formed
by the basis vectors is necessarily of the form w1±w2±w3. The same holds true in
L1. We can redefine vi and wi by taking appropriate negatives to ensure that the
minimal L1 vector is w1 + v2 + v3 while the dot products remain equal/inverses as
before. By either L or L2 equivalence, these two vectors must have the same norm.
That is, there are a, b such that |a |= |b |= 1 and ‖v1+v2+v3‖ = ‖aw1+bw2+w3‖.
This is equivalent to saying

2(v1 · v2) + 2(v1 · v3) + 2(v2 · v3) = 2ab(w1 ·w2) + 2a(w1 ·w3) + 2b(w2 ·w3)

or

2(w1 ·w2) + 2(w1 ·w3)− 2(w2 ·w3) = 2ab(w1 ·w2) + 2a(w1 ·w3) + 2b(w2 ·w3)

which has no solutions unless one of the wi ·wj is equal to zero. �

Theorem 5.2. If T1 and T2 are 3-dimensional tori such that L2(T1)=L2(T2), then
T1
∼=T2

Proof. In L1, pick v1 and v2 as above; that is, v1 is a minimal vector, v2 is a
minimal vector not in Z[v1]. v1 and v2 generate a torus, with a counterpart in
L2. In this L2 torus, by Thm 2.6, we may find basis vectors w1, w2 such that
‖v1‖ = ‖w1‖, ‖v2‖ = ‖w2‖, and v1 · v2 = w1 · w2. Choose v3 to be a minimal
vector not in Z[v1,v2], and w3 to be a minimal vector not in Z[w1,w2]. Note that
‖v3‖ = ‖w3‖ due to L2 equivalence.

We claim that there can be at most four vectors of norm ‖v3‖ not in Z[v1,v2]
(and similarly for L2). Minimality of v3 demands that ‖v3‖2 ≤ ‖v3 ± v1‖2, which
means that

2
∣∣v1 · v3

∣∣≤ ‖v1‖2

Similarly, since ‖v3‖2 ≤ ‖v3 ± v2‖2

2
∣∣v2 · v3

∣∣≤ ‖v2‖2
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and since ‖v3‖2 ≤ ‖v3 + v2 + v1‖2

−2(v1 · v2)− 2(v1 · v3)− 2(v2 · v3) ≤ ‖v1‖2 + ‖v2‖2

Since ‖nv1 + v3‖2 = n2‖v1‖2 + 2n(v1 · v3) + ‖v3‖2, we have that ‖nv1 + v3‖ =
‖v3‖ iff n2‖v1‖ = −2n(v1 · v3), which in turn happens iff n=±1 and equality
holds in 2

∣∣v1 · v3

∣∣≤ ‖v1‖2 . Note that if n=+1 works, n=-1 will not. Similarly,
when we consider nv2 + v3, we find a similar condition must hold. Finally, if
‖nv1 +mv2 + v3‖ = ‖v3‖, then we have that

n2‖v1‖2 +m2‖v2‖2 + 2mn(v1 · v2) + 2n(v1 · v3) + 2m(v2 · v3) = 0

Without loss of generality, assume n,m>0, replacing v1,v2 with their negatives if
necessary. Assume m or n is greater than one. We want to show that this implies
‖(n− 1)v1 + (m− 1)v2 + v3‖ < ‖v3‖, or

(n−1)2‖v1‖2+(m−1)2‖v2‖2+2(m−1)(n−1)(v1·v2)+2(n−1)(v1·v3)+2(m−1)(v2·v3) < 0

which is in turn equivalent to showing

(2n− 1)‖v1‖2 + (2m− 1)‖v2‖2 + 2(n+m− 1)(v1 · v2) + 2(v1 · v3) + 2(v2 · v3) > 0

but we know from the above relations that this is

≥ (2n− 2)‖v1‖2 + (2m− 2)‖v2‖2 + 2(n+m− 2)(v1 · v2)
≥ (2n− 2)‖v1‖2 + (2m− 2)‖v2‖2 − (n+m− 2)‖v1‖2
> 0

Minimality established while proving the lemma ensures that the coefficient in front
of v3 must be 1.

We then have that the only possibility for a vector of the form ‖nv1 +mv2 +v3‖
is ‖v3 ± v2 ± v1‖. Further, inspection will reveal that two vectors of that form are
not possible. For example, ‖v3 + v2 + v1‖=‖v3‖ demands that ‖v1‖2 + ‖v2‖2 =
−2[v1 ·v2+v1 ·v3+v2 ·v3], while ‖v3+v2−v1‖=‖v3‖ demands that ‖v1‖2+‖v2‖2 =
−2[−v1 · v2 − v1 · v3 + v2 · v3]. Together, these require that v1 · v2 + v1 · v3 = 0,
which in turn would mean that -2v2 · v3 = ‖v1‖2 + ‖v2‖2, despite the restriction
that -2(v2 · v3) ≤ ‖v2‖2 that minimality demands.

Thus, there can be at most four vectors in L2/Z[v1,v2] with norm ‖v3‖.
We now work in cases.
Case 1: There is exactly one vector in L1 not in Z[v1,v2] with norm ‖v3‖ (up

to taking a negative). Then the same is true in L2.
Case 1a: ‖v1‖ < ‖v2‖. In this case, there is exactly one 2-torus generated by

vectors with norm ‖v1‖ and ‖v3‖ outside of Z[v1,v2]; the same holds true in L2.
By L2 equivalence, these are thus equivalent tori. Now, the only vectors outside
of multiples of w1 with norm ‖w2‖ are w2 and possibly w1 + w2. In this case,
redefine w2 to be the vector that generates the 2-torus equivalent to the v2 − v3

torus. Note this redefined w2 still forms the same 2-torus with w1. We thus have
vectors v1,v2,v3 and w1,w2,w3 such that ‖vi‖ = ‖wi‖ and ‖vi×vj‖ = ‖wi×wj‖.
By Lemma 5.2, the tori are thus equivalent.

Case 1b: ‖v1‖ = ‖v2‖. In this case, redefine w1 to be the vector of norm ‖v1‖
in the original span of w1,w1 that together with w3 forms the torus equivalent to
v1−v3. Throw out the span of v1,v3 and w1,w3 in the L2 spectrum, and redefine
w2 to be the vector of norm ‖v2‖ in the Z-span of the original w1,w1 that forms
the same 2-torus with w3 as v2 − v3. Note that these redefined w1,w2 form the
same torus as before. We are thus left with bases as above.
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Case 2: There are exactly 2 vectors in L1 not in Z[v1,v2] with norm ‖v3‖. Then
the same is true in L2. Further, the 2-tori formed by the two vectors in each lattice
are equivalent.

Now, up to sign changes, there are only four possibilities for vectors of norm
‖v3‖ in L2: w3,w1 + w3,w2 + w3, and w1 + w2 + w3. The same is true in L1. We
can adjust these easily enough; if the second vector is v3 − v1, we simply replace
v1 with its negative, leaving the v1 − v2 torus unchanged. We can do the same if
the second vector is v3 − v2, or w3 ±w2 ±w1.

Now, if the vector in L1 is v3+v2 while the vector in L2 is w3+w1, we then have
that -2(v2 ·v3) = ‖v2‖2 and -2(w1 ·w3) = ‖w1‖2. Further, since the two vectors in
each lattice form equivalent 2-tori, we have that

∣∣‖v3‖2 + (v2 · v3)
∣∣= ∣∣‖w3‖2 + (w1 ·w3) | .

We know the signs of both of these must be positive, so that (v2 · v3) = (w1 ·w3);
we thus have that ‖v2‖ = ‖w1‖, and we can replace w1 with w2 and vice versa
without affecting their 2-torus. We can do the same if the vector in L1 is v3 + v1

while the vector in L2 is w3 + w2.
Finally, if the vector in L1 is v3+v1 while the vector in L2 is w3+w2+w1, we have

that -2(v1 ·v3) = ‖v1‖2 and -2(w1 ·w2)−2(w1 ·w3)−2(w2 ·w3) = ‖w1‖2 +‖w2‖2.
Additionally, by 2-tori equivalence, we know that

∣∣v1 · v3 + ‖v3‖2
∣∣= ∣∣w1 ·w3 + w2 ·w3 + ‖w3‖2 | .

If they have the same sign, then v1 · v3 = w1 ·w3 + w2 ·w3 = −‖v1‖/2, and we
would have that -2w1 ·w2 = ‖w2‖2, meaning that not only ‖w1‖ = ‖w2‖, but that
we can replace ‖w2‖ with ‖w1 +w2‖, leaving both the 2-torus and the dot product
unchanged. If the signs are opposite, then w1 ·w3 +w2 ·w3 = −2‖w2‖2−v1 ·v3 =
−2‖w2‖2 + ‖w1‖/2, and we have that -2(w1 ·w2) = 2‖w1‖2 − 3‖w2‖2, an impos-
sibility. Thus we may assume our vectors in L1 and L2 are of the same form.

Case 2a: ‖v1‖ < ‖v2‖. In this case, there is only one vector in L2 with norm
‖v1‖,w1. There are possibly 2 vectors in Z[w1,w2] not in Z[w1] with norm ‖v2‖,
w2 and w1 +w2. One of these must combine with one of the ‖v3‖ vectors to form a
2-torus equivalent to v2 − v3; redefine w2, if necessary, to be this vector. Redefine
w3 to be the vector of norm ‖v3‖ that forms the same 2-torus with w1 as v1 − v3.
Then the 2-torus corresponding to v2−v3 is either w2−w3, or w2 in combination
with the second vector of norm ‖v3‖. In the first case, we’re done. In the second,
there are three possibilities. If the second vector is w1 + w3, redefine w3 to be this
vector, leaving the w1−w3 torus unchanged. If the second vector is w2 +w3, then
this forms the same 2-torus with w2 as w3. If the second vector is w1 + w2 + w3,
then we have that the v2 − v3 torus corresponds to w2 − (w1 + w2 + w3), and so
the v2 − (v1 + v2 + v3) torus necessarily corresponds to the w2 −w3 torus. Then
we have both that

v2 · v3 = w1 ·w2 + ‖w2‖2 + w2 ·w3

and

v1 · v2 + ‖v2‖2 + v2 · v3 = w2 ·w3

which together demand that ‖v2‖ = 0, an impossibility. So this is not a valid case.
Case 2b: ‖v1‖ = ‖v2‖. In this case, we can redefine w1 as the vector with norm

‖v1‖ that forms, with either of the two ‖v3‖ vectors, the same 2-torus as v1 − v3.
Note this w1 must be in the same plane as the original w1−w2. Pick w2 to be the
other vector of norm ‖v1‖ that together with w1 forms the same 2-torus as v1−v2.
Take appropriate negatives, so the angle between them is equal. Now, there are
two possibilities: either the v2 − v3 torus corresponds to a torus generated by one
of w2, w1 + w2, or it corresponds to the torus generated by w1 and the second
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vector of norm ‖v2‖. In the first case, we’re done, redefining w2 if necessary. The
second requires more care. If the two vectors of norm ‖w3‖ are w3,w1 + w3, they
in fact only generate one distinct torus with w1. If the second vector is w2 + w3,
we have that (v1 · v3)2 = (w1 ·w3)2, and that w2 ·w3 = v2 · v3, so we in fact have
the 3-tori are equivalent. If the second vector is w1 + w2 + w3, then we have that
(v1 ·v3)2 = (w1 ·w3)2 and that v1 ·v2+v1 ·v3+v2 ·v3 = w1 ·w2+w1 ·w3+w2 ·w3.
Since all dot products here must have the same sign, we then have that v1 · v2 =
w1 ·w2,v1 ·v3 = w1 ·w3, and from this v2 ·v3 = w2 ·w3. Thus the 3-tori are again
equivalent.

Case 3: There are exactly three vectors in L1 not in Z[v1,v2] with norm ‖v3‖.
Then the same is true in L2. We can adjust the form of these vectors easily enough;
if the vectors are v3,v3 ± v1,v3 ± v2, we simply replace v1 and v2 with their
negatives where appropriate, to get v3,v3 + v1,v3 + v2. If the vectors are v3,v3±
v1,v3±v2±v1, we simply redefine v3 as v3±v1 and reduce to the previous case.
None of these operations affect the 2-torus formed by v1,v2. So we can thus assume
that our three vectors in L1 are v3,v1 + v3,v2 + v3, and our three vectors in L2

are w3,w1 + w3,w2 + v3.
Then we have that that ‖v1 + v3‖2 = ‖v3‖2 and ‖w1 + w3‖2 = ‖w3‖2, which

implies that v1 ·v3=w1 ·w3, and similarly for v2 ·v3 and w2 ·w3. We already know
that v1 · v2 = ±w1 ·w2, so by our lemma the tori are equal.

Case 4: There are exactly four vectors in L1 not in Z[v1,v2] with norm ‖v3‖.
Then the same is true in L2. These vectors are of course of the form v3,v3±v1,v3±
v2,v3 ± v2 ± v1. By taking appropriate negatives, we can get them to be of the
form v3,v3 + v1,v3 + v2,v3 ± v2 ± v1. Doing the same in L2, we then have that
v1 ·v3 = w1 ·w3 and v2 ·v3 = w2 ·w3. Since none of these operations affected the
2-torus formed by v1, v2 or w1,w2, we thus have the two tori are equal. �
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