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Abstract. The ultimate goal of this paper is to prove that a prime p can

be expressed as a sum of two squares if and only if p = 2 or p ≡ 1 (mod 4).

More time is spent on developing the tools to answer this question than on
the question itself. To this end, the first section is entirely an introduction to

basic group theory, and the second section extends this theory to prove that the

group Z×
p is cyclic. The next section presents the Legendre symbol and proves

one of the supplementary theorems of quadratic reciprocity. Finally, this last

theorem provides the crucial first step in establishing the desired congruence
conditions for primes of the form x2 + y2.
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1. Introduction

A prime number p can be expressed in the form x2 + y2 for integral x and y if
and only if p = 2 or p ≡ 1 (mod 4). This observation was first made by Albert
Girard in 1632, and the first person to claim to have a proof was Pierre de Fermat
in 1640. For this reason, the statement is often called “Fermat’s theorem on sums
of two squares,” or “Fermat’s two-squares theorem” for short. The earliest written
proof is (unsurprisingly) due to Leonhard Euler, who used the method of infinite
descent to prove it in 1749, after a great deal of hard work [6].

Fermat’s two-squares theorem provided the impetus for study of the general
question of when a prime has the form x2 + ny2, where n is also an integer. This
problem is by now a solved one; however, it took a lot of time—and many develop-
ments in number theory and algebra—to get there. The solution, which is discussed
in David A. Cox’s 1997 book Primes of the Form x2 + ny2, involves genus theory,
reciprocity laws, and class field theory [5].

That said, this paper concerns itself merely with proving the original theorem
about primes with the form x2+y2. Our proof will not follow that of Euler; instead,
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2 NATHAN HATCH

our aim is to use more recent developments in number theory (which occurred
partially because of studies of the aforementioned general problem) to offer a simpler
explanation than the one Euler gave. The main topic is group theory, which is the
subject of the first two sections. No background knowledge of groups is required; the
first section begins with the basics and ends by proving Lagrange’s theorem. In the
second section we prove that Z×p is cylic. (Note that some familiarity with fields and
polynomials will make several of the lemmas in this section more understandable.)
In section three, we introduce and discuss the Legendre symbol, using the cyclicity
of Z×p to prove the first supplementary law of quadratic reciprocity. With this
knowledge, we finally have the necessary background for our proof of Fermat’s
two-squares theorem in section four.

2. Basic Group Theory

We begin, of course, with the definition of a group. Many of the proofs in
this section are adapted from those presented in Laszlo Babai’s 2011 University of
Chicago VIGRE REU apprentice lecture series [1].

Definition 2.1. A group (G, ∗) is a set G with a binary operation ∗ : G×G→ G
that satisfies the following three axioms:

(i) The operation ∗ is associative: for all g, h, i ∈ G, (g ∗ h) ∗ i = g ∗ (h ∗ i).
(ii) There is an identity element e ∈ G such that for any g ∈ G, g ∗ e = e ∗ g = g.
(iii) Every element g ∈ G has an inverse g−1 ∈ G satisfying g ∗ g−1 = g−1 ∗ g = e.

A group (G, ∗) is abelian if the operation ∗ is commutative: for all g, h ∈ G,
g ∗ h = h ∗ g.

The cardinality of the set G, denoted |G|, is called the order of (G, ∗).

Example 2.2. The set of integers Z is an abelian group under the usual notion of
addition. It has infinite order, and the identity element e is the number 0. However,
Z is not a group under multiplication. The identity in this case would be 1, but
most integers do not have an inverse in Z. For example, 1

2 , the multiplicative inverse
of 2, is not an integer.

Note that, when the group operation is clear from the context, often a group will
be represented simply by the set G, rather than (G, ∗). Also, it is a very common
shorthand notation to omit the group operation when writing g ∗ h, leaving simply
gh. Next, we introduce the notion of subgroups, and we explain the concept of
subgroups generated by subsets of a group.

Definition 2.3. A subgroup (H, ∗) of a group (G, ∗), denoted H ≤ G, is a non-
empty subset H ⊆ G, with the same group operation ∗, that satisfies closure under
multiplication and inverses:

(i) ∀g, h ∈ H, g ∗ h ∈ H, and
(ii) ∀g ∈ H, g−1 ∈ H.

This definition immediately implies that all subgroups must contain the identity
e. To see this, we can simply take any h ∈ H (which we are guaranteed to have,
since H is nonempty), and multiply it by its inverse, which by definition must also
be in H: hh−1 = e.

Definition 2.4. Let G be a group and T ⊆ G. The subgroup generated by T,
denoted 〈T 〉, is the unique subgroup K ≤ G satisfying
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(i) T ⊆ K, and
(ii) for all subgroups H ≤ G, T ⊆ H implies K ⊆ H.

If T consists of a single element g, the notation 〈{g}〉 is simplified to 〈g〉.

Definition 2.4 requires some justification. We need to show that such a subgroup
always exists, and that it is unique. To prove this, we can use the fact that an
arbitrary intersection of subgroups is itself a subgroup.

Lemma 2.5. Let G be a group and {Hi}i∈I be an arbitrary set of subgroups. Let
J =

⋂
i∈I H. Then J is also a subgroup.

Proof. First note that J is nonempty, because all subgroups contain the identity e.
Now, pick any g, h ∈ J (not necessarily distinct); we wish to show that gh ∈ J and
g−1 ∈ J . For any i ∈ I, we have g ∈ Hi and h ∈ Hi. Then since Hi is closed under
multiplication and inverses, both gh and g−1 must be elements of Hi as well. But
since this is true for all i ∈ I, they must also be elements of the intersection J . �

With this fact in mind, we can now show that Definition 2.4 is valid.

Proposition 2.6. If G is a group and T ⊆ G, then 〈T 〉 exists and is unique.

Proof. Define the set Γ = {H ≤ G : T ⊆ H}. Note that Γ is not empty, because G
itself is necessarily a subgroup containing T . Let

K =
⋂
H∈Γ

H.

We claim K = 〈T 〉. Once proven, this automatically shows that 〈T 〉 is unique, since
there can be only one set satisfying the definition of K.

Now, since every subgroup H ∈ Γ contains T , T must be a subset of their
intersection. Therefore, by Lemma 2.5, K is itself a subgroup of G such that
T ⊆ K. It is also clear that K must be the smallest such subgroup, since it is by
definition a subset of any other subgroup containing T . Hence, K = 〈T 〉. �

An example should help to clarify what is meant by the generation of a subgroup.

Example 2.7. As before, consider the group (Z,+). It is easy to see that the
even integers E are a subgroup of Z: the sum of two integers is even, and if an
integer n is even, so is its inverse −n. This subgroup can be generated by a number
of different sets; for example 〈2〉 and 〈{2, 4, 28}〉 both equal E. However, the set
{4, 28} generates the multiples of four. In general, we observe that 〈T 〉 is the set of
all compositions and inverses of elements in T .

We have already defined the notion of the order of a group. There is also a
notion of order for individual elements of a group.

Definition 2.8. Let G be a group and g ∈ G. The order of g, denoted ord(g), is
the least natural number n satisfying gn := g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸

n times

= e. If no such n exists,

we say g has (countably) infinite order.

It is no coincidence that the same word is used in two different contexts here.
As the following proposition shows, the two concepts are closely related.

Proposition 2.9. If G is a group and g ∈ G, then ord(g) = |〈g〉|.
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Proof. First of all, let S = {gk : k ∈ Z}. We claim S = 〈g〉. It is easy to see that S
is closed under multiplication and inverses; therefore, S is a subgroup of G which
contains g. By definition, this means 〈g〉 ⊆ S. To see that S ⊆ 〈g〉, consider any
gk ∈ S. If k = 0, it is clear that gk ∈ 〈g〉, since g0 = e and all subgroups contain
the identity. If k > 0, again we must have gk ∈ 〈g〉, since 〈g〉 is closed under
multiplication and gk = g ∗ g ∗ . . . ∗ g︸ ︷︷ ︸

k times

. Finally, k < 0 means gk ∈ 〈g〉, since by the

previous case g−k ∈ 〈g〉 and 〈g〉 is closed under inverses. This covers all cases, so
the desired equality has been established.

It remains to show that |S| = ord(g). We first show this for the case when g has
infinite order. Assume that for all n ∈ N, gn 6= e. If this is true, then we claim that
for all i, j ∈ Z, i 6= j implies gi 6= gj . Say, without loss of generality, that i ≥ j.
If gi = gj , then gi−j = gig−j = gj(gj)−1 = e, which is impossible if i − j ∈ N.
Therefore i− j = 0, and i = j. This is enough to show that the set S is countably
infinite.

Now for the finite case. Suppose there is an n ∈ N such that ord(g) = n. Our
proof will be complete if we can show that the set S is the same as another set
S′ = {e, g, g2, . . . , gn−1}, where all elements of S′ are distinct. Suppose there exist
k, l ∈ {0, . . . , n − 1} such that gk = gl. Then, as above, let k ≥ l, and note that
0 ≤ k − l < n. As before, we see that gk−l = e. But n is the least positive integer
satisfying gn = e, and therefore k − l = 0. This proves the elements of S′ are
distinct. Now, pick any ga ∈ S, a ∈ Z. By the Division Theorem, a = qn + r for
some q ∈ Z, r ∈ {0, . . . , n− 1}. Then ga = gqn+r = (gn)qgr = gr, which is in S′, as
desired. Since clearly also S′ ⊆ S, we conclude S′ = S. �

We will return to the concept of subgroup generation in the discussion of cyclic
groups in the next section. For now, we are interested in figuring out if there are
any other special properties that a subgroup must satisfy. In particular, if a group
G is finite, is the order of a subgroup related in some way to the order of the whole
group? In fact, it is: the order of any subgroup must divide the order of the whole
group. This important relationship is called Lagrange’s Theorem. In order to prove
it, we introduce a special type of subset, called a coset, that can be created from a
subgroup.

Definition 2.10. Let H ≤ G. For any element g ∈ G, the left and right cosets
of H in G are the sets gH := {gh : h ∈ H} and Hg := {hg : h ∈ H}, respectively.

One very important property of the left cosets (and also of the right) is that they
create a partition of the group G. That is, any two cosets are either disjoint or
equal, and the union of all cosets is the entire group. The latter statement is very
easy to see, since for all g ∈ G, g ∈ gH. Now, to establish the former assertion, it
is helpful to prove first the following lemma.

Lemma 2.11. Let H ≤ G and g1, g2 ∈ G. Then g1H = g2H if and only if there is
an h ∈ H such that g1 = g2h.

Proof. We first prove the forward direction. Since e ∈ H, we know g1 ∈ g1H, which
means g1 ∈ g2H since by assumption the two cosets are equal. Thus, by definition,
there is an h ∈ H such that g2h = g1. To prove the other direction, we must show
g1H ⊆ g2H. An identical argument will show g2H ⊆ g1H, proving equality. So,
pick any g′1 ∈ g1H. Then there is an h′ ∈ H such that g′1 = g1h

′. We must show
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g′1 ∈ g2H. But by assumption g1 = g2h, so

g′1 = g1h
′ = (g2h)h′ = g2(hh′).

Then since hh′ ∈ H, we conclude g′1 ∈ g2H. �

The following proposition completes the proof that the cosets partition the group.

Proposition 2.12. Let H ≤ G and g1, g2 ∈ G. If g1H ∩ g2H 6= ∅, then g1H =
g2H.

Proof. By assumption, we can find an element g in g1H ∩ g2H. That is to say,
there exist h1, h2 ∈ H such that g1h1 = g = g2h2. But then g1 = g2h2h

−1
1 , so by

Lemma 2.11, g1H = g2H. �

Now, we have all the information we need to prove Lagrange’s Theroem.

Theorem 2.13. (Lagrange’s Theorem) If G is a finite group and H ≤ G, then
|H| | |G|.
Proof. Let n = |G| and m = |H|. Let S = {gH : g ∈ G} be the set of all cosets
of H in G. Clearly |S| ≤ n, because each coset is completely defined in terms of a
single element of G. So set k = |S|.

Now, note that, by Proposition 2.12,∑
gH∈S

|gH| = n.

We claim that each coset gH ∈ S has the same number of elements as H itself. If
true, this would imply ∑

gH∈S
|gH| = km,

and therefore km = n. Thus, once we prove this claim, we will have shown m | n,
and our proof will be complete.

Pick any g ∈ G, and define the function µg : H → gH where for all h ∈ H,
µg(h) = gh. Clearly, for any gh′ ∈ gH, µg(h′) = gh′, so µg is surjective. Also,

µg(h1) = µg(h2)⇒ gh1 = gh2

⇒ h1 = h2,

since we can multiply by g−1 on the left. This means µg is also injective. Then since
µg is bijective for any g, all cosets have the same cardinality as H, as desired. �

We can use an earlier result (Proposition 2.9) to prove an interesting corollary
of Lagrange’s Theorem, which will be the last result proven in this section.

Corollary 2.14. If G is a finite group, then for all g ∈ G, g|G| = e.

Proof. From Proposition 2.9, ord(g) = |〈g〉| =: n, and from Lagrange’s Theorem,
there exists m ∈ N such that |G| = nm. Then

g|G| = (gn)m = em = e.

�

This introduction barely scratches the surface of group theory. However, the
rest of this paper hopes to show that even this relatively small set of results has at
least one interesting application already. We will need only one additional concept:
cyclic groups. They are explained in the next section.
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3. Cyclicity and Z×p
It is time to introduce a very specific group which will be of central importance

in the next section, when we discuss the Legendre symbol. You may recall we
mentioned that the integers under multiplication do not form a group. This is
true; however, if we look at the integers modulo some prime p and take out the
zero element, the remaining equivalence classes do form an abelian group under
multiplication. We will now give a formal definition of this set and its binary
operation, then prove that it satisfies the axioms presented in Definition 2.1. It is
assumed that the reader has some familiarity with modular arithmetic.

Definition 3.1. Let p be a prime. Define Z×p := {[1], . . . , [p− 1]} to be the set of

equivalence classes of Z modulo p. Let · : Z×p × Z×p → Z×p be a binary operation

where for all ([i], [j]) ∈ Z×p × Z×p , [i] · [j] maps to [ij].

Proposition 3.2. The operation · is well-defined. Furthermore, (Z×p , ·) is an
abelian group.

Proof. The only concern about whether · is well-defined is the possibility that two
nonzero equivalence classes might map to the zero equivalence class (which is not
in Z×p ). But this is precluded by the fact that p is prime: suppose [i], [j] ∈ Z×p .

Then p - i and p - j, so p - ij. This means [ij] ∈ Z×p .

We now show Z×p is an abelian group. The identity is the equivalence class [1],
and the operation · is both associative and commutative by the associativity and
commutativity of multiplication on Z. It remains to show existence of inverses. Fix
some [i] ∈ Z×p . Now, suppose there exist [j], [k] ∈ Z×p such that [ij] = [ik]. Then,

by definition of equality in Z×p , p | (ij − ik). But

p | i(j − k)⇒ p | i or p | (j − k)

⇒ p | (j − k) (because p - i)
⇒ [j] = [k].

Therefore, all of the products [i1], [i2], . . . , [ii], . . . , [i(p− 1)] are distinct. There are
p− 1 such products. Since there are also p− 1 elements in Z×p , exactly one of these

products must be the identity. Hence, [i]−1 exists. �

Henceforth, when discussing elements of Z×p , we will usually discard the brackets.
For example, unless otherwise noted, we take 1 to mean [1].

As mentioned above, there are only p− 1 elements in Z×p , since we took out the
zero element. Then, by Lagrange’s Theorem (more specifically, by Corollary 2.14),
for any a ∈ Z×p , ap−1 = 1. This result is more commonly known as Fermat’s Little
Theorem.

Our ultimate goal in this section is to prove that Z×p is cyclic. Of course, we
must first explain what is meant by this.

Definition 3.3. An element g of a group G is called primitive if 〈g〉 = G. A group
G is called cyclic if it contains a primitive element (also called a generator).

Our proof of the cyclicity of Z×p follows that of Keith Conrad, in his eponymous
article on the subject [4]. We will need five lemmas. To begin, let us introduce a
useful notation for the number of elements of Z×p with a given order.
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Definition 3.4. Let p be prime. Define the function Np : {d ∈ N : d | (p−1)} → N
by Np(d) = |{g ∈ Z×p : ord(g) = d}|.

In other words, Np(d) returns the number of elements of Z×p that have order d.
Recall from our discussion of Lagrange’s Theorem that the order of any element of
Z×p is a divisor of p − 1, the order of Z×p . This means that the sum of Np(d) over

all divisors of p− 1 gives precisely the number of elements in Z×p :∑
d|(p−1)

Np(d) = p− 1. (3.5)

This fact will be important later.
Before we begin proving our lemmas, there is one more concept that we must take

into consideration. We originally defined the group (Z×p , ·) in terms of multiplication
on Z, and the fact is that if we also include addition on Z, then (Zp,+, ·) becomes a
field. This fact is crucial because it allows us to talk about polynomials over Zp in
a well-defined way. Unfortunately, it is beyond the scope of this paper to develop
the theory behind fields and polynomials. Some prior experience with them will be
helpful (though perhaps not necessary) to make sense of the following two lemmas,
which deal with polynomials over a general field F . After proving these, we will
bring the discussion back to the group (Z×p , ·) by means of a short corollary.

Lemma 3.6. Let F be a field and let f ∈ F [x] have degree d such that d ≥ 1. If
there is an α ∈ F such that f(α) = 0, then there is another function g ∈ F [x] of
degree d− 1 such that f(x) = (x− α)g(x).

Proof. Write f as

f(x) = adx
d + . . .+ a1x+ a0, (3.7)

where for all i, ai ∈ F , and ad 6= 0. Now we plug α into this expression to obtain

0 = adα
d + . . .+ a1α+ a0. (3.8)

Now we subtract Eq.(3.8) from Eq.(3.7). The constant term cancels, and we are
left with

f(x) = ad(xd − αd) + . . .+ a1(x− α). (3.9)

For each i ∈ {1, . . . , d}, we note that we can factor xi − αi as

xi − αi = (x− α)(xi−1 + xi−2α+ . . .+ xαi−2 + αi−1).

Hence, we can factor out (x − α) from every term in Eq.(3.9), leaving us with an
expression of the desired form f(x) = (x − α)g(x). Note that the coefficients of g
are sums of coefficients of f , and the coefficient of xd−1 in g is ad, which is nonzero.
Thus, g is a polynomial of degree d− 1 with coefficients in F , as required. �

With this knowledge, proving the inductive step of the following lemma becomes
much easier.

Lemma 3.10. Let F be a field and let f ∈ F [x] have degree d such that d ≥ 1.
Then f has at most d roots in F .

Proof. We induct on d.
If d = 1, then f has the form f(x) = ax+ b, where a 6= 0. In this case, f(α) = 0

implies α = −a−1b, so f has exactly one root. In particular, we can say it has at
most d roots, and this establishes the base case.
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For the inductive step, fix d ∈ N and assume that all polynomials of degree d
over F have at most d roots. Now pick some f ∈ F [x] of degree d+ 1. If there is no
β ∈ F satisfying f(β) = 0, then f has no roots in F , and we are done. Otherwise,
f has a root α ∈ F , so by Lemma 3.6, there is a g ∈ F [x] of degree d such that
f(x) = (x−α)g(x). Then, since the field F has no zero divisors, any root of f must
be a root of either (x − α) or g. By inductive hypothesis, g has at most d roots,
and the only root of (x − α) is α itself. Thus, f has at most d + 1 roots over F .
Induction is complete. �

This lemma dealt with general polynomials over a general field. Now, by applying
it to a very specific polynomial over a very specific field, we will be able to learn
something interesting about our group, Z×p .

Corollary 3.11. For any d ∈ N, there are at most d distinct elements a in the
group Z×p satisfying ad = 1.

Proof. Consider the polynomial f(a) = ad−1 over the field Zp. From Lemma 3.10,
we know that there are at most d roots of f in Zp. In particular, then, there are at
most d roots in the set Zp \ {0}. Restated, this means there are at most d distinct
numbers in Z×p satisfying ad = 1, which makes perfect sense even when we view Z×p
as a group rather than as a subset of a field. This is what we wished to show. �

Our next two proofs deal with the Euler ϕ function. For those unfamiliar with
it, it is a function ϕ : N→ N where ϕ(n) = |{a ∈ N : a < n and gcd(a, n) = 1}|. In
other words, ϕ(n) tells how many natural numbers less than n are relatively prime
to n. Note that for all n ∈ N, ϕ(n) ≥ 1, since 1 is always relatively prime to n.

The following surprising identity of the ϕ function is important enough to math-
ematics in general that it merits the name “theorem,” although we are only using
it as a lemma here.

Theorem 3.12. For all n ∈ N,
∑

d|n ϕ(d) = n.

Proof. For all d | n, define Sd = {x ≤ d : gcd(x, d) = 1}. Note that this means
|Sd| = ϕ(d). Now let T be the set of ordered pairs T =

⋃
d|n{d} × Sd. Note that

this means |T | =
∑

d|n ϕ(d). Let [n] denote the set {1, . . . , n}. Finally, define the

function f : T → [n] by f(d, x) = x(n/d). Our claim is that f is bijective. This
would imply |T | = n, which is exactly the equality we wish to prove.

First we must show that f is well-defined; that is, for all d | n and x ∈ Sd,
x(n/d) ∈ [n]. Since d | n, n/d is an integer. Also, x ∈ Sd implies 1 ≤ x ≤ d. Thus,
x(n/d) is an integer between 1 and n (inclusive), as desired.

We now show f is injective. Suppose f(d1, x1) = f(d2, x2). Then

n

d1
x1 =

n

d2
x2 ⇒ d2x1 = d1x2

⇒ x1 | d1x2 and x2 | d2x1

⇒ x1 | x2 and x2 | x1

because x1 and x2 are relatively prime to d1 and d2, respectively. Thus, x1 = x2,
and it follows that (d1, x1) = (d2, x2).

Now, we prove f is surjective. Pick any m ∈ [n]. Now let z = gcd(m,n), and
define d = n/z and x = m/z. We claim x ∈ Sd. First of all, we see m ≤ n, so
x ≤ d. It remains to show that gcd(x, d) = 1. Now, since z = gcd(m,n), there exist
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i, j ∈ Z such that mi+ nj = z. We then write m = xz and n = dz and substitute
to find (xz)i+ (dz)j = z, and thus xi+ dj = 1. This shows x and d are relatively
prime. Therefore, we can take

f(x, d) =
n

d
x =

n

n/z

m

z
= m,

proving that f is surjective. Our proof of the ϕ identity is complete. �

We now prove an interesting relationship between our function Np and the ϕ
function.

Lemma 3.13. Let p be prime and d | (p− 1). If Np(d) 6= 0, then Np(d) = ϕ(d).

Proof. Since Np(d) 6= 0, we can pick some a ∈ Z×p such that ord(a) = d. Then

〈a〉 = {a, a2, . . . , ad} has d distinct elements. We claim that all b ∈ 〈a〉 satisfy
bd = 1. Indeed, this follows directly from Corollary 2.14, which states that raising
any element of a (sub)group to the order of the (sub)group gives the identity. But
from Corollary 3.11, in the entire group there can only be d solutions to the equation
bd = 1. Hence, the solutions to bd = 1, of which the elements of order d are a subset,
are precisely those elements in 〈a〉.

We desire to know how many of these elements have order exactly d. To that
end, let k ∈ {1, . . . , d} so that ak ∈ 〈a〉. We claim ak has order d precisely when
gcd(d, k) = 1. Since this statement is equivalent to the statement Np(d) = ϕ(d), if
we can prove it, we are done. Suppose first that gcd(d, k) = 1. Pick any number
j ∈ {1, . . . , d} and suppose (ak)j = e. Since ord(a) = d, this means d | kj. But d
and k are relatively prime, so we must have d | j. This can only happen if j = d,
which proves ord(ak) = d. Now suppose gcd(d, k) > 1. Write z = gcd(d, k), and
define l = d/z. Then l is less than d, but

(ak)l = akd/z = (ad)k/z = ek/z = e,

showing that ak does not have order d. (Note that this was valid because z is
a common divisor of d and k, and thus k/z is an integer.) We have shown that
Np(d) = ϕ(d), as desired. �

With these tools, we are finally able to construct a proof of the cyclicity of Z×p ,
with which we conclude this section.

Theorem 3.14. The group Z×p is cyclic.

Proof. We wish to show that Z×p has at least one element of order p − 1. In
other words, we must prove Np(p − 1) 6= 0. Now, recall from Eq.(3.5) that∑

d|(p−1)Np(d) = p−1. Also, from Theorem 3.12,
∑

d|(p−1) ϕ(d) = p−1. Therefore,∑
d|(p−1)

Np(d) =
∑

d|(p−1)

ϕ(d)

or ∑
d|(p−1)

ϕ(d)−Np(d) = 0. (3.15)

Now from Lemma 3.13, if Np(d) 6= 0, then ϕ(d) −Np(d) = 0. On the other hand,
if Np(d) = 0, then ϕ(d)−Np(d) > 0, because ϕ(d) is always positive. Therefore all
of the terms in Eq.(3.15) are nonnegative, and the only way the sum can be zero is
if each term is zero. That is to say, for all d | (p− 1), we must have Np(d) 6= 0. In
particular, Np(p− 1) 6= 0, and we are done. �
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4. The Legendre Symbol

Our next topic of discussion is the Legendre symbol, which is used frequently
in situations involving squares modulo some prime number. Our discussion follows
that of Matthew Morrow in his lecture series of the 2011 University of Chicago
VIGRE REU [7]. You will notice that in most of this section we will speak of odd
primes; the number 2 is taken out as an easy special case. Also, as threatened in
the previous section, we will be a bit cavalier about whether a natural number a
represents itself or its equivalence class [a] in Z×p . Hopefully, the meaning will be
clear from the context.

We begin by introducing the concept of quadratic residues.

Definition 4.1. Let p be an odd prime and a ∈ Z. We say a is a quadratic
residue mod p if gcd(a, p) = 1 and there is an x ∈ Z such that x2 ≡ a (mod p).

It will turn out to be helpful to treat separately the case where a is a multiple of
p; that is why in the definition we specify that a and p are relatively prime. Also,
it is clear that if a, b ∈ N and a ≡ b (mod p), then a is a quadratic residue mod
p if and only if b is also a quadratic residue mod p. Therefore, we can completely
describe the quadratic residues of any prime p by listing the quadratic residues in
the group Z×p = {1, . . . , p−1}. Here is an example of how to identify these numbers.

Example 4.2. Let us consider the prime 5. To figure out which numbers are
quadratic residues mod 5, we simply square a representative of each of the five
equivalence classes mod 5 and see what we get.

x :
x2 :

0 1 2 3 4
0 1 4 4 1

Thus, the quadratic residues mod 5 are 1 and 4. (Remember 0 is not counted.)

In this example, we saw that exactly half of the elements of Z×5 were quadratic
residues mod 5. This is actually a general result.

Proposition 4.3. Let p be an odd prime. Then there are exactly p−1
2 distinct

quadratic residues mod p in Z×p .

Proof. By definition, the quadratic residues mod p are exactly the elements in
{k2 : k ∈ Z×p }. Now, pick any i, j ∈ Z×p . Then

i2 ≡ j2 (mod p) ⇐⇒ p | (i2 − j2) = (i+ j)(i− j)
⇐⇒ p | (i+ j) or p | (i− j).

But i, j ∈ {1, . . . , p− 1}, so p | (i+ j) iff i+ j = p, and p | (i− j) iff i = j. Thus for
any k ∈ Z×p , there exists exactly one other number l ∈ Z×p , where l = p − k, such

that k2 ≡ l2 (mod p). Therefore, the set {k2 : k ∈ Z×p } has exactly p−1
2 distinct

elements, as desired. �

The Legendre symbol is defined simply as a way to encode whether or not a
given number is a quadratic residue modulo some prime p. It is a helpful shorthand
to have when stating properties of quadratic residues.
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Definition 4.4. Let p be an odd prime and a ∈ Z. The Legendre symbol of a
on p is defined as(

a

p

)
=

 0, p | a
1, a is a quadratic residue mod p
−1, otherwise.

The next result is very helpful in proving properties of the Legendre symbol,
and it is important enough that it has its own name. Unfortunately, it is also a
bit tricky to prove. To crack it, we will need to use the main result of the previous
section—the cyclicity of Z×p .

Proposition 4.5. (Euler’s Lemma) Let p be an odd prime and a ∈ Z. Then(
a

p

)
≡ a

p−1
2 (mod p).

Proof. The case p | a is trivial, so assume a ∈ Z×p (where we are using a to represent

its own equivalence class). Since Z×p is cyclic, let g be a generator of Z×p , and write

a = gr. Consider the set S = {g2n : n ∈ {1, . . . , p−1
2 }}; that is, the even powers of

g. Each element of S is a quadratic residue mod p, since g2n = (gn)2. Also, since
g is a generator, S has p−1

2 distinct elements. But from Proposition 4.3, there can

only be p−1
2 distinct quadratic residues mod p. Thus a = gr is a quadratic residue

mod p if and only if r is even. In terms of the Legendre symbol,(
a

p

)
= (−1)r.

We now wish to express −1 in terms of g; that is, we wish to find the number
m ∈ {1, . . . , p−1} satisfying gm ≡ p−1 (mod p). Now, gm ≡ p−1 (mod p) implies
g2m ≡ p2 − 2p + 1 ≡ 1 (mod p), which means (p − 1) | 2m, since ord(g) = p − 1.
But m ∈ {1, . . . , p− 1}, so this can only be true if m = p−1

2 or m = p− 1. But the

case m = p− 1 is ruled out, because we already know gp−1 = 1, and if p is an odd
prime then 1 6≡ p− 1 (mod p). In conclusion, then,(

a

p

)
≡ (g

p−1
2 )r = (gr)

p−1
2 ≡ a

p−1
2 (mod p).

�

As a matter of mathematical interest, we will now use this to prove that the
Legendre symbol is multiplicative. We will not need the following proposition to
prove Fermat’s two-squares theorem, but it is such an important property of the
Legendre symbol that it would be negligent to omit it.

Proposition 4.6. Let p be an odd prime and a, b ∈ Z. Then(
ab

p

)
=

(
a

p

)(
b

p

)
.

Proof. We apply Euler’s lemma:(
ab

p

)
≡ (ab)

p−1
2 = a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)
(mod p).

But both sides can only take on the values -1, 0, or 1, and p ≥ 3, so they are
congruent mod p if and only if they are equal. �
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Now, we reach the last proposition of this section. For reasons which we will not
delve into here, it is often called the first supplementary law to quadratic reciprocity.
This result is the key to the first step in our proof of Fermat’s two-squares theorem,
as we will see quite soon.

Proposition 4.7. Let p be an odd prime. Then(
−1

p

)
=

{
1, p ≡ 1 (mod 4)
−1, p ≡ 3 (mod 4).

Proof. We apply Euler’s lemma:(
−1

p

)
≡ (−1)

p−1
2 (mod p).

But, again, both sides can only take on the values -1 or 1, and p ≥ 3, so they are
congruent mod p if and only if they are equal. To conclude, we simply note that the
exponent (p− 1)/2 is even when p ≡ 1 (mod 4), and odd when p ≡ 3 (mod 4). �

5. A Congruence Condition for Primes of the Form x2 + y2

We are finally ready to prove Fermat’s theorem on sums of two squares. Our
proof is adapted from a solution written by Michael Bennett [2].

Theorem 5.1. Let p be a prime. There exist x, y ∈ Z such that p = x2 + y2 if and
only if p = 2 or p ≡ 1 (mod 4).

Proof. Let us first prove the simpler forward implication. We will do this by showing
that if p ≡ 3 (mod 4), then for any x, y ∈ Z, p 6≡ x2 + y2 (mod 4). Now, if x ≡ 0
or x ≡ 2 (mod 4), then x2 ≡ 0 (mod 4). Similarly, if x ≡ 1 or x ≡ 3 (mod 4),
then x2 ≡ 1 (mod 4). Hence, for any x, y ∈ Z, x2 + y2 ≡ 0, 1, or 2 (mod 4). This
proves that if p ≡ 3 (mod 4), then it cannot be expressed as a sum of two squares.

We now prove the reverse implication. Clearly 2 = 12 + 12, so for p = 2 the
theorem holds. Now assume p ≡ 1 (mod 4). Then by Proposition 4.7, the number
-1 is a quadratic residue mod p. Thus, we can find an x ∈ {1, . . . , p − 1} such
that x2 ≡ −1 (mod p). In other words, there is a k ∈ N such that kp = x2 + 12.
Furthermore,

kp = x2 + 1 ≤ (p− 1)2 + 1 = p2 − 2p+ 2 < p2,

since p > 1. So we can say k < p.
Now define m = min{n ∈ N : (∃x, y ∈ Z)(np = x2 + y2)}. Since k is in this set,

m ≤ k < p. To finish the proof, we wish to show that m = 1.
Let u and v be the integers satisfying mp = u2 + v2. Consider the set

S =
{
b−m

2
+ 1c, . . . , bm

2
c
}
,

which is a set of representatives of Z modulo m. Now let a and b be the unique
integers in S satisfying a ≡ u (mod m) and b ≡ v (mod m). Since m | (u2 + v2),
we know m | (a2 + b2), so we can write lm = a2 + b2 for some l ∈ Z. Note that l is
nonnegative, since m is positive. Because we chose a and b so that |a|, |b| ≤ m

2 , we
know

lm = a2 + b2 ≤
(m

2

)2

+
(m

2

)2

=
m2

2
< m2,

and thus l < m.
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Now we write

(lm)(mp) = (a2 + b2)(u2 + v2) = (au+ bv)2 + (av − bu)2, (5.2)

which we obtained by rearranging the terms in the product (a2 + b2)(u2 +v2). Now
we notice that au+ bv ≡ a2 + b2 ≡ 0 (mod m) and av− bu ≡ ab− ba ≡ 0 (mod m).
This means au+bv

m ∈ Z and av−bu
m ∈ Z, so we can divide Eq.(5.2) by m2 to obtain

lp =

(
au+ bv

m

)2

+

(
av − bu
m

)2

,

which expresses lp as a sum of square numbers. But since 0 ≤ l < m and m is
the minimum positive multiple of p which can be expressed as a sum of square
numbers, it must be that l = 0. This in turn implies a = b = 0, which means m | u
and m | v. Then we can rewrite the equation mp = u2 + v2 as p = m[( u

m )2 + ( v
m )2],

which means m | p. This can only be true if m = 1 or m = p, but we already know
that m < p. Thus, m = 1, as desired. �

It might seem like the amount of background preparation in this paper was
disproportionate to the goal, especially given that the only previous result that we
use in this proof is Proposition 4.7, and its role may seem rather minor. On the
contrary, though, it established a crucial first step and provided the bound that
allowed us to finish the proof. It is one thing to know that we can find a k such
that p | (k2 + 1); it is another thing entirely to know why such a k can be found,
and this is what the background theory explains.

By finding an expression for (−2
p ) in terms of congruence conditions for p, our

method could be generalized slightly to find which primes can be expressed in
the form x2 + 2y2. However, there are limitations to the strategy we used. As
mentioned in the introduction, the general case of primes of the form x2 + ny2 has
been solved, and the solution lies in the realm of class field theory. As a matter
of fact, using the theory of Gaussian integers, one can devise a rather shorter and
cleaner proof of Theorem 5.1 than the one we used above. The article “Sums of
Two Squares” by Pete Clark provides one example [3]. For more information on the
generalizations of this problem, the interested reader is advised to obtain a copy of
the aforementioned book Primes of the Form x2 + ny2, by D. A. Cox [5].
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