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Abstract. In this paper we will outline the foundations of homological al-
gebra, starting with the theory of chain complexes which arose in algebraic

topology. Building upon that we shall then introduce the derived functors

Ext and Tor and their various properties. Finally, we will apply the theory
built thus far to the case of group cohomology to classify equivalence classes

of group extensions. Throughout this paper we will assume basic knowledge
of module theory and familiarity with elementary categorical language.
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1. Chain Complexes

Let R be a unital and assoctiative ring. Unless precised otherwise, R-modules
shall refer to right R-modules.

Definition 1.1. A chain complex C∗ of R-modules is a collection {Cn}n∈Z together
with R-module maps dn : Cn → Cn−1, called boundary operators or differentials,
satisfying the relation dn+1 ◦ dn = 0. In particular, this implies that im(dn−1) ⊆
ker(dn). If ker(dn) = im(dn−1), we then say the resulting sequence is exact. De-
noting im(dn+1) by Bn and ker(dn) by Zn, we always have 0 ⊆ Bn ⊆ Zn ⊆ Cn.
Elements in Bn are called n-boundaries, while elements in Zn are called n-cycles.
This geometric terminology comes from algebraic topology where chain complexes
first arose. This leads us to consider the quotient Zn/Bn, which we call the n-th
homology module of C∗ and write as Hn(C∗). We often drop the subscript on C∗
and simply write Hn(C).

Example 1.2. Simplicial homology. Given a simplicial complex K of dimension
n, we may look at the set Kk of k-dimensional simplices (0 ≤ k ≤ n). We form
a chain complex by taking the free Z-module on the set Kk. For k > n we set
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Ck = 0. The boundary homomorphisms ∂k : Ck → Ck−1 are given by sending a

basis element σ = 〈v0, v1, . . . , vk〉 to ∂k(σ) =
∑k
i=0(−1)i 〈v0, . . . , vi−1, vi+1, . . . , vk〉

These maps are obviously homomorphisms, and one can easily compute that the
composite ∂k−1∂k is zero. The homology of this chain complex is called the simpli-
cial homology of K with coefficients in Z.

Definition 1.3. Let C∗ be a chain complex of R-modules. We say a chain complex
B∗ is a subcomplex of C∗ if for each n, Bn ⊆ Cn and the differential on B∗ is the
restriction to Bn of the differential given by C∗.

Definition 1.4. A map f : B∗ → C∗ between chain complexes is a family of maps
fn : Bn → Cn such that the following diagram commutes:

. . . // Bn+1
d //

fn+1

��

Bn
d //

fn

��

Bn−1
//

fn−1

��

. . .

. . . // Cn+1
d // Cn

d // Cn−1
// . . . .

In other words, d◦fn+1 = fn ◦d for all n. In particular, f sends cycles to cycles and
boundaries to boundaries. Thus, f induces a well-defined map f∗ : Hn(B)→ Hn(C)
for all n.
Considering chain complexes as objects and maps between complexes as morphisms,
we may define a category Ch(Mod-R) of chain complexes. The argument above
shows that for each n, Hn is a functor from Ch(Mod-R) to Mod-R.

Definition 1.5. Using the notational change C−n = Cn, we can define the notion
of a cochain complex in a similar fashion to chain complexes. A cochain complex
C∗ is a family of R-modules {Cn}n∈Z with maps dn : Cn → Cn+1 such that
dn+1◦dn = 0. The kernel Zn of dn is the module of n-cocycles, while Bn = im(dn−1)
is called the module of n-coboundaries. Once again, we may consider the quotient
Hn(C∗) = Zn/Bn, which we unsurprisingly dub the n-th cohomology module of
C∗. Maps between cochain complexes are defined in a similar manner to maps of
chain complexes.

Now that we have defined what a map of chain complex is, we can consider short
exact sequences of chain (or cochain) complexes

0→ A∗
f−→ B∗

g−→ C∗ → 0

i.e maps such that for all n,

0→ An
f−→ Bn

g−→ Cn → 0

is exact and the maps commute with the boundary operators.

Lemma 1.6. (Snake lemma)
Consider the following diagram of R-modules:

A
i //

f

��

B
j //

g

��

C //

h

��

0

0 // A′ p
// B′ q

// C ′ .
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If the top and bottom row are exact, then there exists an exact sequence

ker(f)→ ker(g)→ ker(h)
δ−→ coker(f)→ coker(g)→ coker(h).

If, furthermore, the rows are short exact sequences, the above sequence can be ex-
tended to an exact sequence

0→ ker(f)→ ker(g)→ ker(h)
δ−→ coker(f)→ coker(g)→ coker(h)→ 0.

Proof. The maps between kernels are simply the restriction of the maps of the top
row. Commutativity of the diagram ensures that they are well defined. The maps
between cokernels are defined by taking a coset represented by one element to the
coset represented by the image of that element under the corresponding bottom
row map. To define the map δ : ker(h)→ coker(f), we must do a bit more diagram
chasing. Let γ ∈ ker(h). We can lift γ to an element b ∈ B, and take its image g(b)
in B′. Now h(γ) = hj(b) = qg(b) = 0, so g(b) ∈ ker(q) = im(p), thus we can lift
g(b) to x ∈ A′. Since p is injective, this element is unique. Our candidate for the
map δ is now the composite δ(γ) = p−1gj−1(γ)+im(f). The only ambiguity in this
definition is the choice of lift j−1(γ). Suppose we chose j(b1) = j(b2) = γ. Then by
the diagram chase above, there exists unique x1, x2 ∈ A′ such that p(x1) = g(b1)
and p(x2) = g(b2). Now j is a homomorphism, so b1 − b2 ∈ ker(j) = im(i), hence
there exists a ∈ A such that i(a) = b1 − b2, hence j(f(a)) = g(i(a)) = j(x1 − x2).
Injectivity now gives us that f(a) = x1 − x2, hence x1 + im(f) = x2 + im(f), i.e δ
is well defined.
The proof that the sequence we obtain by pasting these maps together is exact at
each term is a straightforward (if somewhat lengthy) diagram chase. Furthermore,
if i is injective and q is surjective, the corresponding maps ker(f) → ker(g) and
coker(g)→ coker(h) are also injective and surjective respectively from the way they
are defined, giving us the augmented sequence. �

Theorem 1.7. Given a short exact sequence of chain complexes

0→ L∗
f−→M∗

g−→ N∗ → 0,

there exists a long exact sequence

· · · g∗−→ Hn+1(N)
∂−→ Hn(L)

f∗−→ Hn(M)
g∗−→ Hn(N)

∂−→ Hn−1(L)
f∗−→ · · · .

The maps ∂ : Hn+1(N)→ Hn(L) are called the connecting homomorphisms.

Dually, if 0 → L∗
f−→ M∗

g−→ N∗ → 0 is a short exact sequence of cochain com-
plexes, there exist connecting homomorphisms ∂ : Hn−1(N) → Hn(L) such that
the following sequence is exact:

· · · g∗−→ Hn−1(N)
∂−→ Hn(L)

f∗−→ Hn(M)
g∗−→ Hn(N)

∂−→ Hn+1(L)
f∗−→ · · · .

Proof. We supply the proof for the case of chain complexes. The proof follows
exactly the same way for cochain complexes.
Consider the short exact sequence at the (n+ 1)-th term.

0 // Ln+1
f //

dL

��

Mn+1
g //

dM

��

Nn+1
//

dN

��

0

0 // Ln
f // Mn

g // Nn // 0
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Given any R-module homomorphism A
f−→ B, we may form the exact sequence

0→ ker(f)→ A
f−→ B → coker(f)→ 0.

Applying this construction to the columns of the given diagram then applying the
snake lemma gives us the following commutating diagram:

0

��

0

��

0

��
0 // Zn+1(L) //

��

Zn+1(M) //

��

Zn+1(N)

��
0 // Ln+1

f //

dLn+1

��

Mn+1
g //

dMn+1

��

Nn+1
//

dNn+1

��

0

0 // Ln
f //

��

Mn
g //

��

Nn //

��

0

Ln/Bn(L) //

��

Mn/Bn(M) //

��

Nn/Bn(N) //

��

0

0 0 0 .

By definition of the boundary operators, the maps dXn : Xn → Xn−1 factor
through Xn+1/Bn+1(X) → Zn(X), thus the above diagram gives the following
diagram, in which the rows are exact:

Ln+1/Bn+1(L) //

dLn+1

��

Mn+1/Bn+1(M) //

dMn+1

��

Nn+1/Bn+1(N) //

dNn+1

��

0

0 // Zn(L) // Zn(M) // Zn(N) .

Note that the kernel of the vertical maps are precisely the (n+ 1)-th homology
module of that complex, while the cokernels are the n-th homology. Thus, applying
the snake lemma to the above sequence gives us an exact sequence

Hn+1(L)→ Hn+1(M)→ Hn+1(N)→ Hn(L)→ Hn(M)→ Hn(N).

By pasting these sequences together, we obtain the desired long exact sequence.

�

Definition 1.8. A map f : C∗ → D∗ of chain complexes is said to be null-
homotopic if there exists maps sn : Cn → Dn+1 such that fn = dn+1sn + sn−1dn
We say f is homotopic to g if their difference f − g is null-homotopic.
For convenience, we often drop the subscripts and simply write f = ds+ sd.

Proposition 1.9. Let f, g : C∗ → D∗ be chain maps. If f and g are chain
homotopic, then they induce the same map on the homology modules Hn(C) →
Hn(D)
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Proof. It suffices to prove that if f is null-homotopic, then the induced map on
homology is the zero map. Suppose f = ds+ sd. Let x be an n-cycle representing
an element in Hn(C). Then f(x) = ds(x) + sd(x) = ds(x) since x ∈ ker(d). Thus
f(x) is an n-boundary in Dn, hence is trivial in the module Hn(D). �

2. Ext and Tor

2.1. Projective Resolutions and Tor. Let R be a fixed ring.

Definition 2.1. An R-module (left or right) P is projective if given a surjective
map g : M → N of R-modules and a map f : P → N , there exists a map f̄ : P →M
such that f = g ◦ f̄ . Pictorially, we have the following diagram:

P
∃f̄

~~
f

��
M

g // N // 0.

Lemma 2.2. Free R-modules are projective.

Proof. Since g is surjective, for any n ∈ im(f), there exists an element m ∈ M
such that g(m) = n. Let A be a set of generators for the free R-module P, and
define a set map φ : f(A) ⊆ N → M that takes f(p) ∈ N to an element mp

in its pre-image under g. By the universal property of free objects there exists
an R-module homomorphism f̄ : P → M such that f̄(p) = mp. In other words
(g ◦ f̄)(p) = f(p). �

Proposition 2.3. An R-module P is projective if and only if it is a direct summand
of a free module.

Proof. Let Q be an R-module such that P ⊕ Q = F is free. If π : F → P is
the projection map, π ◦ f gives a map F → M . By the previous lemma, F is
projective, thus composing F →M with the inclusion P ↪→ F gives us the desired
map f̄ : P →M such that f = g ◦ f̄ .
Conversely, if P is projective, let F (P ) be the free R-module on the underlying
set of P and choose (as we always can) a surjection π : F (P ) → P . Taking the
identity map on P and using the definition of a projective module gives us a map
i : P → F (P ) such that π ◦ i = id, i.e P is a direct summand of F (P ). �

Definition 2.4. Let L and M be right R-modules, and let 0→ L
ψ−→M be exact.

A right R-module A is flat if the sequence 0 −→ A⊗ L 1⊗ψ−−−→ A⊗M is exact.
We have a symmetrical definition for flat left R-modules.

Corollary 2.5. Projective modules are flat.

Proof. This follows from the fact that free modules and more generally direct sum-
mand of free modules are flat (cf D&F, chap. 10.5, Cor. 42) [2]. �

Definition 2.6. A left resolution of an R-module M is a chain complex P∗ such
that Pi = 0 for i < 0, together with a map ε : P0 → M such that the augmented
complex

· · · d−→ P2
d−→ P1

d−→ P0
ε−→M → 0
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is exact. If each Pi is a projective module, we say it is a projective resolution. It
is often convenient to view M as a chain complex concentrated in its last term and

consider P∗
ε−→M as a map of chain complexes.

Lemma 2.7. Every R-module has a projective resolution.

Proof. Starting with an R-module M , choose a free (hence projective) module
P0 such that M is a quotient of P0. The natural projection ε : P0 → M is a
surjection. We may now choose a free module P1 such that the module ker(ε)
is a quotient of P1 and define the map d : P1 → P0 to be the composite of the
natural projection P1 → ker(ε) with the inclusion ker(ε) ↪→ P0. Since any R-
module is always the quotient of a free module, we may proceed inductively and
form surjections Pi+1 → ker(di) with Pi+1 free. Pictorially we have the following
diagram:

0

##GGGGGGGGG 0

ker(d1)

;;wwwwwwwww

##FF
FF

FF
FF

F

· · · d2 //

;;wwwwwwwww
P1

d1 //

""EE
EE

EE
EE

P0
ε // M // 0

ker(ε)

<<yyyyyyyy

""FF
FF

FF
FF

F

0

<<xxxxxxxxx
0 .

�

Theorem 2.8. (Comparison Theorem)
Let M,N be R-modules, and suppose f : M → N is a map of R-modules. Given a

map of chain complexes P∗
ε−→ M such that each Pi is projective and an arbitrary

left resolution Q∗
η−→ N , there exists a map of chain complexes f̃ : P∗ → Q∗ lifting

f in the sense that η ◦ f̃ = f ◦ ε. This map is unique up to chain homotopy.

· · · // P2
//

f̃

��

P1
//

f̃

��

P0
ε //

f̃

��

M //

f

��

0

· · · // Q2
// Q1

// Q0
η // N // 0

Proof. Since P0 is projective and η is a surjection, we can lift η to a map f̃0 :
P0 → Q0 such that ηf̃0 = fε. Inductively, if we have a map f̃i−1 such that

di−1f̃i−1 = f̃i−2di−1 (thinking of f as f−1 and d0 as η or ε), then di−1f̃i−1di = 0,

hence f̃i−1di maps Pi to ker(di−1), which is equal to im(di) by exactness. Thus by

projectivity of Pi we get a map f̃i such that dif̃i = f̃i−1di.

Now suppose we have another map f̃ ′ : P∗ → Q∗. Then η(f̃ ′0−f̃0) = 0 hence f̃ ′0−f̃0

sends P0 to ker(η) = im(d1). Since P0 is surjective, we get a map s0 : P0 → Q1 so
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that (f̃ ′0 − f̃0) = ds0 = ds0 + s−1d, where s−1 is the zero map. Inductively, if we

have si−1 such that (f̃ ′i−1−f̃i−1) = disi−1+si−2di−1, then di(f̃ ′i−f̃i−si−1di) = 0,
so again by projectivity of Pi there exists a map si : Pi → Qi+1 such that di+1si =

f̃ ′i − f̃i − si−1di. �

Lemma 2.9. (Horseshoe Lemma)

Suppose we have a short exact sequence 0 → M ′
f−→ M

g−→ M ′′ → 0 of R-modules.
Let P ′∗, P

′′
∗ be projective resolutions of M ′ and M ′′ respectively. Then there exists a

projective resolution P∗ of M such that 0→ P ′∗
i−→ P∗

π−→ P ′′∗ → 0 is a (split) short
exact sequence of chain complexes.

0

��
· · ·P ′2 // P ′1 // P ′0

ε′ // M ′ //

f

��

0

M

g

��
· · ·P ′′2 // P ′′1 // P ′′0

ε′′ // M ′′ //

��

0

0 .

Proof. The proof of this lemma will be omitted due to space constraints. Readers
searching for completion may find it filled out in detail in Weibel [1]. The idea
however, is to define Pn to be the direct sum P ′n ⊕ P ′′n and then use projectivity to
build the required maps. �

Since ⊗R preserves exactness of the sequence on the right but not on the left,
we say it is a right exact functor. We now introduce the torsion product, which
measures how by how much ⊗R fails to be exact (i.e both left and right exact).

Definition 2.10. Let M be a right R-module and N be a left R-module. Choose

a projective resolution P∗
ε−→ M . Define TorRn (M,N) = Hn(P ⊗R N). This means

that for all n, TorRn (M,N) is a functor from Mod-R×R-Mod to Ab.

The first thing we need to check is that TorRn (M,N) does not depend on the
choice of resolution of M .

Lemma 2.11. If Q∗
η−→ M is another projective resolution, then we have an iso-

morphism Hn(Q⊗RN) ∼= Hn(P ⊗RN), hence TorRn (M,N) does not depend on the
choice of resolution for M .

Proof. Consider the identity map idM : M → M . Using the comparison theorem,
we get a map of chain complexes f̃ : P∗ → Q∗ commuting with the boundary maps

on P∗ and Q∗. We thus get maps f∗ on the homology modules Hn(P∗)
f∗−→ Hn(Q∗).

As we’ve seen in the proof of the theorem, this map is unique up to homotopy. Now
Q∗ is also projective, so similarly we get a map g∗ : Hn(Q∗)→ Hn(P∗). The maps
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gf and idP are both chain maps P → P lifting idM , thus g∗f∗ = (gf)∗ = (idP )∗ =
idHn(P ). Similarly, fg and idQ both lift idM , so f∗g∗ is the identity on Hn(Q∗),
hence f∗ and g∗ are isomorphisms. �

We may now list a few useful properties about Tor.

Proposition 2.12. TorR0 (M,N) is naturally isomorphic to M⊗RN . Furthermore,

if either M or N is projective, then TorRn (M,N) = 0 for n ≥ 1

Proof. Since ⊗R is right exact, the sequence

P1 ⊗R N → P0 ⊗R N →M ⊗R N → 0

is exact, thus TorR0 (M,N) = H0(P0 ⊗R N) = M ⊗R N .
If M is projective, the identity map M →M can be seen as a projective resolution.
Since projective modules are flat, the the tensor functor is exact, thus the homology
group of the chain is trivial for i > 0. �

Theorem 2.13. For every short exact sequence of right R-modules 0 → M ′ −→
M −→M ′′ → 0, if N is a fixed left R-module then there exists a long exact sequence

· · · → TorRn (M ′, N)→ TorRn (M,N)→ TorRn (M ′′, N)
∂−→ TorRn−1(M ′, N)→ · · ·

Proof. Given

0→M ′ −→M −→M ′′ → 0

choose projective resolutions P ′ → M ′ and P ′′ → M ′′. Using the Horseshoe
Lemma, there exists a projective resolution P →M such that the each

0→ P ′n −→ Pn −→ P ′′n → 0

is split exact. Since ⊗R is an additive functor, Pn ⊗R N = (P ′n ⊕ P ′′n ) ⊗R N =
(P ′n ⊗R N)⊕ (P ′′n ⊗R N), hence the sequence

0→ P ′n ⊗R N −→ Pn ⊗R N −→ P ′′n ⊗R N → 0

is also split exact. This means that 0→ (P ′⊗RN)∗ −→ (Pn⊗RN)∗ −→ (P ′′n⊗RN)∗ →
0 is a short exact sequence of chain complexes. The corresponding long exact
sequence on the homology of these chain complexes is sequence promised in the
statement of the theorem. �

Tor is an example of a left derived functor, namely the left derived functor of
the tensor product. More generally, one can define the left derived functor of a
right exact functor between two abelian categories, provided the domain category
has enough projectives. What we mean by this is that for each object A in the
category there exists a surjection P → A with P satisfying the same universal
property as layed out in the definition of a projective module. The ‘left’ part of
the terminology comes from the fact that after applying our right exact functor to
a short exact sequence, we wish to prolong this to a long exact sequence on the
left. Axiomatizing the properties we’ve seen above for Tor, with a little work it can
be shown that the left derived functor is universal with respect to extending short
exact sequences to long exact sequences on the left. In particular, this means that
we could reverse the roles of M and N above and choose a projective resolution of
N instead and still obtain the same functor.
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2.2. Injective Resolutions and Ext. There is a dual notion to projectivity in
an abelian category which is called injectivity. Although the Ext functor which
we shall introduce in this section can be defined using only projective modules, we
shall include some basic facts about injective modules for completion.

Definition 2.14. Let R, S be rings. An (R,S)-bimodule M is simultaneously a
left R-module and a right S-module such that (rm)s = r(ms).

Proposition 2.15. Let L be a right R-module, M an (R,S)-bimodule and N a left
S-module. We can impose a right R-module structure on HomS(M,N) by the rule
(fr)(m) = f(rm). The functors HomS(M,−) from Mod-S to Mod-R and −⊗RM
from Mod-R to Ab form an adjunction, meaning that for every right R-module L
and left S-module N there is a natural isomorphism

HomS(L⊗RM,N) ∼= HomR(L,HomS(M,N))

Proof. Starting with a map f : L ⊗R M → N , define τ : HomS(L ⊗R M,N) →
HomR(L,HomS(M,N)) by letting (τf)(l) be the map m 7→ f(l ⊗R m) for each
l ∈ L. Conversely, if we have a map g : L → HomS(M,N), let τ−1(g) be the
bilinear form l ⊗R m 7→ g(l)(m).
The map m 7→ f(l ⊗R m) is an S-module map since

ms+m′s′ 7→ f(l⊗(ms+m′s′)) = f(s(l⊗m)+s′(l⊗m′)) = (fs)(l⊗m)+(fs′)(l⊗m′)

We also have that f is an R-module map since (τf)(rl+r′l′) is the map m 7→ f((rl+
r′l′)⊗m) = rf(l⊗m)+r′f(l⊗m), which is the same as taking τ(rf)(m)+τ(r′f)(m′).
Furthermore, τ−1(g)(r(l⊗m) + r′(l′ ⊗m)) = g(rl+ r′l′)(m) = (g(rl) + g(r′l′))(m)
so τ−1(g) is also an R-module map. The maps τ and τ−1 are clearly inverse of each
other, thus τ is an isomorphism. The proof that this isomorphism is natural is left
to the reader. �

Taking S = Z and M = R as a (Z, R)-bimodule in the above proposition gives
us the following specialized version.

Corollary 2.16. Let L be a left R-module and N be an abelian group. We then
have a natural isomorphism of abelian groups

HomZ(L,N) ∼= HomR(L,HomZ(R,N))

Proof. This follows immediately from the fact that L ⊗R R ∼= L and the above
proposition. �

Definition 2.17. An R-module I is said to be injective if for any injection e : M →
N of modules and each map f : M → I, there exists a map f̃ : M → I making the
following diagram commute:

0 // M
e //

f

��

N.

∃f̃}}
I

Proposition 2.18. (Baer’s Criterion)
A right module I is injective if and only if for every right ideal J of R, every map
J → I can be extended to a map R→ I.
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Proof. Since right ideals are R-modules, the ‘only if’ direction is clear from the
definition of injectivity.
Conversely suppose every homomorphism g : J → I can be lifted to a map G :
R → I. Let e : M → N be injective, so that e(M) is a submodule of N . Given
a map f : M → I, we can look at the set S of all extensions f ′ : A′ → I of f
to an intermediate submodule e(M) ⊆ A′ ⊆ N . We can define a partial order on
this set by letting (f ′, A′) ≤ (f ′′, A′′) if L′ ⊆ L′′ and f ′′ = f ′ on L′. By Zorn’s
Lemma, there exists a maximal extension f ′ : A′ → I in S. Suppose there exists
some n ∈ N not in A′. We can then look at the right ideal J = {r ∈ R|mr ∈ A′}.
We thus have a map J

m−→ A′
f ′−→ I, hence by assumption it extends to a map

G : R→ I. Define A′′ ⊆M to be the submodule A′ +mR and let f ′′ : A′′ → I by
f ′′(a + mr) = f ′(a) + G(r). If mr ∈ A′ ∪mR, f ′(mr) = G(r) so this map is well
defined, and f ′′ extends f ′, contradicting the maximality of f ′. We thus have that
A′ = N , thus completing the proof. �

Corollary 2.19. If R is a PID, an R-module I is injective if and only if it is
divisible, meaning that for every non-zero r ∈ R and every x ∈ I, x = yr for some
y ∈ I.

Proof. If R is a PID, then every ideal is of the form J = (r) for some r ∈ R, hence
any R-module homomorphisms g : J → I is uniquely determined by g(r) = i ∈ I.
We can extend this homomorphism to a map G : R→ I if and only if there exists
an element i′ ∈ I with G(1) = i′ such that i = g(r) = G(r) = ri′. Hence by Baer’s
criterion I is injective if and only if rI = I. �

Lemma 2.20. Every R-module embeds as a submodule of an injective R-module.

Proof. We prove this for Z-modules first, then generalize to an arbitrary ring. Since
abelian groups can be regarded as Z-modules and Z is a PID, by the above corollary
an abelian group A is injective if and only if A is divisible. If M is any Z-module,
let G be a set of generators for M . Let F be the free module on the set G. We
can then identify M = F/K where K is a Z-module. Now take Q to be the free
mathbbQ-module on G. Q is a direct sum of copies of Q, hence divisible since Q is.
Now K ⊆ F ⊆ Q, thus M = F/K ⊆ Q/K. Since the quotient of divisible groups is
again divisible, this show M is a submodule of an injective Z-module.
Now let R be an arbitrary ring, and let N be a left R-module. Define a map
j : N → HomZ(R,N) by j(n)(r) = rn. Clearly this is a homomorphism between
abelian groups, however recall that HomZ(R,N) has a left R-module structure given
by (rf)(n) = f(rn). Thus if r, s ∈ R and n ∈ N , we have that

j(sn)(r) = r(sn) = (rs)n = j(n)(rs) = s(j(n))(r)

It follows that j is in fact a map of R-modules. Since j(n)(1) = n, j = 0 if and
only if n = 0, hence j is a injection. Now take any injective abelian group map
i : N → D where D is divisible and let i∗ : HomZ(R,N) → HomZ(R,D) be the
induced map. Then i∗ is an injection, thus the composite i∗◦j : N → HomZ(R,D) is
an injection of R-modules. Since D is an injective Z-module, applying HomZ(−, D)
to an exact sequence 0→M ′ → N ′ gives rise to an exact sequence HomZ(N ′, D)→
HomZ(M ′, D) → 0. Now using Corollary 2.16, this tells us that the sequence
HomR(N ′,HomZ(R,D)) → HomR(M ′,HomZ(R,D)) → 0 is exact, thus proving
that HomZ(R,D) is an injective R-module. �
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Definition 2.21. An injective resolution of an R-module N is a cochain complex
I∗ and a map η :→ I0 such that

0→ N
η−→ I0 d−→ I1 d−→ I2 d−→ · · ·

is exact and each Ii is injective.

The following three statements have analogues in the previous section. Their
proof is identical up to replacing ‘projective’ with ‘injective’ and reversing the
direction of the arrows, and thus will not be supplied.

Lemma 2.22. Every R-module has an injective resolution.

Theorem 2.23. (Comparison Theorem)
Let M,N be R-modules, and suppose f : M → N is a map of R-modules. Given

N
ε−→ I∗ an injective resolution and M

η−→ J∗ an arbitrary right resolution, there
exists a of chain complexes f̃ : J∗ → I∗ lifting f in the sense that f̃ ◦ η = ε ◦ f .
This map is unique up to chain homotopy.

0 // M
η //

f

��

J0 //

f̃

��

J1 //

f̃

��

J2 //

f̃

��

· · ·

0 // N
ε // I0 // I1 // I2 // · · ·

Lemma 2.24. (Horseshoe Lemma) Suppose we have a short exact sequence 0 →
N ′

f−→ N
g−→ N ′′ → 0 of R-modules. Let (I ′)∗, (I ′′)∗ be injective resolutions of N ′

and N ′′ respectively. Then there exists an injective resolution I∗ of N such that

0→ I ′∗
i−→ I∗

π−→ I ′′ ∗ ∗ → 0 is a short exact sequence of chain complexes.

As we’ve seen above, the torsion product is right exact. Building upon this
functor we then defined a new functor Tor which allowed us to continue the sequence
on the left. We will now introduce a left exact functor and similarly define Ext to
be the functor extending exactness to the right.
If we start with a short exact sequence of R-modules 0→M ′ −→M −→M ′′ → 0 and
an R-module N , the functor HomR(−, N) is left exact, i.e we get an exact sequence

0→ HomR(M ′, N)→ HomR(M,N)→ HomR(M ′′, N)

Similarly, one can start with a short exact sequence 0 → N ′ −→ N −→ N ′′ → 0 and
a module M , then apply left exact functor HomR(M,−).

Definition 2.25. Let M,N be right R-modules, and let P ∗
ε−→M be a projective

resolution. Define

Ext∗R(M,N) = H∗(HomR(P ∗, N))

Alternatively, one can instead choose an injective resolution N
η−→ I∗ and apply the

left exact functor HomR(M,−) then take the homology of that complex to define
Ext∗R(M,N). The proof that this in fact gives us the same group is rather technical
and will be omitted due to space constraints.
Analogously to Tor, ExtnR(M,N) is a functor from (Mod−R)op ×Mod−R to Ab
for each n.
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The properties of Ext are quite similar to those of Tor and proved analogously by
taking a projective resolution of the first variable, or by taking an injective resolu-
tion in the second variable. We will state them without proof to avoid unnecessary
redundancy.

Proposition 2.26. Ext0
R(M,N) is naturally isomorphic to HomR(M,N). If M is

projective, then ExtnR(M,N) = 0 for n ≥ 0.

Theorem 2.27. Let 0 → M ′ −→ M −→ M ′′ → 0 be a short exact sequence of
R-modules and N be an R-module. Then the following sequence is exact:

· · · → ExtnR(M ′′, N)→ ExtnR(M,N)→ ExtnR(M ′, N)→ Extn+1
R (M ′′, N)→ · · ·

If we now have an exact sequence 0 → N ′ −→ N −→ N ′′ → 0 and a module M , we
also have an exact sequence

· · · → ExtnR(M,N ′)→ ExtnR(M,N)→ ExtnR(M,N ′′)→ Extn+1
R (M,N ′)→ · · ·

3. Group Extensions and Group Cohomology

3.1. Group extensions.

Definition 3.1. Let A an abelian group and G be any group. We say a third group
E is an extension of G by A if there exists a short exact sequence

1→ A
i−→ E

π−→ G→ 1

Note that A (more precisely, i(A)) is a normal subgroup of E and that the quotient
E/A is isomorphic to G.

Lemma 3.2. An extension E of G by A defines a G-action on A.

Proof. For each g ∈ G, choose an element eg ∈ π−1(g) ⊂ E. This defines a map
of sets σ : G → E called a section of π. Since A is abelian and i is injective,
the subgroup i(A) ⊆ E is also abelian, and the element eg acts on an element
i(a) ∈ i(A) by conjugation. As we’ve said before, E/i(A) ∼= G, thus any other
element in E mapping to g under π is of the form egi(a1) for some a1 ∈ A. Using
that i is a homomorphism and A is abelian, we see that conjugation by egi(a1) is
the same as conjugation by eg, hence the action is independent of our choice of eg.
This means that our G action is well defined on i(A), hence on A as well since i is
injective. �

This action of G on A turns A into a G-module, meaning that G acts on A as
automorphisms. We can now look at when two extensions are essentially the same.

Definition 3.3. We say two extensions are isomorphic if there is an isomorphism
of short exact sequences

1 // A
i //

α

��

E
π //

β

��

G //

γ

��

1

1 // A′
i′ // E′

π′ // G′ // 1.

In other words, this diagram commutes and the vertical maps are isomorphisms. If
we require the stronger condition that the maps α and γ be the identity, we then
say that E and E′ are equivalent extensions.
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Proposition 3.4. Equivalent extensions define the same G-module structure on
A.

Proof. If E and E′ are two equivalent extensions as in the definition, let eg be a
representative of π−1 in E, and let e′g = β(eg). This gives two actions of g on a,

one sending a to i−1(egi(a)e−1
g ) and the other to i′−1(e′g i

′(a) e′−1
g ). Since i, i′, β

are injective, these two actions are equal if and only if (β ◦ i)(i−1(egi(a)e−1
g )) =

e′gi
′(a)e′−1

g , which is true by the definition of e′g and the commutativity of the
diagram. �

3.2. Group Cohomology. We will now use an alternative definition of a G-
module.

Definition 3.5. Let G be a group. The integral group ring Z[G] is the free abelian
group with basis the set G, on which we put a ring structure with addition defined
formally on integer linear combinations of elements of G, and multiplication defined
by the group operation in G, extended Z-linearly to Z[G].
A G-module is now the same as a (left) Z[G]-module.

A trivial G-module is an abelian group A on which G acts trivially, meaning
that ga = a for all g ∈ G and for all a ∈ A. By convention we will always take Z
to be a trivial G-module unless specified.

Definition 3.6. The augmentation map ε : Z[G] → Z is defined to be the map
taking

∑
ngg to

∑
ng, ng ∈ Z. The kernel of this map is called the augmentation

ideal, which we denote by I. Since Z[G] has basis {1} ∪ {g − 1|g 6= 1} as a free
Z-module, it follows that I has basis {g − 1|g 6= 1}.

We now introduce two canonical resolutions of the trivial G-module Z that are
of great theoretical importance.

Definition 3.7. Let Bun be the free Z[G]-module on the set of all symbols [g1 ⊗
· · · ⊗ gn] with gi ∈ G. We let Bu0 be the free Z[G]-module on a single generator,
which we shall denote by [·]. Define maps d : Bun → Bun−1 by

d([g1 ⊗ · · · ⊗ gn]) =g1.[g2 ⊗ · · · ⊗ gn]

+

n−1∑
i=1

(−1)i[g1 ⊗ · · · ⊗ gigi+1 ⊗ gi+2 ⊗ · · · ⊗ gn]

+ (−1)n[g1 ⊗ · · · ⊗ gn−1]

Theorem 3.8. Given {Bun}n∈N and maps d as defined above, the chain complex

0← Z ε←− Bu0
d1←− Bu1

d2←− · · ·
is a projective resolution of the trivial G-module Z, where ε is the map taking [.] to
1. We call this resolution the unnormalized bar resolution.

Proof. The first thing we need to prove is that this is indeed a chain complex.
Define maps

d0([g1 ⊗ · · · ⊗ gn]) = g1.[g2 ⊗ · · · gn]

di([g1 ⊗ · · · ⊗ gn]) = [g1 ⊗ · · · ⊗ gigi+1 ⊗ gi+2 ⊗ · · · ⊗ gn], 1 ≤ i ≤ n− 1

dn([g1 ⊗ · · · ⊗ gn]) = [g1 ⊗ · · · gn−1].
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Then d : Bun → Bun−1 can be written as
∑n
i=0(−1)idi. A direct computation shows

that for i ≤ j−1, didj = dj−1di. When computing d◦d, the terms didj and dj−1di
appear with opposite signs, hence everything cancels out pairwise, giving us that
d ◦ d is indeed 0.
We shall now give the splitting maps s : Bun → Bun+1 and check that the identity
map on Bun is null-homotopic, and hence that the chain complex is (split) exact.
Let s−1 : Z→ Bu0 and sn : Bun → Bun+1, n ≥ 0 be maps defined respectively by

s−1(1) = [.]

sn(g[g1 ⊗ · · · ⊗ gn]) = [g ⊗ g1 ⊗ · · · ⊗ gn].

Clearly we have that εs−1 = 1 and ds0 + s−1d is the identity on Bu0 . For n ≥ 1, we
see that

dsn(g[g1 ⊗ · · · ⊗ gn]) =d([g ⊗ g1 ⊗ · · · ⊗ gn])

=g[g1 ⊗ · · · ⊗ gn]− [gg1 ⊗ · · · ⊗ gn]

+

n−1∑
i=1

(−1)i−1[g ⊗ g1 ⊗ · · · ⊗ gigi+1 ⊗ gi+2 ⊗ · · · ⊗ gn]

+ (−1)n+1[g ⊗ g1 ⊗ · · · ⊗ gn−1].

On the other hand, we also have that

sn−1d(g[g1 ⊗ · · · ⊗ gn]) =sn−1(gg1[g2 ⊗ · · · ⊗ gn])

+

n−1∑
i=1

(−1)ig[g1 ⊗ · · · ⊗ gigi+1 ⊗ gi+2 ⊗ · · · ⊗ gn]

+ (−1)ng[g1 ⊗ · · · ⊗ gn−1]

=[gg1 ⊗ · · · ⊗ gn]

+

n−1∑
i=1

(−1)i[g ⊗ g1 ⊗ · · · ⊗ gigi+1 ⊗ gi+2 ⊗ · · · ⊗ gn]

+ (−1)n[g ⊗ g1 ⊗ · · · ⊗ gn−1].

Thus we see that dsn + sn−1d is the identity on Bun, hence that the complex is
split exact. Since each Bun is free, it follows immediately that it is a projective
resolution. �

There exists a normalized version of the bar resolution. We define Bn to be the
free Z[G] module on the set of symbols [g1| · · · |gn], 1 6= g ∈ G. By convention, we
set [g1| · · · |gn] to be equal to 0 if gi = 1 for some i. For n = 0, we let B0 = Z[G].
The differential maps are defined in the same way as for the unnormalized version.
It is sometimes advantageous to identify Bn as the quotient module of Bun by Sn,
which is the submodule generated by elements of the form [g1 ⊗ · · · ⊗ gn] where
gi = 1 for some i.

Theorem 3.9. The chain complex

0← Z ε←− B0
d1←− B1

d2←− · · ·
is a projective resolution of the trivial Z[G]-module Z.

Proof. The proof of this theorem is virtually identical to the previous one, and thus
will be omitted. �
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Application 3.10. (Group Cohomology)
Let A be a left G-module. The n-th cohomology group Hn(G;A) is defined for all
n ≥ 0 to be the cohomology of HomG(Bun, A), i.e the group ExtnZ[G](Z, A). Elements

in HomG(Bun, A) are called n-cochains, and are simply set maps Gn → A. If φ is a
n-cochain, the differential dφ is an (n+ 1)-cochain defined by

dφ(g0, · · · , gn) =g0φ(g1, · · · , gn)

+

n−1∑
i=1

(−1)iφ(· · · , gigi+1, · · · )

+ φ(g0, · · · , gn−1).

If dφ = 0, we say that φ is a n-cocycle. Elements dφ in HomG(Bun, A) are
called n-coboundaries. The group of n-cocycles and of n-coboundaries are de-
noted by Zn(G;A) and Bn(G;A) respectively. We thus recover the familiar for-
mula Hn(G;A) = Zn(G;A)/Bn(G;A). One can also take the cohomology of
HomG(B∗, A) instead and consider normalized cochains, meaning that φ(g1, · · · ) =
0 if any of the gi = 1. For the rest of this paper we shall in fact take this latter
approach, since it will make computations slightly easier.

Recall from the previous section that given an extension 1→ A→ E
π−→ G→ 1,

a section σ of π is a set-theoretic map G → E such that πσ(g) = g for all g ∈ G.
We shall restrict our choice of maps to based sections only, meaning sections such
that σ(1G) = 1E . This choice is equivalent to taking the normalized bar resolution
in our computation of Hn(G;A), and while the following proposition can be proved
using the unnormalized resolution, doing it this way simplifies the issue of the unit
for the group operation in E.
Now for any g, h ∈ G, σ(gh) and σ(g)σ(h) both map to gh under π, hence their
difference lies in A by exactness. We thus define

[g, h] = σ(g)σ(h)(σ(gh))−1.

This defines a function [ ] : G×G→ A depending on E and σ called the factor set
determined by E and σ.

Proposition 3.11. Let A be a G-module. A map of sets [ ] : G × G → A is a
factor set if and only if it is a normalized 2-cocycle.

Proof. A normalized 2-cycle is an element of Z2(G;A), meaning it is a set map
[ ] : G×G→ A satisfying that for all f, g, h ∈ G

• [g,1] = [1,g] = 0
• f[g,h] - [fg,h] + [f,gh] - [f,g] = 0

Now suppose we have a factor set [ ]. This determines the group operation in E,
which is given by

(a, g) · (b, h) = (a+ g · b+ [g, h], gh),

where g · b denotes the G-module action of g on b given by conjugation in E. Now
we have that

(0, f) · ((0, g) · (0, h)) = (f [g, h] + [f, gh], fgh)

((0, f) · (0, g)) · (0, h) = ([f, g] + [fg, h], fgh)

By associativity of E, we recover exactly the second condition in the definition of
a normalized 2-cocycle. The first condition is obvious since σ(1) = 1.
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Now conversely, suppose we have a normalized 2-cocycle [ ]. Let E be the set A×G,
and define an operation on E exactly as the one in the first part of the proof. One
easily checks (0, 1) is the identity for this product. Associativity holds because of
the second condition of a normalized 2-cycle. Given (a, g) ∈ E, we have that

(a, g) · (−g−1 · a− g−1 · [g, g−1], g−1) = (0, 1).

Thus E is a group. The subgroup A×1 is isomorphic to A and E/A×1 isG. We thus
have that 1 → A → E → G → 1 is an extension, and the section G ∼= 0×G ↪→ E
gives us a factor set [ ] which is identical to our original 2-cocycle. �

Lemma 3.12. Let E be an extension of G by A with based section σ, and let [ ] be
the factor set determined by σ. If E′ is an equivalent extension, then there exists a
based section σ′ of E′ such that the factor set determined by σ′ is [ ].

Proof. Since E and E′ are equivalent, there exists an isomorphism β between them.
If σ is a based section of E, then clearly σ′ = β ◦ σ is a based section of E′. By
definition, [g, h] = σ(g)σ(h)σ(gh)−1, so we have

β([g, h]) =(βσ(g))(βσ(h))(βσ(gh)−1)

=(βσ(g))(βσ(h))(βσ(gh))−1

=σ′(g)σ′(h)σ′(gh)−1.

However, β restricts to the identity on A, thus β([g, h]) = [g, h], thereby giving us
the desired result. �

Lemma 3.13. Given an extension 0→ A −→ E
π−→ G→ 0, two different factor sets

[ ] and [ ]′, corresponding to choices σ and σ′ of based sections respectively, differ
by a 2-coboundary.

Proof. Given two based section maps σ and σ′, σ′(g) lies in the same coset of A as
σ(g). That means that there exists an element α(g) ∈ A such that σ′(g) = α(g)σ(g).
The corresponding factor set is

[g, h]′ =α(g)σ(g)α(h)σ(h)σ(gh)−1α(gh)−1

=α(g) + σ(g)α(h)σ(g)−1 + σ(g)σ(h)σ(gh)−1 − α(gh)

=[g, h] + α(g)− α(gh) + g · α(h).

As we see, the difference [g, h]′ − [g, h] is precisely the coboundary dα(g, h) =
α(g)− α(gh) + g · α(h). �

The above three lemmas show that there is a well-defined map Φ from the set
of equivalence classes of extensions to H2(G;A).

Lemma 3.14. Two extensions of G by A with section maps σi : G → Ei giving
rise to the same factor set are equivalent.

Proof. As sets, we already have that E1
∼= E2

∼= A × G. Writing out the group
operation of an extension E with factor set [ ] under the bijection with A×G, we see
that the products (a, 1) · (b, 1) = (a+ b, 1), (a, 1) · (0, g) = (a, g) and (0, g) · (a, 1) =
(ga, a) are fixed. The group structure is thus entirely determined by the product
(1, g)·(1, h) = ([g, h], gh). Thus if σ1, σ2 determine the same factor set, the bijections
of E1 and E2 with A×G give a group isomorphism E1

∼= E2 and thus an equivalence
of extensions. �
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In particular, if [ ] = 0, it means that the set map σ is a group homomorphism.
In other words the extension is split, thus E is the familiar semi-direct product
AoG from group theory.

Lemma 3.15. The map Φ is injective.

Proof. Suppose [ ] and [ ]′ are two factor sets corresponding to based sections
σ : G→ E and σ′ : G→ E′ respectively, that represent the same cohomology class
in H2(G;A). That means that [g, h] − [g, h]′ = α(g) − α(gh) + gα(h), where α is
a 2-coboundary. Let µ(g) = α(g)−1σ(g). Since α(g) lies in A, µ is also a based
section of E′. Its corresponding factor set is

[g, h]′′ =α(g)−1σ′(g)α(h)−1σ′(h)σ′(gh)−1α(gh)

=− α(g)− σ′(g)α(h)σ′(g)−1 + σ′(g)σ′(h)σ′(gh)−1 + α(gh)

=[g, h]′ − α(g) + α(gh)− g.α(h).

Thus [g, h] − [g, h]′′ = 0, so by Lemma 3.14, E and E′ lie in the same equivalence
class. �

Theorem 3.16. Equivalence classes of extensions are in 1-1 correspondence with
the cohomology group H2(G;A).

Proof. We’ve already shown that the map Φ was well-defined, and the previous
lemma shows it is injective. By Lemma 3.11, every normalized 2-cocycle gives rise
to a extension of G by A, thus Φ is also a surjection, thereby establishing the
bijection. �
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