
A GENTLE INTRODUCTION TO COMPUTATIONAL

COMPLEXITY THEORY, AND A LITTLE BIT MORE

SEAN HOGAN

Abstract. We give the interested reader a gentle introduction to computa-

tional complexity theory, by providing and looking at the background leading
up to a discussion of the complexity classes P and NP. We also introduce

NP-complete problems, and prove the Cook-Levin theorem, which shows such

problems exist. We hope to show that study of NP-complete problems is vi-
tal to countless algorithms that help form a bridge between theoretical and

applied areas of computer science and mathematics.

Contents

1. Introduction 1
2. Some basic notions of algorithmic analysis 2
3. The boolean satisfiability problem, SAT 4
4. The complexity classes P and NP, and reductions 8
5. The Cook-Levin Theorem (NP-completeness) 10
6. Valiant’s Algebraic Complexity Classes 13
Appendix A. Propositional logic 17
Appendix B. Graph theory 17
Acknowledgments 18
References 18

1. Introduction

In “computational complexity theory”, intuitively the “computational” part
means problems that can be modeled and solved by a computer. The “complexity”
part means that this area studies how much of some resource (time, space, etc.) a
problem takes up when being solved. We will focus on the resource of time for the
majority of the paper.

The motivation of this paper comes from the author noticing that concepts from
computational complexity theory seem to be thrown around often in casual discus-
sions, though poorly understood. We set out to clearly explain the fundamental
concepts in the field, hoping to both enlighten the audience and spark interest in
further study in the subject.

We assume some background in propositional logic and graph theory (provided
in the appendix). In Section 2, we introduce some basic notions and examples
of algorithmic analysis in order to provided an intuition for talking about compu-
tational difficulty. In Section 3, we talk about the boolean satisfiability problem

Date: Last Revised September 10th, 2011.
1

2 SEAN HOGAN

SAT, and investigate an efficient algorithm for 2-SAT in detail. In Section 4, we
discuss reductions and the complexity classes P and NP, as well as their relation to
NP-completeness. In Section 5, we go through a common proof of the Cook-Levin
theorem, a vital result in complexity theory. In Section 6, we quickly look at a
small part of Valiant’s algebraic complexity theory.

2. Some basic notions of algorithmic analysis

An algorithm can be thought of as a process that takes in some input and
produces a given output within a known time. An example input to an algorithm
could be a list of n elements, the output being the sorted list. We can think of the
number of steps it takes an algorithm to finish as a time metric. To flesh this idea
out, we now introduce notation to describe an algorithm’s running time based on
the size of the algorithm’s input.

Definition 2.1. Let f, g : N+ → R+, and suppose g(n) is the running time of
an algorithm on an input of size n. We denote the asymptotic running time of an
algorithm by O(f(n)). This is called Big-O notation, meaning there exists some
c ∈ R+ such that for all n ∈ N+ , g(n) ≤ c · f(n), i.e., c · f(n) bounds g(n) from
above.

Since Big-O notation measures asymptotic (large values of n) growth, one only
considers the fastest growing term of some given g(n) - e.g. if g(n) = 3n2 +log(n)1,
then g(n) = O(n2), because as n → ∞, log(n) becomes negligible. Note that for
two functions on the same domain, if h ≥ f , then g = O(f) implies g = O(h). Note
that there exist analogs of O(f) for other inequalities, for example, if g = Ω(f), then
Definition 2.1 follows exactly, except for the last sentence, where g(n) ≥ c · f(n).

Example 2.2. Let’s consider a very basic algorithm to illustrate this notation.
The algorithm is Quicksort.2 It orders an array of numbers. The pseudocode is
shown below. We assume some familiarity with general control flow (if, then, else,
for, return, etc.), as well as the general idea of recursion.3

The input is an array of n numbers. Quicksort picks at random an element v
from the array, then compares it with every other element in the array. The array
is split into three subarrays - for elements less than, equal to, and greater than v.
Quicksort then recurses (runs itself within itself) on the “less than” and “greater
than” arrays. Finally, Quicksort appends those sorted arrays to the equal array,
returning the sorted result.

An example would be the input array {3,1,2}.
If v = 1, then our return statement would read
return quicksort({}):{1}:quicksort({3, 2}),
which after the two calls to quicksort finish, would end up as
return {}:{1}:{2,3} = {1,2,3}.

1Throughout this paper, log(n) refers to the base two logarithm of n.
2This is a slightly modified Quicksort - it also keeps track of an “equal” array, where as a

textbook Quicksort usually only keeps a “less than or equal” and “greater than” array. For
convenience we’ll refer to it as Quicksort. On arrays with some equal elements, this Quicksort

runs a little faster, but we’ll analyze it assuming that all elements are distinct.
3The array need not contain numbers. As long as the objects in the array have some way of

being ordered, the sorting algorithm works.

A GENTLE INTRODUCTION TO COMPUTATIONAL COMPLEXITY THEORY, AND A LITTLE BIT MORE3

// Input : Array aIn , wi th s o r t a b l e e lements
// Output : The s o r t e d array .
q u i c k s o r t (Array aIn) :

i f | aIn | <= 1 , return aIn ; //Check s i z e

aL , aE , aR = [] ; // Subarrays s t a r t empty
l e t v = random element o f aIn ;

for every p in aIn :
i f p < v , aL : : v ; // Prepend v to aL
else i f p = v , aE : : v ;
else aR : : v ;

i f aL and aR = [] , then return aE ;
return q u i c k s o r t (aL) : : aE : : q u i c k s o r t (aR) ;

Let’s look at the average running time for Quicksort, on an array of n distinct
numbers. Note that overhead from a computer - initializing variables, handling
recursive calls, etc., are generally ignored from the analysis of the algorithm. On
average, every recursive call will split the input array into subarrays of equal size
(within one element). We can model the running time as a recurrence relation, and
then solve it to get a closed form solution that gives us an O(−) time bound. Our
recurrence relation will be

(2.3) T (n) = 2T (
n

2
) +O(n)

What (2.3) means is that the time T (n) to run the algorithm on an input of size n
is at most twice the time T (n2) it takes to run Quicksort on a half-sized array, plus
a multiple of a linear order term O(n).

Let’s find a closed form formula for the running time. Using the recurrence
relation, we can write

T (
n

2
) = 2T (

n

4
) +O(

n

2
).

By substituting the expression for T (n2) into (2.3), we have

T (n) = 2(2T (
n

4
) +O(

n

2
)) +O(n) = 4T (

n

4
) + 2O(n)

After substituting for T (n4), T (n8), etc., we can just write the expression for T (n)
as

(2.4) T (n) = 2kT (
n

2k
) + kcn

where k is how many levels deep the recursion goes (intuitively, this is just one
more than how many times we make a substitution for some T (n2i). Recall that
we can make the simplification of the O(n) terms by thinking of O(n) as cn, for
some c ∈ R. In this sense, 2O(n2) = 2 · cn2 = cn, which is how we eventually obtain
kcn. For convenience and sake of clarity, we treat n as a power of 2, so if we let
k = log(n), then (2.4) simplifies to nT (1) + cn log(n) = n + cn log(n), and since

4 SEAN HOGAN

we only worry about asymptotic behavior, we ignore the linear n term and the
constant c and say that T (n) = O(n log(n)).4

3. The boolean satisfiability problem, SAT

Let’s now move our attention to a problem, called 2-Satisfiability (2-SAT). This
will give us a good base for later when we talk about the class of NP problems.

Definition 3.1.
A boolean literal x is an object which takes on the value of either true or false.
We write the negation of x as x.
A clause is the disjunction (Applying the logical operator ∨) of a finite set of
distinct literals (we consider some x and x to be distinct literals).
A conjunctive normal form (CNF) formula is the conjunction (Applying the
logical operator ∧) of a finite set of clauses.

We say a 2-SAT problem is finding an assignment of truth values that will
evaluate an entire CNF formula to true when every clause has at most two literals.

Example 3.2. Consider the formula (x1 ∨x2)∧ (x1 ∨x2). A satisfying assignment
would be x1 = T, x2 = T . The formula would evaluate as follows: (T∨F)∧(F∨T) =
(T) ∧ (T) = T .

It turns out that we can solve any instance of the 2-SAT problem in linear
time (there is an algorithm that is O(n)). To solve it, we introduce a depth-first
search-based algorithm (DFS) on a directed graph. Intuitively, DFS visits every
node of a graph by walking along a branch and backtracking when necessary. DFS
first marks all vertices as a graph as “not visited”. A vertex is “visited” if we have
started to iterate through its set of neighbors. DFS also initializes a counter, val,
which is used to assign pre-visit and post-visit values to each vertex.

DFS then picks a vertex v0 from the graph, and calls explore on it, which does
the following. It marks v0 as visited, assigns it a pre-visit value val, increments
val, then iterates through v0’s neighbors, calling explore on each neighbor that is
not visited. After all the calls to explore return, DFS assigns v0 a post-visit value,
and increments val.

Since DFS has a way of checking if a vertex has been visited, it looks at all
vertices’s neighbors exactly once, and since the iteration in the dfs function checks
that every vertex is visited, we are guaranteed to have pre/post values for each
vertex.

An example of DFS is pictured below. Just follow the numbers from 1 to 12 to
understand the search.

4There exists a theorem for solving recurrence relations of the form T (n) = aT (n
b

) + O(nd),
called the Master Theorem. We omit the theorem since the paper’s focus is not entirely on
algorithmic analysis, but the interested reader can easily find many good proofs.

A GENTLE INTRODUCTION TO COMPUTATIONAL COMPLEXITY THEORY, AND A LITTLE BIT MORE5

Figure 1

The pseudocode of this depth-first search algorithm is below. pre and post are
arrays with integer values who are indexed by vertices.

// Input : Direc ted graph G = (V,E)
// Output : Arrays pre and p os t
d f s (Graph G = (V,E)) {
pre , post = [] ;
va l = 1 ;
for a l l v in V: v i s i t e d (v) = f a l s e ;
for a l l v in V: i f (v i s i t e d (v) = f a l s e) , then exp lo r e (G, v) ;

return (pre , post) ;
}

// Input : Direc ted graph G = (V,E) and a v e r t e x v in V.
// Output : pre / pos t v a l u e s o f v are s e t
exp lo r e (G, v) {
v i s i t e d (v) = true ;
pre [v] = va l ;
va l++; // Increment v a l
for a l l (v , u) in E:

i f (v i s i t e d (u) = f a l s e) , then exp lo r e (G, u) ;
post [v] = va l ;
va l++;
}

This algorithm’s runtime is based on the size of V and E - it is O(|V | + |E|)
because each vertex and edge is visited exactly once. We now prove the following
that will help us solve 2-SAT:

Claim. Given the pre and post arrays of a graph G, in linear time we can de-
termine the structure of G’s meta-graph of strongly connected components (SCCs)1.

Proof. Recall that a Meta-graph refers to the graph made if we think of every
SCC as its own node. These nodes might be sinks - SCCs with no outgoing arrows
- or sources - the opposite. Note that an SCC can be both a source and sink, if
it is isolated. Convince yourself that calling explore on a node in a sink SCC will
only mark all nodes in the sink as visited. Now consider GR, the reverse graph,

1See appendix for definitions of meta-graph and SCCs if unfamiliar

6 SEAN HOGAN

which is just G, but with all edges reversed - meaning that all sources and sinks
switch roles! If we run our DFS on GR, then there will be some node v with the
highest post number. v must lie in a source of GR, meaning v must lie in a sink of
G.

Now, if we call explore on v in G, we can identify every vertex in this sink SCC.
If we delete both the sink from G and source from GR, then we can look at the
next highest post number of GR, and use this to find another sink SCC of G, and
so forth.

Eventually our working G and GR will be empty, and we’ll be done. At that
point we can just run a linear time (in the number of edges) search through the
edges to figure out the connectivity of the meta-graph.

Note we avoid discussion of data structures since we’re not as interested in the
implementation. However, the sum of all these steps takes only linear time!

�

Figure 2. A directed graph G and its meta-graph. The SCCs
are A = {1}, B = {2, 3}, C = {4, 5}. A and C are sources, B is a
sink. If we were to run depth-first search on this graph, starting
at vertex 1 and assuming we iterate through the ordered list of
vertices, the (pre,post) numbers would be: 1 = (1,6), 2 = (2,5), 3
= (3,4), 4 = (7,10), 5 = (8,9).

We can now examine how DFS relates to 2-SAT. For every clause (a ∨ b) in
the formula, draw the directed edges (a, b), (b, a) (note these edges correspond to
implications a → b and b → a, both logically equivalent to a ∨ b). We now have a
directed graph that we can assign truth values to. A satisfactory assignment to the
graph will have all paths evaluate to true. We can use this structure to help solve
2-SAT, but first a claim:

Claim 3.3. In our constructed implication graph, if any strongly connected compo-
nent contains some literal x and its negation x, then there is no satisfying assign-
ment to the proposed formula.

Proof. Well, suppose that some SCC S contains x and x. Then there is a path
(x, ..., x) and (x, ..., x) consisting of nodes only in S. We either assign x = T or
x = F - if we assign x = T , then at some point in the path (x, ..., x), we must
have some edge (a, b), where a = T and b = F , because x = F . By construction,
(a, b) corresponds to the implication y → z or z → y. Recall these implications are
logically equivalent to y ∨ z, so our assignment results in a clause in our original

A GENTLE INTRODUCTION TO COMPUTATIONAL COMPLEXITY THEORY, AND A LITTLE BIT MORE7

formula that is not satisfied (see Figure 2). Now if we assign x = F , then x = T ,
and the same argument follows (but with the path from x to x). �

Note that checking for a literal and its disjunction in a SCC can be checked in
linear time.

We can actually strengthen the previous claim into being necessary. To do so,
we prove the converse, and along the way, pick up an algorithm that will be our
final piece in the algorithm for solving any instance of 2-SAT.

Claim. In our constructed implication graph, if no strongly connected componnts
contain some literal x and its negation x, then there is a satisfying assignment to
the proposed formula.

Proof. In this proof, it will help to have an example to work through in order to
gain understanding - Figure 2 (Right) can be a helpful example.

Suppose we have an implication graph G constructed from a boolean formula
C, and no literal and its negation lie in the same SCC of G. Recall that the
SCC generating algorithm pulls off sink SCCs from the working graph in order to
determine the structure of the meta-graph. Assign all variables in the first such sink
to true. There cannot be any implications that would falsify the formula, because
all implications within the sink would be T → T , and all implications coming into
the sink would either be T → F or F → T .

Note that due to a nice symmetry our construction of G gives us, the negations
of the variables in the sink must lie in a source SCC of G. Also, the total number
of SCCs must be even. Now, assign the negations in the source to false. Now delete
the assigned sink and source from G. We can safely repeat this process till we are
finished, because no literals and their negations lie in the same SCC, making it
impossible to have an implication T → F . Such an implication would imply there
was an edge from a source SCC to a sink SCC.

Eventually we run out of SCCs, and we have a satisfying assignment to our
formula.

�

Figure 3. Left: An unsatisfiable formula and its implication
graph. Right: A satisfiable formula and its implication graph.
Notice the symmetry - where are the sink/source SCCs?

This shows that an implication graph has a satisfactory assignment iff none of
its SCCs contain a variable and a negation! And our algorithm for solving 2-SAT
is complete, and is entirely in linear time, once one actually implements it and
manages the data.

8 SEAN HOGAN

Try to see this process from a high level - it’s useful to try and abstract from all
the details. We have built this up part by part - the depth first search, the SCC
generating algorithm, and then the algorithm that applies claims 3.4 and 3.5. It
turns out that 2-SAT is just a special case of a very important problem - SAT, which
is the same problem as 2-SAT, except that clauses can have any finite number of
literals. You can imagine how hard solving SAT is (in fact, 3-SAT is just as hard),
as we will see.

Definition 3.4. We say an algorithm is polynomial-time or efficient if it is
O(nk), for some constant k. A problem is tractable iff there exists a polynomial-
time algorithm that solves all instances of it. A problem is intractable iff there
is no known polynomial-time algorithm for solving all instances of it. It is possible
that a currently intractable problem may have an efficient algorithm that solves it
- discovering such an algorithm would effectively mean the problem is no longer
intractable.

So how would you go about solving SAT? There’s the naive brute force, O(2n)
approach of trying every possible combination for the literal assignments. However,
this means our possible set of solutions would grow exponentially as our number
of different literals increased - namely, for some formula with {x1, x2, ..., xn}, there
would be 2n possible combinations for the assignments! Even though you can check
if any given solution is correct in polynomial time, it is very inefficient to find the
solution!

SAT falls into a bucket with many other seemingly different, but related prob-
lems, as we will see.

4. The complexity classes P and NP, and reductions

Definition 4.1. A decision problem is any problem to which a solution can
either be correct or incorrect, e.g. SAT: “Is this a satisfying assignment?”, or some
other possibly familiar problems: Euler Circuit: “Is this an Eulerian circuit?”,
Traveling Salesman Problem: “Is this a route that visits all cities under cost c?”,
and so forth.

Definition 4.2. We define NP (Nondeterministic polynomial time) as the set of
all decision problems of which the validity of any proposed solution S to an instance
I of the problem can be checked efficiently.1

Here are a few more decision problems:
Set Cover is the problem, given a budget b, and a collection of subsets C of

some set S, to find a collection of at most b sets in C whose union is S. It usually
deals with finite sets.

Dominating Set is the problem of, given an undirected graph G and a budget
b, find a set C of at most b vertices such that all vertices in G are neighbors or
members of vertices in C.

Definition 4.3. A problem is in P (Polynomial time) if it is in NP and is tractable.
This definition implies P ⊂ NP.

1The reader will be introduced to Turing machines, but NP’s formal (not necessary for this
paper, but perhaps interesting) definition is any decision problem that is efficiently checked by a

deterministic Turing machine, and is efficiently solved by a nondeterministic Turing machine.

A GENTLE INTRODUCTION TO COMPUTATIONAL COMPLEXITY THEORY, AND A LITTLE BIT MORE9

Where do problems that are intractable and in NP lay? To discuss such problems,
it will be helpful to introduce the notion of reduction, a process that can sometimes
be used to convert instances of one problem into instances another.

Definition 4.4. A problem A reduces to B if an instance IA of A can be efficiently
mapped to an instance IB of B, and solutions of IA and IB can be efficiently
transformed into solutions of the other. We sometimes write this as A ≤p B.

Definition 4.5. A problem is NP-complete (NP-C) if it is in NP, and every
problem in NP reduces to it in polynomial time. A problem is NP-hard (NP-H)
if an NP-complete problem reduces to it.

This notation is an unfortunate consequence of history and admittedly can be
confusing, but just keep the following relations in mind: P ∪ NP-C ⊂ NP and NP-C
⊂ NP-H. For example, Traveling Salesman Problem (TSP) with no budget is not
an NP-complete problem (We can’t efficiently verify if some proposed solution is
the “best” solution), but it is an NP-hard problem. Another important idea to
take away is that there are problems in NP \ (P ∪ NP-C) (to be discussed briefly
later), and that not all NP-H problems are in NP.

Reducibility need not be commutative. For example, 2-SAT reduces to SAT, but
SAT does not reduce to 2-SAT (or else we’d have an efficient way of solving the
intractable SAT, since all instances of SAT could be mapped to 2-SAT, which we
know is efficiently solvable) In the case of NP-Complete problems, both problems
have to reduce to each other - here is a worked out example.

Example 4.6. NP-completeness of Dominating Set via reduction from NP-complete
Set Cover

When proving NP-completeness based off of a specific NP-complete problem
(in this case, Set Cover), the reduction needs to only be performed from the NP-
complete problem to the NP problem. However, one can take that a step further
and prove equivalence (each instance of problem A maps to an instance of problem
B, vice versa) of the problems by also doing the reduction in the other direction.
This amounts to 6 small proofs, 2 for converting instances of the problems, and 4
for mapping solutions from one problem to another. We must also make sure both
problems are decision problems, but that much is given in this example.

Moreover, in this proof, Set Cover is assumed to be NP-complete. To show Set
Cover is NP-complete, we need the Cook-Levin theorem, which we will prove later.

Proof. (Reduction of Set Cover to Dominating Set) Consider an instance of Set
Cover. Let S = {x1, x2, ..., xn}, C = {S1, S2, ..., Sk}, let our budget be b. We want
to convert our instance into a graph, so create a vertex si for each Si, and a vertex
pj for each xj . Draw edges between si and pj if xj ∈ Si. Draw all possible edges
between the si (k-clique for the graph theory familiar). If it exists, a dominating
set of the new graph G will be a subset of the si (we say this because if for some
reason a dominating set contains a pj , we can just replace it with some si that is
its neighbor, which will not affect the validity of the solution).

Now given some dominating set C, where |C| ≤ b, each si ∈ C corresponds to
choosing some subset of S. And since C is dominating, the union of the subsets
corresponding to the si ∈ C must equal S, as required. If we are given some set
cover, then we easily know how to pick the correct vertices in our dominating set
graph, based on the indices of the set cover subsets. �

10 SEAN HOGAN

Furthermore, we still need to transform instances of dominating set to set cover
- this is because we are proving NP-completeness using specific problems. Doing
this reduction will be good practice, and is easier than the direction we’ve shown.
(Hint: What’s a natural way you could think of a vertex and its neighbors in a
graph?)

Also note, as of this time of writing, P ∩ NP-C = ∅. This introduces the question:
does P = NP? The general consensus is no, but proving one way or the other will
take considerable work. To prove P = NP, we would have to show an NP-complete
problem is efficiently solvable. The NP-complete problems could all be proved if
only one is shown to be efficient (why?). In short, the question “P = NP?” is still
open, and is fundamental to computational complexity theory.

5. The Cook-Levin Theorem (NP-completeness)

You may have noticed that in proving the NP-completeness of a problem, we had
to know a previous problem was NP-complete. How was the first problem proved to
be NP-C if there were no known specific NP-C problems beforehand? The Cook-
Levin Theorem proves this for us, by abstracting what an NP-C problem is. In
order to understand the proof, we need an understanding of the Turing machine
model and some first-order logic nuances.

Theorem 5.1. (Cook-Levin Theorem): SAT is NP-Complete.

Proof. Recall the definition of NP-complete. To show SAT is NP-C, first we need
to show SAT is in NP, and second, that every problem in NP reduces to it in
polynomial time.

Showing that SAT is in NP is relatively quick, since the question SAT poses is
“Is there a satisfying assignment to this CNF formula?”, and the time to check if
a solution is valid is linear in the number of literals in the formula, as we need just
check each clause for validity. Thus, SAT ∈ NP.

To show the second part, we need to introduce a more general view of NP
problems. Consider a problem P . Let the set of all instances of P have two subsets,
AT and AF such that AF tAT = A, which are respectively the sets containing all
instances of the problem to which there is an valid answer and those to where there
is not. For example, if P is SAT, then A could be all SAT instances, AT and AF
would respectively be all instances of SAT with/without a solution.

All NP problems can be generalized thusly: “Given an instance w of a problem
A, is w ∈ AT ?”. If we efficiently reduce this to SAT, we are done.

We can now introduce the idea of a Turing machine; a theoretical computing
device.

Definition 5.2. Turing Machine. Imagine a possibly infinite row of squares. We
refer to the row as the tape, and the squares as cells. Every cell contains one
symbol, which could be a letter, a number, etc.

An alphabet Σ is a finite set of symbols. Every Turing machine has its own
alphabet; one symbol from its alphabet is designated the blank symbol b, which
is the only symbol allowed to appear in infinitely many cells.

A Turing machine has one head, which is positioned over exactly one cell. The
head reads the symbol in the cell.

A rule always tells the head to rewrite the cell it is over, and to move to the
left or right. A state q is a set of rules the Turing machine follows based on what

A GENTLE INTRODUCTION TO COMPUTATIONAL COMPLEXITY THEORY, AND A LITTLE BIT MORE11

symbol its head reads. A Turing machine can have finitely many states, we call the
state set Q. Each Turing machine starts in its special start state, q0. Turing
machines can end in any of the accept states F , which are states where the Turing
machine stops its computation. Rules can have the Turing machine switch between
states.

Each Turing machine has a function δ : Q × Σ → Q × Σ × {L,R}, called the
transition function, which takes in M ’s current state q and input symbol s, then
returns a triple (q′, s′, {L,R}1), which M interprets as what symbol to overwrite
the input symbol with, what state to change to, and what direction to move the
head.

A Turing machine is nondeterministic (NDTM) if some input symbol can
cause more than one possible outcome with some unknown chance. NDTMs can
also solve intractable problems efficiently. This would technically mean δ isn’t a
function for an NDTM - but we ignore this. Otherwise, it is deterministic.

It is helpful to think of the state set as a directed graph. The Turing machine
starts at vertex q0, and has outgoing edges corresponding to input symbols the head
reads. Each edge specifies what symbol to rewrite the current cell with, whether to
move the head left or right, and the edge points to the next state to transition to.

We can now succinctly write a Turing machine M as a 3-tuple (Σ, Q, δ). The
sets Σ, Q are finite, and there uniquely exists b ∈ Σ, q0 ∈ Q, and there is some
finite F ⊂ Q.

Definition 5.3. A word is concatenation of finitely many symbols from an al-
phabet Σ, possibly with repeats. The set of all possible words is denoted Σn. A
language L is a subset of Σn.

For Cook-Levin, let Σn = {0, 1}n. (An example word would be 011001). Let us
define a language AT to be the set of all satisfiable instances of some problem P in
NP. Take an instance of this problem, w. By modeling the action of a NDTM on w
as a boolean formula, if there is an accepting state, the formula will be satisfiable.

Suppose the input size is n. We want to show there is a polynomial-sized com-
putation by a NDTM M , that we can represent as a boolean formula. By size, we
mean number of steps the NDTM takes to accept or reject w. So we say the size is
p(n), and our tape will be O(p(n)) cells long.

We only need three types of variables to do this. Because we have an NDTM, we
must account for differences in the computation with many variables. The types
of variables must be enough to represent all possible computations, so we need
variables to represent the symbols in cells, the position of the head, and the state
of the Turing Machine. We introduce the following variables to do so: Tijk, which
is true if cell i contains symbol j at step k, Hik, true if the head is over cell i at
step k, and Qqk, true if M is in state q at step k. Note that −p(n) ≤ i ≤ p(n),
0 ≤ k ≤ p(n).

We use Big-O here to showing an upper bound on the order of magnitude for
how many terms we have. We have about 2p(n) cells, at p(n) possible times, and
finitely many symbols, hence about O(p(n)2) of Tijk - a similar argument follows
for Hik. With a finite number of states, and p(n) steps, we have O(p(n)) of Qqk.

We need a formula that encodes a lot of conditions! In encoding these formulas,
for clarity we will use any logical connectives. This is okay, because conversion
from any combination of variables and connectives can efficiently be transformed
into CNF. We now go through the formulas one by one.

12 SEAN HOGAN

A valid start state should have M ’s head over the first symbol w1 ∈ Σ of the size
n input. Moreover, M should be in the start state q0 ∈ Q, and all other symbols
on the tape should have the blank symbol b ∈ Σ. The below equation takes care
of this. First, it takes a conjunction over all cells that are not part of the input
word, to make sure they contain b. Then it forces the cells 0 to n − 1 to be the
respective symbols from the input word. The H and Q variables guarantee that M
starts with its head over cell 0 and starts in the start state q0.

(5.4)

φstart = (
∧

i∈{−p(n)..p(n)}\{0..n−1}

Ti,b,0)∧T0,w1,0∧T1,w2,0∧...∧Tn−1,wn,0∧H0,0∧Qq0,0

We need to make sure each cell has only one symbol, M is only in one state
at any time, and the head is only in one position at a time. For (5.5), the key
is understanding that the only way to invalidate the formula is if some Ti,s,j and
Ti,s′,j were both true, because we would have the implication T → F = F . The
same idea holds for (5.6) and (5.7), but we take these conjunctions over different
ranges to account for the context the variables come from.

(5.5) φcell =
∧

0≤|i|,j≤p(n)

[
∧

s,s′∈Σ,s 6=s′
(Ti,s,j → Ti,s′,j)]

(5.6) φstate =
∧

0≤t≤p(n)

[
∧

q,q′∈Q,q 6=q′
(Qq,t → Qq′,t)]

(5.7) φhead =
∧

0≤t≤p(n)

[
∧

0≤|i|,|j|≤p(n),i6=j

(Hi,t → Hj,t)]

We also need to make sure that all of M ’s possible transitions are legal. That is, if
the head is over cell i, then in the next stage of computation, only cell i’s symbol
may change, and the head must be over cell i − 1 or i + 1. Moreover, this change
must be a legal move from some input to a state, we say R represents all valid
conditions of the tape from time i to i+ 1 (for a given i, j), including the position
of the head only moving one cell. It helps to think that if (5.8) is true, then “In
the entire computation, every move made is valid, and thus the move is in R”.

(5.8)

φmove =
∧

0<|i|,j<p(n)

[
∨
R

(Ti−1,a1,j∧Ti,a2,j∧Ti+1,a3,j∧Ti−1,a4,j+1∧Ti,a5,j+1∧Ti+1,a6,j+1]

For example, suppose that there is only one state, and the rule for reading an
A is to write a B and move left. Let the apostrophe represent the head position.
Then the left table is valid (and in R), and the right table is invalid (and thus not
in R, and not checked for by our disjunction over R).

A A’ A
A’ B A

A A’ A
A’ A A

Also, we need to make sure that a cell j changes its contents from time i to i+ 1
only when the head was at j at time i.

A GENTLE INTRODUCTION TO COMPUTATIONAL COMPLEXITY THEORY, AND A LITTLE BIT MORE13

(5.9) φwrite =
∧

0≤|i|≤p(n),0≤j<p(n),(s,s′∈Σ),s 6=s′
[(Ti,s,j ∧ Ti,s′,j+1)→ Hi,j]

Lastly, the formula should only be satisfied if we end in an accepting state. The
following will only be true if we are in an accepting state at time p(n).

(5.10) φaccept =
∨
f∈F

Qf,p(n)

Finally, we can just take the conjunction of the above formulas to be φ. If φ is
satisfiable, then its solution maps to some sequence of computations that ends in
an accepting state for w, so w ∈ AT . If the computation ends in an accepting state,
we only need to set the variables of the formula as the computation proceeded to
find a satisfying assignment.

We just need to check this construction takes polynomial time. Note that as
shown earlier, the size of our sets of variables is polynomial. The constructions of
our formulas are also polynomial - (5.8) is constant in size, (5.9) has a constant
sized inner conjunction with a p(n)2 outer conjunction (to account for all possible
positions and times), so the number of clauses is O(p(n)2). A similar idea works
for (5.10), but this time the outer conjunction is only over a set of size p(n), so
the number of clauses in (5.10) is O(p(n)). (5.11) ends up as O(p(n)3). (5.12) is
O(p(n)2) because we have to compare every O(p(n)2) 2×3 grid against a finite table
of states. (5.13) is O(p(n)2) for similar reasons to others, and (5.14) is constant.

The encoding of our variables only takes O(log(n)) time because we write them
in binary. Thus the whole encoding takes O(log(n)) ·O(p(n)3), or O(log(n)p(n)3).
And that proves Cook-Levin. Phew!

�

This proof gave the reason why we are able to find other NP-complete problems,
and shows the power of polynomial-time reductions.

6. Valiant’s Algebraic Complexity Classes

Valiant introduced an algebraic theory of complexity, related to the computation
of polynomials. It has some relation to P and NP (and is interesting), so we discuss
it briefly. For this section, we consider the natural numbers to include 0.

Definition 6.1. In this context, we say a function f is p-bounded if f = O(nk),
where k ∈ N.

For some intuition, the algorithms for verifying proposed solutions to NP prob-
lems are p-bounded, while the algorithms for solving proposed instances are not
necessarily p-bounded.

Consider a set of indeterminates X = {X1, X2, ..., Xm}. An indeterminate can
be thought of as an object which helps to represent a structure in a polynomial,
but does not hold any value - e.g., x is an indeterminate in the polynomial x2. A
polynomial is multivariate if it consists of more than one indeterminate, e.g., xyz.

We denote the set of polynomials over the field k with indeterminates X as
k[X]. We can talk about a few functions relating to polynomials in our field, so
take some f ∈ k[X]. The function v : k[X] → N takes a polynomial and returns
the number of indeterminates in it. So v(f) ≤ m, because |X| = m. The function

14 SEAN HOGAN

deg : k[X] → N takes a polynomial and returns the highest degree of all of its
terms, so deg(x2y + yz) = 3.

Definition 6.2. Consider some sequence of polynomials F = (fn)n≥1, n ∈ N.,
where fn ∈ k[X]. We say F is a p-family if the functions v and deg are p-bounded
with domain F .

An example of v not being p-bounded is if fn = X1 +X1X2 + ...+X1...X2n−1 .
An example of deg not being p-bounded is if fn = X2n

1 .
Consider the operations k,+, · - scalar multiplication, addition, and multiplica-

tion. For any f ∈ k[X], we can obtain f by applying the three aforementioned
operators to indeterminates in X. For example, X3

1 + 3X1X2 is obtained with five
operations: (X1 ·X1) ·X1 +(3 ·X1) ·X2. Every operation has a cost of 1, so the cost
of “computing” this polynomial is 5. An important thing to understand is that you
can save on the cost by composing. That is, we can efficiently compute X8

1 by the
following steps: X2 = X1∗X1, X3 = X2∗X2, and finally X4 = X3∗X3 = X4

2 = X8
1 .

Rather than multiplying X1 by itself seven times, we finish in three steps.
The function L : k[X] → N is called a complexity measure, and it outputs the

minimum cost of computing some polynomial. So, L(X3
1 +3X1X2) = 5. It is worth

knowing that each L pertains to a specific field k over a specific set of polynomials
X. In this case, we call L a straight-line program.

Definition 6.3. If for some p-family F , the complexity measure L is p-bounded
for domain F , then we say F is p-computable.

Note that being a p-family does not imply p-computability.
Here’s an example of a p-computable family. Let us define the family of polyno-

mials MMSUM (multivariate monomial sum) where

MMSUMn =
∑

(i1,i2,...in)∈{1,..,n}n
Xi1 ·Xi2 · ... ·Xin

MMSUM1 = X1,MMSUM2 = X2
1 + 2X1X2 + X2

2 , etc. The function v is p-
bounded - v(n) ≤ n, since every term in the sum for MMSUMn has at most n
indeterminates. Also, deg(n) ≤ n, in the case where a term of MMSUMn is some
Xn
i . We just need to show that L is bounded for the polynomials in MMSUMn.

Observe that MMSUMn is equal to Πn
j=1(X1 + X2 + ... + Xn). So, we require

n − 1 additions to create what we will be taking the product of, and then n − 1
multiplications to obtain MMSUMn. Obviously this complexity is linear in the
size of n, so MMSUM is p-computable.

We introduce a definition to describe such families.

Definition 6.4. VP is defined as Valiant’s class of p-computable p-families over
the field k.

There are p-families that are not in V P . Consider the family of polynomials
INTSEQ, where INTSEQn is the sum of monomials which represent nondecreas-
ing, positive integers of length n, where the integers are between 1 and n inclusive.
So, INTSEQ2 = X1X2 +X1X1 +X2X2. The indeterminates representing integers
do not necessarily have to be in order. Also, note that INTSEQ and MMSUM are
very similar families, but MMSUMn contains scalar multiples of its terms (which
are also terms in INTSEQn).

A GENTLE INTRODUCTION TO COMPUTATIONAL COMPLEXITY THEORY, AND A LITTLE BIT MORE15

Now, if there exists no p-bounded algorithm to calculate all such nondecreasing
integer sequences, then there is something we can say about the family INTSEQ.

Claim 6.5. INTSEQ /∈ VP.

Proof. To prove this, we will frame computing INTSEQn in a combinatorial sense,
and use this to show that a superpolynomial number of additions (the number of
additions can’t be represented as a polynomial function) is needed to compute
INTSEQn. This will mean that the complexity measure L is not p-bounded,
implying that INTSEQ is not p-computable, and thus not in VP.

The unique terms in the polynomial INTSEQn can be represented as nonde-
creasing integer sequences - for example, in INTSEQ2, the term 2X1X2 corre-
sponds to (1, 2), X2

1 corresponds to (1,1). Increasing sequences can also be seen as
placing 0 to n− 1 balls in n boxes, where each ball corresponds to an increase. For
example, if n = 3, then placing 2 balls in the first box corresponds to the sequence
(3,3,3), placing 1 balls in the second box corresponds to (1,2,2), etc.

For example, in INTSEQ3, the sequence (3,3,3) corresponds to the term X3
3 ,

the sequences (1,2,2) corresponds to the term (within a multiplicative constant)
X1X

2
2 .

Coming back to our balls in boxes, let’s now look at the general case of n boxes
and k balls, where 0 ≤ k < n. Place these k balls in a row, and in between the
balls, drop the n − 1 “walls” needed to form n boxes. Since we can now view our
balls in boxes as a sequence of walls and balls (e.g. X1X

2
2 or (1,2,2), or WBW), the

possible assignments of k indistinguishable balls to n distinct boxes can be seen as

the orderings of k balls and n−1 walls, or taking the binomial coefficient
(

(n−1)+k
k

)
.

Now the sum

n−1∑
k=0

(
(n− 1) + k

k

)
is just the number of nondecreasing integer sequences of length n, with entries from
1 to n inclusive. This number equals the number of distinct terms in INTSEQn
(For intuition, verify this is true for n = 1, 2, 3.) . We still need to show this number
of terms is not p-bounded based on n.

Consider the term of the sum when k = n − 1,
(

2n−2
k

)
, or (2n−2)!

(n−1)!0! . This equals

(2n − 2)(2n − 3)...(n). The maximum degree of this polynomial increases as n
increases, which means the number of terms in INTSEQn is not p-bounded. This
means we need a superpolynomial number of additions to construct INTSEQn,
which means that L is not p-bounded for INTSEQ, and we are done. �

One of the foremost examples of a p-family not in V P is the Hamiltonian cycle
polynomials, HC. We define HCn as

HCn =
∑

σn−cycle

n∏
i=1

Xiσ(i)

which is the sum of all n-term monomials whose subscripts correspond to the map-
pings of a permutation σ on the symmetric group Sn that results in an n-cycle,
e.g. X1,2X2,3X3,1 would be in HC3, but not X1,1X2,2X3,3. If we treat the inde-
terminate Xi,j as an entry of an adjacency matrix for a graph G, where ai,j = 1
iff (i, j) ∈ E(G), ai,j = 0 otherwise, then the entire sum equals the number of

16 SEAN HOGAN

Hamiltonian cycles in the graph. For example, the 3-cycle, C3 corresponds to the
adjacency matrix,

0 1 1
1 0 1
1 1 0



which will evaluate to 2, as expected - 1 for going around the 3-cycle, 1 for going
around in the other direction. The family HC is said to be the enumerator of the
NP -complete Hamiltonian cycle problem.

This is just the surface of Valiant’s algebraic complexity classes - there are rough
analogs of other concepts, such as reducability, NP-completeness, NP, and so on.
We hope we have at least piqued an interest in some form of complexity theory -
algebraic, or computational.

A GENTLE INTRODUCTION TO COMPUTATIONAL COMPLEXITY THEORY, AND A LITTLE BIT MORE17

Appendix A. Propositional logic

In propositional logic, we call → the symbol for implication, ∧ the symbol
for conjunction (“and”-ing - “is everything true?”) of literals, ∨ the symbol for
disjunction (inclusive “or”-ing - “is at least one thing true?”). A truth table is
a way to determine the truth values for a given expression, and below is the truth
table.

p q p ∧ q p ∨ q p→ q
T T T T T
T F F T F
F F F F T
F T F T T

Some intuition behind the implication is that only T → F evaluates to F because
both T → T and T → F having the same truth value would be a contradiction (just
put this in in the context of your favorite if-then statement). We say F → T and
F → F are vacuously true, meaning that since the antecedent p is false, we cannot
infer anything about the consequent q, so we might as well evaluate the expression
to T , or else the truth tables for implication and conjunction would be the same!
(and that’s no good.)

Hopefully this sheds light on how the construction of the graph for solving 2-SAT
works, as well as evaluation of boolean formulas.

Appendix B. Graph theory

We need not delve very deep into graph theory, but for the unfamiliar, a graph
G is defined as a tuple (V,E), where V is a set of vertices (often called nodes)
and E is a set of edges, where an edge is just a tuple of vertices in V .

In the below graph G, V = {1, 2, 3, 4, 5}, E = {(1, 4), (4, 2), (2, 5), (5, 4), (3, 5)}
In particular, G is undirected, meaning the edges (1, 4) and (4, 1) are the edge
and we draw it once. Directed graphs distinguish the two - in a directed graph,
(1, 4) would be a directed edge (arrow) pointing from 1 to 4. Luckily, intuition
works well in graph theory - a path is a sequence of vertices constructed by visiting
adjacent edges without repeating edges. An example would be (1,4,2,5,4). If there
is a path between a vertex u and v, we say u ∼ v. If a path starts and ends at
the same vertex, the path is a cycle. If a cycle visits every edge exactly once, it
is called an Eulerian cycle (EC). G has no EC (why?). A cycle that visits every
vertex exactly once is a Hamiltonian cycle.

Now imagine the edges listed above are directed edges. Then G is directed,
and has three strongly connected components (SCCs), where {SCC} = {S ⊂
V |(∀u, v ∈ S)(u ∼ v)}. So for our graph, {SCC} = {{4, 2, 5}, {1}, {3}}. A meta-
graph treats each SCC as its own node, and has an edge between an SCC A and
B if some vertex in A shares an edge with a vertex in B.

Figure 4. A graph

18 SEAN HOGAN

Acknowledgments. Special thanks to Yiwei She, my mentor, who in addition to
supporting this endeavor, put up with my paper not ending up having much to do
with abstract algebra or topology at all. Of course, special thanks to Peter May
and other organizers of UChicago’s 2011 REU, it’s been a blast.

References

[1] Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani. Algorithms, 1st ed. McGraw-Hill,

2008
[2] Arijit Bishnu. “Lecture 6: Cook Levin Theorem” http://www.isical.ac.in/ arijit/cours-

es/spring2010/slides/complexitylec6.pdf

[3] Wikipedia. Various articles on complexity theory for cross checking with other sources.
http://en.wikipedia.org/

[4] Burgisser, Clausen, Shokrollahi. Algebraic complexity theory Springer, 1997

