
AN INTRODUCTION TO RANDOM WALKS

DEREK JOHNSTON

Abstract. In this paper, we investigate simple random walks in n-dimensional

Euclidean Space. We begin by defining simple random walk; we give particular

attention to the symmetric random walk on the d-dimensional integer lattice
Zd. We proceed to consider returns to the origin, recurrence, the level-crossing

phenomenon, and the Gambler’s Ruin.
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1. Introduction

Informally, a random walk is a path that is created by some stochastic process.
As a simple example, consider a person standing on the integer line who flips a coin
and moves one unit to the right if it lands on heads, and one unit to the left if it
lands on tails. The path that is created by the random movements of the walker
is a random walk. For this paper, the random walks being considered are Markov
chains. A Markov chain is any system that observes the Markov property, which
means that the conditional probability of being in a future state, given all past
states, is dependent only on the present state.

In short, Section 2 formalizes the definition of a simple random walk on the
d-dimensional integer lattice Zd, since most of this paper will deal with random
walks of this sort. Section 3 considers returns to the origin, first returns to the
origin, and the probability of an eventual return to the origin. Section 4 considers
the number of returns to the origin that will occur on a random walk of infinite
length. Section 5 focuses on the level-crossing phenomenon. Section 6 examines
the Gambler’s Ruin problem, which involves 1-dimensional random walks that have
imposed boundary conditions.
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2. Simple random walk on Zd

Consider the d-dimensional integer lattice Zd. Let ei denote the d-dimensional
standard basis vector with 1 in its ith coordinate and 0 elsewhere. Define Xj to
be a random vector with image ±ei for some i ∈ {1, ..., d}. Assume X1, X2, X3, ...
are independent and identically distributed. The simple random walk of n steps,
denoted by Sn, is defined by

(2.1) Sn = x+

n∑
i=1

Xi.

Here, x denotes the position on the lattice at time n = 0, and Xj represents the
movement from time j to time j + 1. In particular, if

Pr(Xi = ei) = Pr(Xi = −ei) =
1

2d
, i = 1, 2, . . . , d,

then the random walk is called symmetric.
In other words, on a symmetric simple random walk, the walker can move one

unit in any one of the 2d possible directions, and is equally likely to move in any
one direction. Unless otherwise indicated, the initial position x will be the origin
on Zd, denoted by 0.

3. Returns to the Origin

One of the earliest questions that arises in the study of random walks concerns
the probability of returning to the initial position. How likely is it for the walker
to return to the origin? We begin by giving a rigorous definition of a return to the
origin.

Definition 3.1. Consider a simple random walk Sn on Zd. A return to the origin,
often referred to as an equalization, occurs when Sn equals 0 for some n greater than
0. If an infinite number of equalizations occur, then the walk is called recurrent. If
only a finite number of equalizations occur, then the walk is called transient.

We will first consider a simple random walk on Z, and develop a number of ideas
that we will generalize for higher dimensions later.

Lemma 3.2. For a random walk on Z,

Pr(S2n+1 = 0) = 0

and

Pr(S2n = 0) =

(
2n

n

)
2−2n

Proof. The second equation follows from the fact that the random variables Xi are
i.i.d. for all i, so that each possible path is equally likely, and by the fact that in
order to reach the origin, the walker must take an equal number of positive and
negative steps in each direction [3]. �

Now we develop some important relationships between first-returns and equal-
izations.

Definition 3.3. For a random walk on Z, define the event f2n to be the event that
the first equalization occurs at time 2n. That is, f2n occurs if S2n = 0, and S2k 6= 0
for all k = 1, ..., n− 1. For notational convenience, we write Pr(f0) = 0.
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Lemma 3.4. For n ≥ 1,

(3.5) Pr(S2n = 0) =

n∑
k=0

Pr(f2k)Pr(S2(n−k) = 0)

Lemma 3.4 is proved in [4, p. 3].

Proof. Partition the collection of paths into n sets, depending on when the first
equalization occurs. Now the number of paths that have the first equalization at
time 2k and another equalization at time 2n is given by Pr(f2k)22kPr(S2n−2k =
0)22n−2k, since it amounts to considering a path that has its first equalization at
time 2k followed by a path that has an equalization at time 22n−2k. Here we have
used the independence of Xi.

Summing over k = 1, . . . , n, we have the union of the n sets, which gives the
total number of paths that have an equalization at time 2n. Therefore,

Pr(S2n = 0)22n =

n∑
k=0

Pr(f2k)22kPr(S2n−2k = 0)22n−2k.

Dividing by 22n finishes the proof. �

The following lemma establishes a formula for Pr(f2n).

Lemma 3.6. For n ≥ 1,

(3.7) Pr(f2n) =
Pr(S2n = 0)

2n− 1

Lemma 3.6 is proved in [4, p. 4].

Proof. Define the functions

S(x) =

∞∑
n=0

Pr(S2n = 0)xn

F (x) =

∞∑
n=0

Pr(f2n)xn

defined on the interval x ∈ (−1, 1). Note that the coefficients in the series are
in the interval [0, 1], so that the sums converge absolutely and the functions are
well-defined. Thus, Lemma 3.4 shows that

(3.8) S(x) = 1 + S(x)F (x)

The first term on the right hand side follows from Pr(S0 = 0) = 1. Therefore,

F (x) =
S(x)− 1

S(x)

Note that these manipulations are justified by absolute convergence.
From Lemma 3.2 and the definition of S(x), we know

S(x) =

∞∑
n=0

(
2n

n

)
2−2nxn,

which can be rewritten as

S(x) =

∞∑
n=0

(
2n

n

)(x
4

)n
.
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Using the Binomial Theorem, it can be shown that
∞∑

n=0

(
2n

n

)
rn =

1√
1− 4r

so that S(x) = 1√
1−x .

Therefore,

F (x) =
S(x)− 1

S(x)
= 1− 1

S(x)
= 1−

√
1− x.

By taking the derivitive of F (x), we obtain

F ′(x) = (1/2)(1− x)−1/2 = (1/2)S(x).

In order to find the coefficients of the series for F (x), we integrate the series of
1
2S(x). We find

Pr(f2n) =
Pr(S2n−2 = 0)

2m

Finally, it follows from Lemma 3.2 that Pr(S2n−2=0)
2m = Pr(S2n=0)

(2m−1) , which completes

the proof. �

We are almost ready to investigate equalization probabilties on Zd, but before
we begin, we must acknowledge Stirling’s Formula, which states that as n→∞,

n! ∼
√

2πnn+1/2e−n

where ∼ means that the ratio of the two sides tends to 1. We will not derive this
formula here, but a detailed derivation of the formula can be found in Lawler’s
book [3, p.13].

Let fd2n be the event that the first equalization of a random walk on Zd occurs
at time 2n. Also, let Sd

2n denote the position of the walker on Zd at time 2n. For
all d ≥ 1, we have Pr(Sd

0 = 0) = 1, and Pr(fd0 ) = 0 as before. Furthermore, define
the functions

Sd(x) =

∞∑
n=0

P (Sd
2n = 0)xn,

F d(x) =

∞∑
n=0

P (fd2n)xn.

on the interval (−1, 1).
By the same argument as before, we have

Pr(Sd
2n = 0) =

n∑
k=0

Pr(fd2k)Pr(Sd
2n−2k = 0)

and
Sd(x) = 1 + Sd(x)F d(x)

We would like an easy way to describe the probability of an eventual return using
the coefficients of S(x) and F (x), and this desire motivates the following definition.

Definition 3.9. Define rd2n to be the probability that an equalization on Zd occurs
by time 2n. The probability that a walker eventually returns to the origin is denoted
by

rd∞ = lim
n→∞

rd2n.
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The series

F d(x) =

∞∑
n=0

Pr(fd2n)xn

converges for x ∈ (−1, 1] by the Comparison Test, and by the fact that the coeffi-
cients are non-negative and sum to at most 1. Therefore,

lim
x→1−

F d(x) = F d(1)

Now

rd∞ =

∞∑
n=0

Pr(fd2n),

which is equal to F (1). So

rd∞ = lim
x→1−

F d(x) = lim
x→1−

Sd(x)− 1

Sd(x)
= 1− lim

x→1−

1

Sd(x)
.

We state the following lemma:

Lemma 3.10. For the simple random walk on Zd,

lim
x→1−

Sd(x) =

∞∑
n=0

Pr(Sd
2n = 0).

Lemma 3.10 is proved in [4, p.6].

Proof. Since the coefficients of S(x) are probabilities and therefore non-negative,
the power series increases monotonically for x ∈ [0, 1]. Therefore,

lim
x→1−

Sd(x) ≤
∞∑

n=0

Pr(Sd
2n = 0)

On the other hand,

N∑
n=0

Pr(Sd
2n = 0) = lim

x→1−

N∑
n=0

Pr(Sd
2n = 0)xn

≤ lim
x→1−

∞∑
n=0

Pr(Sd
2n = 0)xn

= lim
x→1−

Sd(x)

Letting N →∞, the Squeeze Theorem concludes the proof. �

If the series is finite, the probability of an eventual return is

rd∞ = 1− 1
∞∑

n=0

Pr(Sd
2n = 0)

.

If the series is infinite, then rd∞ = 1.

Theorem 3.11. Suppose Sn is a simple random walk on Zd. If d equals 1 or 2,
the probability that an equalization occurs is 1.
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Proof. For d = 1, we can refer to the proof of Lemma 3.6, which shows that

F 1(x) = F (x) = 1−
√

(1− x).

Now
∞∑

n=0

Pr(fd2n) ≤ 1,

so

gN (x) =:

N∑
n=0

Pr(fd2n)xn

converges uniformly in (−1, 1). So we have

∞∑
n=0

Pr(fd2n) = lim
N→∞

lim
x→1−

gN (x)

= lim
x→1−

lim
N→∞

gN (x)

= lim
x→1−

F (x)

= 1

So, with probability 1, the walker will return to the origin on Z.
For d = 2, we have

Pr(S2
2n = 0) =

1

42n

(
2n

n

)2

Using Stirling’s Formula, it can be shown that(
2n

n

)
∼ 22n√

πn

Combining the two preceding statements, we see that

Pr(S2
2n = 0) ∼ 1

πn

Now by the divergence of the harmonic series,
∞∑

n=0

Pr(S2
2n = 0) =∞

and so r2∞ = 1. �

For higher dimensions, Theorem 3.11 does not hold.

Theorem 3.12. Suppose Sn is a simple random walk on Zd. If d = 3, the proba-
bility of an equalization is less than 1.

Proof. Keep the definitions and strategies employed in the previous theorem. For
d = 3, a combinatorial argument in [4, p.8] shows that for j, k with j, k ≥ 0, j+k ≤ n

Pr(S3
2n = 0) =

1

22n

(
2n

n

)∑
j,k

1

3n
n!

j!k!(n− j − k)!

Let M denote the maximum value of

n!

j!k!(n− j − k)!
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so that

(3.13) Pr(S3
2n = 0) ≤ 1

22n

(
2n

n

)∑
j,k

M

3n
n!

j!k!(n− j − k)!

Using Stirling’s Formula, it can be shown that

(3.14) M ∼ c

n

for some constant c. Now, noting that∑
j,k

1

3n
n!

j!k!(n− j − k)!
= 1

and using (2.13), the right side of (2.12) is bounded above by d/n3/2, for some

constant d. This is a convergent p-series. Therefore
∞∑

n=0
Pr(Sd

2n = 0) is finite and

r3∞ < 1. �

Intuitively, because a higher dimensional lattice has more possible moves, it
seems that for any integer lattice Zd, d > 3, the probability of returning to the
origin should be less than one.

Theorem 3.15. For any integer lattice Zd, d ≥ 3, the probability of returning to
the origin is less than one.

Proof. Normally, we want to think of the position Sd
n as a vector P with d compo-

nents. However, if we let the vector P have d + 2 components, and note that the
(d+ 1)-component and (d+ 2)-component are always 0, nothing changes in terms
of the position on the lattice or the probability of an equalization. With this vector
P d+2 in mind, we can develop an inductive argument. First define Ed to be the
probability of an eventual equalization on Zd. If we prove that

Pr(Edi) ≤ Pr(Edj ), i = j + 1

we are done. Note that this inequality is true for i = 1 by Theorem 3.11. Now,
assuming it is true for j = n− 1, we show that

Pr(En+1) ≤ Pr(En).

Since Sn
2n is a vector with n+ 2 components, define Zn to be the event that the

first n components are 0. Notice that Zn can be thought of as the event that the
walker returns to the origin on Zn, n ≤ n+ 2. For Sn+1

2n , which can be represented
by a vector with n + 2 componments, define the event Zn+1 to be the event that
the first n+ 1 components are 0. Again, Zn+1 is the event that the walker returns
to the origin on Zn+1, n ≤ n+ 1. Now Zn+1 ⊆ Zn, and so

Pr(En+1) ≤ Pr(En).

This completes the proof. In particular, because the probability of an eventual
equalization on Z3 is less than 1, the probability of an eventual equalization in
Zd, d > 3, is also less than 1. �
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4. Number of Equalizations on Zd

The probablility of an eventual equalization on Zd is 1 for d = 1, 2, and less than
1 for d ≥ 3. We now use this information to investigate the number of times that
a random walk on Zd will have an equalization.

Theorem 4.1. For a simple random walk on Zd, d = 1, 2, the number of equaliza-
tions is infinite. For a simple random walk on Zd, d ≥ 3, the number of equalizations
is finite.

Proof. For a random walk on Zd, let the event E1 be the first equalization. Similarly,
En is defined to be the nth equalization. Notice that

En = En ∩ En−1 ∩ En−2 ∩ . . . ∩ E1

since if the nth equalization occurs, the previous equalizations must also occur.
Using this and the formula

Pr(A|B) =
Pr(A ∩B)

Pr(B)

we see that

Pr(En)

= Pr(En|En−1 ∩ EE−2 ∩ . . . ∩ E1)Pr(En−1 ∩ EE−2 ∩ . . . ∩ E1)

= Pr(En|En−1 ∩ EE−2 ∩ . . . ∩ E1)

∗ Pr(En−1|En−2 ∩ . . . ∩ E1)Pr(En−2 ∩ En−3 ∩ . . . ∩ E1)

(4.2)

Now because the simple random walk is a Markov chain,

(4.3) Pr(En|En−1) = Pr(E1)

Continuing the expansion of 4.2 and noting 4.3, we find that

(4.4) Pr(En) = Pr(E1)n.

Thus, for a random walk on the one or two-dimensional integer lattice, the proba-
bility that an infinite number of equalizations occurs is 1. However, note that for
d ≥ 3, because P (E1) < 1,

lim
n→∞

Pr(En) = 0

In other words, the probability of returning to the origin infinitely often on a random
walk on Zd, d ≥ 3, is 0. Equivilantly, a random walk on Zd, d ≥ 3, has a finite
number of equalizations with probability 1. �

5. The Level-Crossing Phenomenon

It can be shown that recurrent random walks reach every point infinitely often.
This result is referred to as the level-crossing phenomenon. Before we prove that
recurrent random walks do indeed have this property, we must provide several
definitions.

Definition 5.1. A random walk on Zd is irreducible if every point on Zd is reachable
at some time. Formally, a random walk is irreducible if, for every point P on Zd,

Pr(Sd = P > 0)

Notice that since the precise time is not important, we omit the usual subscript
beneath S. In all of the previous material, simple random walks were assumed to
be irreducible.
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Definition 5.2. Define the period W of a random walk on the d-dimensional integer
lattice Zd to be the greatest common divisor of the set {k ∈ Zd : Pr(Sd = k) > 0}.
Since we are working with the simple random walk on Zd,

W = 1

Theorem 5.3. If a simple random walk on Zd is recurrent, it visits every point on
Zd infinitely often.

While Theorem 5.3 is not directly proved in [2], the majority of the proof comes
from elements of this source.

Proof. Let A denote the set of all points that are reachable on a random walk on
Zd. Since we’ve assumed that the random walks are irreducible, A = Zd. We know
the random walk is recurrent, so by definition it reaches the origin infintely often.
Now since x ∈ A,

P (Sd = x) > 0

An infinite number of equalizations occur, so by the Law of Large numbers
the number of times x is reached must also be infinite, since the number of visits
approaches a fixed proportion of an infinitely large number. �

Remark 5.4. If a random walk is transient it cannot visit all points infinitely often.

6. Gambler’s Ruin

As an example of a more applied problem, consider the following. Suppose a
game is being played in which a gambler flips a coin, and gains 1 dollar if it lands
on heads, and loses 1 dollar if it lands on tails. Furthermore, suppose that the
gambler wins the game if he reaches n dollars, and loses the game if he reaches 0
dollars. This game is represented by a random walk on Z, with the fortune of the
gambler at time t given by St. By the level-crossing phenomenon, we know the
game must terminate, since either point n or 0 is eventually reached. What is the
probability of the gambler winning the game, given that he starts with x dollars?
In order to answer this question, we first establish several definitions.

Definition 6.1. Define L to be a left-hand boundary point on Z, and R to be
a right-hand boundary point on Z. For this discussion, the boundary points are
absorbing, since the game terminates once the gambler’s fortune reaches a boundary
point. Mathematically, if at time n, Sn = L,R, then Sk = L,R, k ≥ n.

Definition 6.2. For a simple random walk on Z, let T denote the earliest time
that the walker is at a boundary point. In other words,

T = min{n : Sn = L,R}

Define the function F : {L, . . . , R} → [0, 1] by

F (x) = Pr(ST = R|S0 = x)

We assume the gambler uses a fair coin, so

(6.3) F (x) =
1

2
F (x− 1) +

1

2
F (x+ 1), x = L+ 1, . . . , R− 1

Furthermore, we know that since the boundary points are absorbing, F (L) = 0,
and F (R) = 1. Because the game terminates once the gambler is either broke or
at a fortune of n dollars, we have L = 0 and R = n. Now consider the function
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G(x) = x/n. It is clear that G(x) satisfies the boundary conditions and 6.3. The
following theorem shows that this function is the unique solution.

Theorem 6.4. Suppose a,b are real numbers and R is a positive integer. Then the
only function F : {L, . . . , R} → R satisfying 6.3 with F (L) = a, F (R) = b is

F (x) = a+
x(b− a)

R

Theorem 6.4 is proved in [3, p.23].

Proof. Suppose F is a solution to 6.3. For each x with L < x < R,

F (x) ≤ max{F (x− 1), F (x+ 1)}
To see why this is true, notice that if F (x + 1) = F (x − 1), equivalence obviously
holds, and that if F (x+ 1) 6= F (x− 1)

max{F (x− 1), F (x+ 1)} ≥ 1

2
F (x− 1) +

1

2
F (x+ 1)

Similarly
F (x) ≥ min{F (x− 1), F (x+ 1)}

Now suppose we’re searching for the maximum value of F on {L, . . . , R}. Since F(x)
is always less than or equal to one of its neighbors, we can always move towards
one of the boundary points by selecting max{F (x − 1), F (x + 1)}. From this,
it is clear that the maximum value of F is obtained at either L or R. Similarly,
the minimum of F is obtained at either L or R. Now if F (L) = F (R) = c, then
F (x) = c, x ∈ {L, . . . , R}. Now suppose F (L) = a and F (R) = b, which satisfies
the boundary conditions specified in the theorem. Let

G(x) = a+
x(b− a)

R

G(x) clearly satisfies the boundary conditions as well. Since H(x) = G(x)−F (x) ≡
0, G(x) = F(x), completing the proof. �

Contextually Theorem 6.4 shows that the probability of the gambler winning
the game given that he starts with x dollars is x/n, x = 1, . . . , n− 1. Now suppose
that the coin is biased, so that it lands on heads with probability p and tails with
probability q, p 6= 1/2. The following is based on material found in [1]. Since
F (x) = pF (x+ 1) + qF (x− 1), x = 1, . . . , n− 1, and p+ q = 1, we have

(6.5) F (x+ 1)− F (x) = (q/p)(F (x)− F (x− 1))

Using 6.5 and solving for F (2), F (3), . . . , F (n− 1), we find that

(6.6) F (x) = F (1)
1− (q/p)x

1− q/p
Next, we use this formula and the fact that F (n) = 1 to show that

F (1) =
1− q/p

1− (q/p)n

Plugging this into 6.6 we have

(6.7) F (x) =
1− (q/p)x

1− (q/p)n

Thus, we have derived a formula for the Gambler’s Ruin problem with non-symmetricity.
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