
CLASSICAL MECHANICS: THE THREE-BODY PROBLEM

ZI CHONG KAO

Abstract. The Three-Body Problem is one of the oldest unsolved problems

of classical mechanics. It arose as a natural extension of the Two-Body Prob-

lem that Newton solved in his Principia in 1687. Since then, the problem
has motivated the development of numerous techniques in classical mechan-

ics as well as dynamical systems. Understanding the Three-Body Problem is

thus an excellent objective for our introduction to classical mechanics. This
paper introduces Lagrangian and Hamiltonian mechanics before presenting

two important theorems which describe the phase flows that are the subject

of Hamiltonian mechanics- Liouville’s Theorem and the Poincaré Recurrence
Theorem. It concludes with a discussion about the analytical unsolvability of

the Three-Body Problem.
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The Big Picture

Mechanics is a branch of physics concerned with the behavior of physical objects
in space. At its core lies the question: If the state of a dynamic system is known
initially, and something is done to it, how will the state change in time as a re-
sponse? [1].

Mechanics can be split into two subfields with different characteristics:

Classical mechanics: Deals with macroscopic phenomenon, variables that
are continuous, and is deterministic in nature.

Quantum mechanics: Deals with phenomenon at the subatomic scale, vari-
ables that are discrete and is probabilistic in nature.

Classical mechanics may be further divided into three formulations in order of
increasing abstraction:

Newtonian mechanics: Based on a vectorial formulation in Cartesian space.
In contrast, analytical formulations such as Lagrangian and Hamiltonian
mechanics deal with scalar properties of motion like kinetic and potential
energies.

Lagrangian mechanics: Operates in a generalized coordinate space.
Hamiltonian mechanics: Operates in a phase space.

Formulations that are more abstract are often more powerful. In order to ex-
ploit symmetries of a system, it is often convenient to transform coordinate sys-
tems. However, when dealing in vectors, these transformations are often tedious
and messy. Dealing in scalars allows us to track the evolution of the system from
afar without having to keep tabs on each of the vectors in the system.

Section 1. In order to trace the derivation of the central equation of Hamiltonian
mechanics from its beginnings in Newtonian mechanics, we review Lagrangian me-
chanics; first, deriving the Euler Lagrange equation using the calculus of variations;
then, showing that Newton’s Second Law of Motion, the Euler Lagrange equation,
and Hamilton’s Principle of Least Action are equivalent in determining a system’s
motion. Finally, by abstracting the Euler Lagrange equation into generalized coor-
dinates, we arrive at a more powerful formulation which will allow us to solve the
Two-Body Problem.

Sections 2, 3, 4. In the second half, we derive the Hamiltonian from the La-
grangian using Legendre transformations before introducing a couple of well-known
theorems in dynamical systems: Liouville’s theorem and the Poincare Recurrence
theorem. Finally, we conclude by examining the unsolvability of the Three-Body
Problem.

1. Lagrangian Mechanics

The endpoint of this section is the derivation of Hamilton’s Principle of Least
Action ie. the path that a mechanical system takes is one in which the Euler La-
grange equation is satisfied at every point along the path. This result is remarkable
because the Euler Lagrange equation is a result of the calculus of variations rather
than physical observation. That physical systems adhere to this relation seems to
be nothing more than good fortune.
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1.1. The Euler Lagrange Equation.

Definition 1.1. Let X be a Banach space. A curve is a continuous map γ :
[t0, t1]→ X. A functional Φ is a mapping from the space of curves Γ (ie. paths) in
a space X to the space of real numbers ie. Φ : Γ→ R.

Definition 1.2. Given a curve γ, another curve γ+h which varies from γ by h, as
well as a function L which maps from a space X to the real numbers, the derivative

F (h) of the functional Φ(γ) =
∫ t1
t0
L(x, ẋ, t) dt is given by

F (h) =

∫ t1

t0

[
∂L

∂x
− d

dt

∂L

∂ẋ

]
h dt+

(
∂L

∂ẋ
h

) ∣∣∣∣t1
t0

.

For an explanation of why this equation describes the derivative of a functional,
refer to Arnol’d [2].

Definition 1.3. An extremal of a differential functional Φ(γ) is a curve γ such
that F (h) = 0 for all h.

Lemma 1.4. Fundamental Lemma of Variations
If a continuous function f(t), t0 ≤ t ≤ t1, satisfies

∫ t1
t0
f(t)h(t) dt = 0 for any

continous function h(t) with h(t0) = h(t1) = 0 then f(t) = 0

This is a proof by contradiction that uses the fact that h is a continuous function.
By constructing h such that it is non-zero at some point, its continuity implies that
it has a non-zero integral over some interval around that point. As such, for the
integral of f(t)h(t) to be 0, f(t) must be 0.[3]

Proof. Assume we have a continuous function f such that f(t∗) > 0 for all t∗,
t0 ≤ t∗ ≤ t1, (so that f(t∗) 6= 0). Since f is continuous, f(t) > c where c is some
constant, in some neighborhood ∆ centered about t∗.

We may also construct a continuous function h(t) such that

h(t) =


0, t outside ∆ (so h(t0) = h(t1) = 0 is satisfied),

1, t∗ − ∆
4 < t < t∗ + ∆

4 ,

> 0, t∗ − ∆
2 < t < t∗ + ∆

2 .

Figure 1. h
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As such, ∫ t1

t0

f(t)h(t) dt ≥ c ·∆ · ∆

2

> 0

which contradicts the hypothesis. Therefore, f(t) = 0 for for all t such that t0 ≤
t ≤ t1. �

Lemma 1.5. The curve γ : x = x(t) is an extremal of the functional Φ(γ) =∫ t1
t0
L(x, ẋ, t) dt on the space of curves passing through the points x(t0) = x0, x(t1) =

x1 if and only if ∂L
∂x −

d
dt

∂L
∂ẋ = 0 along the curve x(t).

Proof. From Def 1.3, F (h), the derivative of the extremal of the functional Φ(γ),
is 0.

F (h) =

∫ t1

t0

[
∂L

∂x
− d

dt

∂L

∂ẋ

]
h dt+

(
∂L

∂ẋ
h

) ∣∣∣∣t1
t0

= 0.

We may eliminate the last term since
(
∂L
∂ẋh

)
= 0 because h(t0) = h(t1) = 0.

The remaining term now fits the form
∫ t1
t0
f(t)h(t) dt = 0. Applying the Funda-

mental Lemma of Variations, we conclude

f(t) =

[
∂L

∂x
− d

dt

∂L

∂ẋ

]
= 0.

Conversely, if f(t) = 0 then F (h) = 0. This implies that the curve is an extremal.
�

Definition 1.6.
∂L

∂x
=

d

dt

∂L

∂ẋ
is known as the Euler Lagrange equation.

Remark 1.7. Lemma 2.5 may be restated: Curve γ is an extremal of the functional

Φ(γ) =
∫ t1
t0
L(x, ẋ, t) dt on the space of curves joining (t0, x0) and (t1, x1) if and only

if the Euler Lagrange equation is satisfied along γ.

1.2. Hamilton’s Principle of Least Action.

Definition 1.8. The Lagrangian of a system L is defined as the difference between
the kinetic energy T and potential energy V of the system. i.e. L ≡ T − V .

Definition 1.9. The action of a system S is the integral of the Lagrangian L of

the system. i.e. S =
∫ t1
t0

L dt .

Theorem 1.10. Hamilton’s Principle of Least Action
Motion of the mechanical system coincides with extremals of the functional Φ(γ) =∫ t1
t0
L(x, ẋ, t) dt where L is the Lagrangian.

Proof. By Lemma 1.5, a curve that is an extremal of a functional, is identical to
a curve for which the Euler Lagrange equation is satisfied at all points. As such,
all we need to show is that the motion of a mechanical systems, as governed by
Newton’s second law Fxi

= ṗxi
, satisfies the Euler Lagrange equation at all points.

For a mechanical system, the potential and kinetic energies can be expressed as
V = V (x) and T = 1

2

∑
miẋ

2
i respectively. Since

∂L

∂ẋi
=
∂T

∂ẋi
= mẋi = pxi

∂L

∂xi
= − ∂V

∂xi
= Fxi
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⇒ d

dt

∂L

∂ẋi
=

d

dt
pxi

= Fxi
= − ∂V

∂xi
=
∂L

∂xi
,

the Euler Lagrange equation is indeed satisfied. �

Remark 1.11. That Hamilton’s principle is named the Principle of Least Action is
simply due to historical reasons. In fact, physical systems follow the path for which
action is at a stationary point ie. F (h) = 0.

Remark 1.12. From Theorem 1.10, we have now proved that for a mechnical system,
the following three statements are equivalent:

(1) The system’s path is determined by Newton’s second law F = ṗ.
(2) The path is determined by the Euler Lagrange equation.
(3) The path is determined by Hamilton’s Principle of Least Action.

1.3. Generalized Coordinates. Up to this point, we have been deliberately vague
about the coordinate system which we have adopted. In this section, we shall learn
that the Lagrangian is invariant under coordinate transformations. This means
that we have the luxury of choosing a coordinate system that is convenient for
our purposes. In the following section, we shall observe how the ability to switch
coordinate systems allows us to solve the Two-Body Problem easily.

Since no single coordinate system is intrinsically better than another, we may
introduce a set of generalized coordinates and associated descriptors to represent
any particular system we might be using.

Definition 1.13.
Generalized coordinates: {q1, q2, . . . , qn}
Generalized velocities: {q̇1, q̇2, . . . , q̇n}
Generalized forces: ∂L

∂qj

Generalized momenta: ∂L
∂q̇j

Proposition 1.14. A system of N particles, originally described in terms of carte-
sian coordinates and perhaps time, can be expressed in terms of generalized coordi-
nates and time, and vice versa:

xi = xi(q1, q2, . . . , qn, t) for i ∈ [1, 3N ](1.15)

qj = qj(x1, x2, . . . , x3N , t) for i ∈ [1, n].(1.16)

Proposition 1.17. If the system is allowed to vary, the change in cartesian coor-
dinates can also be expressed in terms of generalized coordinates, and vice versa:

δxi =
∂xi
∂q1

δq1 +
∂xi
∂q2

δq2 + . . .+
∂xi
∂qn

δqn =

n∑
j=1

∂xi
∂qj

δqj(1.18)

δqj =
∂qj
∂x1

δx1 +
∂qj
∂x2

δx2 + . . .+
∂qj
∂x3N

δx3N =

3N∑
x=1

∂qj
∂xi

δxi.(1.19)
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By taking the time derivative, velocities can be expressed in terms of generalized
coordinates:

ẋi =
∂xi
∂t

=
∂xi
∂q1

q̇1 +
∂xi
∂q2

q̇2 + . . .+
∂xi
∂qn

q̇n =

n∑
j=1

∂xi
∂qj

q̇j(1.20)

q̇j =
∂qj
∂t

=
∂qj
∂x1

ẋ1 +
∂qj
∂x2

ẋ2 + . . .+
∂qj
∂x3N

ẋ3N =

3N∑
x=1

∂qj
∂xi

ẋi.(1.21)

Theorem 1.22. The Lagrangian L is invariant under coordinate transformation.

This means that coordinate transformation gives a Lagrangian with the same
functional dependence of the old and new variables, thus allowing it to describe the
same equation of motions; namely, the Euler Lagrange equations.

Proof. To prove this, we need to show that the Euler Lagrange equation is satisfied
despite transformation to generalized coordinates, ie.

L(x1, x2, . . . , x3N , ẋ1, ẋ2, . . . , ẋ3N )→ L(q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n).

Since the generalized position q is a function of position x and velocities ẋ, ie.
L(x, ẋ),

(1.23)
∂L

∂qj
=

3N∑
i=1

[
∂L

∂xi
· ∂xi
∂qj

+
∂L

∂ẋi
· ∂ẋi
∂qj

]
.

According to equation (1.21), unlike the generalized position q, the generalized
velocity q̇ is only a function of velocity ẋ.

(1.24)
∂L

∂q̇j
=

3N∑
i=1

[
∂L

∂ẋi
· ∂ẋi
∂q̇j

]
From equation (1.20),

(1.25) ẋi =

n∑
j=1

∂xi
∂qj

q̇j ⇒
∂ẋi
∂q̇j

=
∂xi
∂qj

.

Substituting this result into equation (1.24), taking the total time derivative and
applying the product rule,

d

dt

∂L

∂q̇j
=

d

dt

[
3N∑
i=1

[
∂L

∂ẋi
· ∂xi
∂qj

]]
(1.26)

=

3N∑
i=1

[
d

dt

(
∂L

∂ẋi

)
· ∂xi
∂qj

+
∂L

∂ẋi
· d
dt

(
∂xi
∂qj

)]
.(1.27)

The second term can be simplified using equation (1.20) again:

∂L

∂ẋi
· d
dt

(
∂xi
∂qj

)
=

∂L

∂ẋi
·

n∑
k=1

∂

∂qk

∂xi
∂qj

∂qk
∂t

+
∂

∂t

∂xi
∂qj

(1.28)

=
∂L

∂ẋi
· ∂
∂qj

(
n∑

k=1

∂xi
∂qk

q̇k +
∂xi
∂t

)
(1.29)

=
∂L

∂ẋi
· ∂
∂qj

(ẋi) .(1.30)
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Substituting this result back into equation (1.27) and reintroducing the term
from equation (1.23),

d

dt

∂L

∂q̇j
− ∂L

∂qj
=

3N∑
i=1

[
d

dt

(
∂L

∂ẋi

)
· ∂xi
∂qj

+
∂L

∂ẋi
· ∂ẋi
∂qj

]
(1.31)

−
3N∑
i=1

[
∂L

∂xi
· ∂xi
∂qj

+
∂L

∂ẋi
· ∂ẋi
∂qj

]
(1.32)

=
∂xi
∂qj
·

3N∑
i=1

[
d

dt

∂L

∂ẋi
− ∂L

∂xi

]
.(1.33)

Therefore, the Lagrangian in generalized coordinates satisfies the Euler Lagrange
equation if and only if it satisfies the equation in its original coordinates. �

1.4. The Two-Body Problem. [3] We may now apply the Euler Lagrange equa-
tion to tackle the Two-Body Problem:

Consider two objects with masses m1 and m2 located at r1 and r2 in cartesian
coordinates respectively. The only forces in the system are the mutual forces of
attraction F1on2 and F2on1. These two forces are assumed to be conservative and
can thus be regarded as gradients of a potential U(r1, r2). We assume that these
objects are small enough to be considered point masses.

In general, to describe a system of n particles fully, 6n variables must be specified.
For each point particle, there are three components of position in space and three
components of momentum. As such, to solve a two body system, we need 12
independent equations. The crux to solving the Two-Body Problem is reducing the
problem to one particle in one dimension. This simplification is done by exploiting
conservation laws and invariances in the system.

Change of Variables. We observe that the potential energy of the system does
not depend on the absolute position of the objects, but the position of the objects
relative to each other ie. U(r1, r2) = U(|r1 − r2|). To exploit the translational
invariance of the system, we can introduce a new variable r where

(1.34) r = r1 − r2.

Since rotation typically takes place about the centre of mass of a system, we
allow rotational symmetries to be exploited by setting the other variable R to be
the position of the centre of mass:

(1.35) R =
m1r1 +m2r2

m1 +m2
=
m1r1 +m2r2

M

where M = m1 +m2 is the total mass of the system.
Expressing the new variables (R, r) in terms of the old ones (r1, r2), we have

(1.36) r1 = R+
m2

M
r and r2 = R− m1

M
r.
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The kinetic energy of the system is therefore given by

T =
1

2
(m1ṙ

2
1 +m2ṙ

2
2)(1.37)

=
1

2
(m1

[
R+

m2

M
r
]2

+m2

[
r2 = R− m1

M
r
]2

)

=
1

2
(MṘ2 +

m1m2

M
ṙ2)

=
1

2
MṘ2 +

1

2
µṙ2

where µ = m1m2

M is the reduced mass.

Changing Inertial Frame. Translational invariance can be exploited so that only
the positions of the particles relative to each other ie. variable r, need be described.
To do this, we decompose the Lagrangian into two components, one describing the
centre of mass and the other describing the relative position:

L = T − U(1.38)

=

[
1

2
MṘ2

]
+

[
1

2
µṙ2 − U(r)

]
= Lcm + Lrel.

Analyzing Lcm using the Euler Lagrange equation, we note that since Lcm is
independent of R, Ṙ must be constant. This simply means that total momentum
is conserved. However, we may also imagine the system to be a free particle of
mass M and position R which moves with constant velocity. Using translational
invariance, we may assume that we are in an inertial frame moving with velocity
Ṙ. As such, the velocity of the centre of mass in this frame is 0.

Since R is out of the picture, all that remains is solving for r and ṙ in three
dimensions. Analyzing Lrel, the Euler Lagrange equation produces the relation:

(1.39) µr̈ = −∇U(r)

which can be similarly interpreted as an equation governing a single particle of mass
µ, position r and potential energy U(r). Solving for this “particle” is equivalent to
solving the Two-Body Problem.

Reducing 3D to 2D via Conservation of Angular Momentum. We can ex-
press the total angular momentum in terms of variable r using the transformations
given in equation (1.35):

L = r1 × p1 + r2 × p2(1.40)

= r1 ×m1ṙ1 + r2 ×m2ṙ2

=
m1m2

M2
(m2r × ṙ +m1r × ṙ)

= r × µṙ.

We know that this quantity is conserved, and more importantly, that the vectors
produced by the cross product r × ṙ will point in the same direction. This means
that the two vectors r and ṙ will remain in a fixed plane. As such, we can describe
r in two dimensions rather than three.
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The natural coordinate system to pick to describe r in 2D is polar coordinates.
The Lagrangian from equation (1.38), with the first term removed, is thus

(1.41) L =
1

2
µ(ṙ2 + r2φ̇”2)− U(r).

Reducing to 1D. Since this Lagrangian is independent of φ, the Euler Lagrange
equation implies the conservation of angular momentum l with respect to φ

(1.42)
∂L

∂φ̇
= µr2φ̇ = constant = l.

We can use this relation to eliminate φ and restate the problem solely in terms
of r. By applying the Euler Lagrange equation we obtain

(1.43) −dU
dr

= µr̈ − µrφ̇2.

This is simply an expression of F = ma in the radial direction where mass is now
µ and µrφ̇2 is the ficticious centrifugal force.

Substituting equation (1.42) into the ficticious centrifugal force of equation (1.43),
we obtain the relation

Fcentrifugal = µrφ̇2(1.44)

= µr

[
l

µr2

]2

=
l2

µr3
.

This allows us to express the force in terms of a centrifugal potential energy

(1.45) Fcentrifugal = − d

dr
(
l2

2µr2
) = −dUcentrifugal

dr
,

and thus specify an effective potential energy

(1.46) Ueff (r) = U(r) + Ucentrifugal(r) = U(r) +
l2

2µr2
.

We can now rewrite the radial equation (1.43) as

(1.47) µr̈ = − d

dr
[U(r) + Ucentrifugal(r)] = − d

dr
Ueff (r).

This, together with the expression for conservation of energy

(1.48) E =
1

2
µṙ2 + Ueff (r),

allows us to completely describe the system as if we were dealing with one particle
with the reduced mass µ in one dimensional r. It is possible to go on from here to
solve explicitly for the possible orbits of the system ie. r as a function of φ, and
obtain Kepler’s laws of planetary motion.
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Making Sense of the 3D Two-Body Problem. After simplifying the problem,
r had become treated as some radial distance of a particle relative to some arbitrary
axis of rotation. However, in the 3D Two-Body Problem, r is the relative distance
between the two bodies as they rotate about their centre of mass. The position of
the centre of mass can be determined from initial conditions because it moves with
constant velocity. The rotation about the centre of mass can also be determined
from initial conditions due to conservation of angular momentum. We evaluate how
r and ṙ evolve in time based on equations (1.47) and (1.48). This is thus a complete
description of the system.

2. Hamiltonian Mechanics

In this section, we derive the equation for the Hamiltonian by applying the
Legendre transform to the Lagrangian. With a definition of the Hamiltonian, we
then show that the Hamiltonian is analogous to energy.

2.1. Legendre Transform.
The Legendre transform works no differently from other transforms like the

Fourier transform and the Laplace transform: it converts a function into an al-
ternate form that may be more convenient to deal with. More specifically, the
Legendre transform converts a real-valued function into another real-valued func-
tion that is re-parameterized by its derivative. Criteria for applying the Legendre
transform to a function F (x) are:

(1) F(x) is strictly convex ie. its second derivative is always positive.
(2) F(x) is smooth ie. its derivative can be taken as many times as needed.

In this section, I provide a geometric interpretation of the Legendre transform
before introducing it formally.

Definition 2.1. An epigraph of a function f : R → R is the set of points lying
above its graph. ie.

Epigraph of f = {(x, y) : x, y ∈ R, y ≥ f(x)}.

Proposition 2.2. The epigraph of a convex function is a convex set.

Definition 2.3. The supporting hyperplane of a convex set in R2 is a line (or
hyperplane if we are working in higher dimensions) that:

(1) intersects the set; and
(2) has the set on just one side of it.

Remark 2.4. Consider a convex function y = x2. The supporting hyperplanes take
the form of y = mx+c. For a given non-zero gradient m, notice the following about
the y-intercept c:

c is a large negative number: The hyperplane does not intersect the set.
c is a small negative number: The hyperplane intersects the set at multi-

ple points, implying that there are elements of the convex set on both sides
of the hyperplane.

c is some value in between: The hyperplane is at a tangent to the curve,
making it a supporting hyperplane for the epigraph of y = x2.

Where m = 0, the unique y-intercept lies at c = 0. In general, given a convex
function f : R → R, for each slope m there is at most one value of c making
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Figure 2

y = mx+ c a supporting hyperplane of the epigraph of f . Using this fact, a convex
set can be defined by its supporting hyperplanes.

Remark 2.5. Since f is a convex function, its gradient is always increasing. As such,
every point on the curve has a tangent with unique slope m. As we have observed,
m has a bijective relationship with c that is determined by the curve. It is thus
possible to associate any convex function f with a function h such that y = mx+ c
is a supporting hyperplane of the epigraph of f if and only if h(m) = −c.

We define h(m) to be the Legendre transform.

Theorem 2.6. The Legendre transform of function f(x) is:

(2.7) h(m) = supx {mx− f(x)}.

Proof. In remark (2.4), we noted that supporting hyperplanes intersect f(x) tangen-
tially. We can use this fact to find supporting hyperplanes by picking the infimum
of the set of all values of c for which hyperplanes (of the form y = mx+ c) intersect
the epigraph of f(x). This set can be found by fixing m and choosing the values of
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c for which:

∃x0 | mx0 + c ≥ f(x0).(2.8)

⇒ c ≥ −mx0 + f(x0)

⇒ inf(c) = infx {−mx+ f(x)}
⇒ h(m) = −c

= supx {mx− f(x)}.(2.9)

�

2.2. Hamilton’s Equations.

Definition 2.10. The Hamiltonian H(p, q, t) = pq̇ − L(q, q̇, t) is the Legendre
transform of the Lagrangian function viewed as a function of q̇ (p is the generalized
momenta).

Proof. Substituting the appropriate variables into equation (2.9),

f(x) = L(q, q̇, t)(2.11)

x = q̇(2.12)

m =
∂f

∂x
=
∂L

∂q̇
= p,(2.13)

we conclude:

(2.14) h(m) = mx− f(x) → pq̇ − L(q, q̇, t) = H(p, q, t).

�

Theorem 2.15. The system of Lagrange’s equations is equivalent to the system of
2n first-order equations we call Hamilton’s equations:

ṗ = −∂H
∂q

(2.16)

q̇ =
∂H

∂p
.(2.17)

Proof. The total differential of the Hamiltonian is:

(2.18) dH =
∂H

∂p
dp+

∂H

∂q
dq +

∂H

∂t
dt.

This is equal to the total differential of pq̇ − L(q, q̇, t):

(2.19) dH = q̇dp− ∂L

∂q
dq − ∂L

∂t
dt.
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Comparing coefficients, we obtain Hamilton’s equations:

∂H

∂p
= q̇(2.20)

−∂H
∂q

=
∂L

∂q
(2.21)

=
d

dt

∂L

∂q̇
(Using the Euler Lagrange equation)

=
d

dt
p = ṗ

−∂H
∂t

=
∂L

∂t
.(2.22)

The converse is proved by substituting Hamilton’s equations into the differential
expansion of H (equation (2.18)). Substituting equations (2.20) and (2.21),

dH =
∂H

∂p
dp+

∂H

∂q
dq +

∂H

∂t
dt(2.23)

= q̇dp− ṗdq − ∂L

∂t
dt

= q̇dp− ∂L

∂q
dq − ∂L

∂t
dt.

Integrating on both sides, we conclude:

H =

∫
dH =

∫
q̇dp−

∫
∂L

∂q
dq −

∫
∂L

∂t
dt(2.24)

= pq̇ − L(q, q̇, t).

�

Theorem 2.25. Provided the relation between the generalized corrdinates and
Cartesians is time-independent, ie. xi = xi(q1, . . . , qn), H is the total energy of
the system:

(2.26) H = T + V.

Proof. We first express the total kinetic energy T = 1
2

∑
imix

2
i in terms of gener-

alized coordinates q1, . . . , qn.
In section 2, we obtained an expression for velocities in terms of generalized coor-
dinates (equation (1.20)):

ẋi =

n∑
j=1

∂xi
∂qj

q̇j .

Taking the scalar product of this equation with itself,

ẋi
2 =

n∑
j=1

(
∂xi
∂qj

q̇j

)
·

n∑
k=1

(
∂xi
∂qk

q̇k

)
.



14 ZI CHONG KAO

Kinetic energy is now described by a triple sum:

T =
1

2

n∑
i=1

miẋ
2
i(2.27)

=
1

2

n∑
i=1

mi

n∑
j=1

(
∂xi
∂qj

q̇j

) n∑
k=1

(
∂xi
∂qk

q̇k

)

=
1

2

n∑
j=1

n∑
k=1

Aj,k q̇j q̇k,

where Aj,k is the sum:

(2.28) Aj,k =

n∑
i=1

mi ·
∂xi
∂qj
· ∂xi
∂qk

.

From equation (2.27), we may now take the derivative with respect to q̇:

(2.29) pi =
∂L

∂q̇i
=
∂T

∂q̇i
=

n∑
j=1

Aj,iq̇j .

Using the definition of the Hamiltonian (definition (2.14)), we may now substitute
our expression for generalized momentum as well as the Lagrangian:

H =

n∑
i=1

piq̇i − L(q, q̇, t)(2.30)

=

n∑
i=1

 n∑
j=1

Aj,iq̇j

 q̇i − L(q, q̇, t)

=

n∑
j=1

n∑
k=1

Aj,k q̇j q̇k − L(q, q̇, t)

= 2T − (T − V )

= T + V.

�

3. Phase Spaces

Definition 3.1. A phase space is the 2n-dimensional space with coordinates q1, · · · , qn; p1, · · · , pn,
where qi are generalized coordinates and pi are generalized momentum.

Definition 3.2. The phase flow is the one-parameter group of transformations of
phase space

(3.3) gt : (p(0), q(0)) 7→ (p(t), q(t)),

where p(t) and q(t) are solutions of Hamilton’s system of equations.
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3.1. Liouville’s Theorem.

Theorem 3.4. Phase flows preserve volume: for any region D we have

volume of gtD = volume of D.

Proof. Let us first note that although we have used the terms “volume”, “area”,
and “surface” as if we were working in three dimensions, the phase space is 2n
dimensional. As such, a more accurate definition should be:

• Volume V : a 2n-dimensional region of the phase space.
• Area A: a 2n-1 dimensional region.
• Surface S: an area bounding a volume.

We can express the change in the volume of region D as

(3.5)
dV

dt
=

∫
S

n · v dA.

where n is a vector normal to the surface S, v is the velocity of the flow in phase
space, and dA is an infinitesimal area on the surface.

Applying the divergence theorem, we obtain

(3.6)
dV

dt
=

∫
V

∇ · v dV.

Examining the velocity v more closely, we note that

(3.7) v = (q̇, ṗ) =

(
∂H

∂p
,−∂H

∂q

)
.

Taking the divergence of v,

∇ · v =
∂q̇

∂q
+
∂ṗ

∂p
(3.8)

=
∂

∂q

∂H

∂p
− ∂

∂p

∂H

∂q
= 0

since the order of partial derivatives does not matter.

We conclude that

(3.9)
dV

dt
=

∫
V

∇ · v dV. = 0.

�

3.2. Poincaré Recurrence Theorem.

Theorem 3.10. Let g be a volume-preserving continuous one-to-one mapping (such
as a phase flow) which maps a finite volume region D of euclidean space onto itself:
gD = D. Then in any neighborhood U of any point of D there is a point x ∈ U
which returns to U, ie. gnx ∈ U for some n > 0.

Proof. Consider the images of the neighborhood U under successive mappings by
g: U, gU, g2U, . . . , gnU . By Liouville’s theorem, all of these images have the same
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volume. If they never intersected, D would have an infinite volume. Therefore, for
some k ≥ 0 and l ≥ 0 where k > l,

(3.11) gkU ∩ glU 6= ∅.

Since the mapping g has the properties of a group,

(3.12) gk−lU ∩ U 6= ∅.

If y is in this intersection, then it must be been the result of n mappings from an
element in U ie. y = gnx (n = k − l) with x ∈ U . Therefore, x ∈ U and gnx ∈ U
(n = k − l). �

4. Unsolvability of the Three-Body Problem

Much of the work we have described so far was developed in the 18th and 19th
century in response to a central problem in celestial mechanics: the description of
the motion of three bodies under mutual gravitation. Notable work was done by
Euler (1760), Lagrange (1776), Laplace (1799), Hamilton (1834), Liouville (1836),
Jacobi (1843), Poincaré (1889) [5].

The motion of two bodies had been solved by Kepler (1609) and Newton (1687)
earlier on in the 17th century. However, it was apparent even then that a solution
to the Three-Body Problem was not going to be as straightforward. As Newton
prophesized, ”[an exact solution for three bodies] exceeds, if I am not mistaken, the
force of any human mind.” Poincaré later accounted for the difficulty by pointing
to the chaotic nature of the system:

. . . it may happen that small differences in the initial conditions
produce very great ones in the final phenomena. A small error in
the former will produce an enormous error in the latter. Prediction
becomes impossible, and we have the fortuitous phenomenon.

We round off this review of classical mechanics by demonstrating the solution
to the Two-Body Problem and making a few remarks regarding the nature of the
Three-Body Problem.

In essence, the Three-Body Problem cannot be solved because, unlike the Two-
Body Problem, the 18 variables (6n) that we need to completely describe the sys-
tem, cannot be reduced to a single variable that we can solve. What allowed the
simplication of the Two-Body Problem were invariances and conserved quantities,
which I will next formalize as ’first integrals’. There are insufficient first integrals to
allow us to reduce the 18 variables needed to fully describe a Three-Body Problem.

Definition 4.1. A first integral of an equation is a non-constant continously-
differentiable function whose derivative vanishes identically on the solutions of that
equation [4].

Example 4.2. For a scalar equation y′ = f(x, y), its first integral is a function
F (x, y) which takes the form of the general solution F (x, y) = C, where C is an
arbitrary constant.

Therefore, F (x, y) satisfies the linear equation

(4.3)
∂F (x, y)

∂x
+
∂F (x, y)

∂y
f(x, y) = 0.
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If a conservative mechanical system is invariant with respect to some variable qi,
then H is not an explicit function of qi. Using Hamilton’s equations, this means
that pi is a first integral. Since first integrals are functions that remain constant
along any given solution of the system, they provide relations between variables of
the system. This allows us to reduce the dimension of the Hamiltonian sytem by
one by eliminating a coordinate qi and the corresponding momentum pi.

However, it was shown by Bruns in 1887 that there are no more than the following
10 independent integrals that are algebraic in the rectangular coordinates and time:

• 3 for center of mass
• 3 for linear momentum
• 3 for angular momentum
• 1 for energy

Poincare later showed that the equations of motion do not admit any uniform
transcendental integrals for values of the masses sufficiently small, other than these
10 integrals. As such, it is was proven that it is impossible to reduce the 18 variables
of the Three-Body Problem in order to produce an analytic solution.

4.1. Known Solutions. [5] In order to solve the problem numerically, it is impor-
tant to identify configurations of the particles that allow us to introduce new forms
of symmetries into the system. Although the equations of motion of the three body
system have no rest points since the bodies attract each other and cannot just sit
in space without moving, these symmetries allow us to find rest points of the dif-
ferential equations modulo symmetries. These are solutions, which we call central
configurations, that evolve purely by symmetry - by rotation or scaling - so that
the ratios of the interbody distances remain constant.

For the Three-Body Problem, there are exactly five configurations. Three are
collinear and were discovered by Euler. Two are shaped like equilateral trangles
and were discovered by Lagrange.

Another class of solutions are periodic orbits. These are not identified by the
symmetries that central configurations possess, instead, their defining characteristic
is the stability of their orbits. For the Three-Body Problem, we do not know if a
single stable periodic solution exists. However, Kolmogorov, Arnol’d, and Moser
have devised a weaker form of stability called ”KAM stability”. The KAM theorem
says that if a certain necessary condition -the KAM twist condition- is satisfied
along a periodic orbit, then the orbit is ”KAM stable”. Building on the Liouville
and Poincaré Recurrence theorems, KAM theorem implies that a great many orbits
starting near our known orbit will stay near to it for all time.

In 2001, Montgomery and Chenciner discovered the only known KAM stable
orbit. It is a figure-eight shaped orbit in which all three bodies move around a
single figure-eight in the plane.
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Figure 3. Threesome (http://xkcd.com/613/)
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