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Abstract. According to Einstein’s theory of general relativity, gravity can

be explained as the curvature of a spacetime manifold. The presence of mass,
energy, and momentum curves spacetime in accordance with the Einstein field

equations. One solution to the Einstein equations in vacuum is a wave of

gravitational radiation, in which a self-propagating ripple of curviture travels
through space. This curviture deforms the metric and thus changes the course

of geodesics through spacetime. Rays of electromagnetic radiation follow null

geodesics; if gravitational waves pass between an astronomical body which
periodically emits electromagnetic signals (such as a pulsar) and the Earth, an

observer on the Earth will see the signals as deflected by the wave and thus

observe them at a different frequency than the one at which they were emitted.

Contents

1. A Brief Introduction to General Relativity 1
2. The Linear Approximation, Gauge Freedom, and Gravitational Waves 2
3. The Change in Observational Period of Pulsar Signals 8
4. A Wave Traveling Parallel to the Pulsar-Earth Displacement 11
5. A Wave Traveling Perpendicular to the Pulsar-Earth Displacement 13
6. Conclusions 23
Acknowledgments 24
References 24

1. A Brief Introduction to General Relativity

NB : The reader is assumed to know some basic topics of differential geometry,
including differentiable manifolds, curves and tangent vectors, scalar, vector, and
tensor fields, metric geometry, the covariant derivative, and the Riemann curvature
tensor. For the sake of brevity, we will not review these topics here; when in doubt,
the reader can refer to standard textbooks, such as [1] and [2]. Also, in this paper
we will use the index notation most popular in relativity literature: a Latin index
refers only to spatial components, while a Greek index can refer to any component,
and if a single character appears in both upper and lower positions in one term, we
sum over all possible components.

Definition 1.1. In general relativity, spacetime—the arena in which the phys-
ical world exists—is a four-dimensional differentiable manifold endowed with a
Lorentzian (signature (1,3)) metric g�� . A single point in spacetime is called an
event. The curve of events traced out by a physical entity is called a worldline.
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A massive particle traveling along the worldline x�(�) always has a negative
squared tangent norm: ẋ�ẋ� < 0. We can try to introduce a generalized sense
of “distance” along a worldline in spacetime by integrating the square root of the
squared tangent norm along the curve. In order to keep this quantity real, though,
we must take the square root of the negative squared tangent norm:

� =

∫


√
−g��

dx�

d�

dx�

d�
d�.

An observer riding the worldline does not see himself moving through space, only
through time. Therefore he will recognize this generalized distance as the change
in coordinate time within his own frame of reference; for this reason we call this
quantity proper time.

One of the axioms of the theory of relativity is the principle of least action: a
body which is not suffering any non-gravitational forces moves along a worldline of
stationary proper time. We can use the Euler-Lagrange equation from the calculus
of variations to find a differential equation describing the allowed worldlines. We
wind up finding that they are geodesics. Nonmassive bodies, like photons (and
thus electromagnetic signals), do not have a proper time per se, but a similar
curve-minimizing axiom requires that they also follow geodesics.

The theory of general relativity hypothesizes that the curvature of spacetime—
and thus deviations from the simple “straight” geodesics encountered in special
relativity—arises due to the presence of matter, energy, and momentum. Einstein
gave a tensor equation, known today as the Einstein field equation, relating curva-
ture to the presence of physical “stuff”:

R�� −
1

2
Rg�� =

8�G

c4
T�� .(1.2)

Here, R�� is the Ricci tensor, the contraction of the Riemann tensor; R is the
scalar curvature, the trace of the Ricci tensor; T�� is the stress-energy tensor field,
a coordinate-independent measure of the matter, energy, and momentum present
at a point in spacetime; G is the gravitational constant of classical physics; and c is
the speed of light. We often shorten the curvature side of the equation, introducing
the new tensor field

G�� = R�� −
1

2
Rg�� ,

known as the Einstein tensor.

2. The Linear Approximation, Gauge Freedom, and Gravitational
Waves

Note: This material in this section can be found in almost any general relativity
textbook that discusses gravitational waves. See, for example, [3] and [4].

A quick glance at the constant of proportionality in the Einstein field equations
(1.2) gives one a rough feeling of much stess-energy is needed to curve space. In
SI units, the gravitational constant G is about 6.67 ⋅ 10−11 m3⋅kg−1⋅s−2 while the
speed of light c is approximately 3.00 ⋅ 108 m⋅s−1; the field equations read

G�� = 2.08 ⋅ 10−43 s2 ⋅ kg−1 ⋅m−1 T�� .

The sun has an average mass-energy density (the dominant component of the stress-
energy tensor) of T 00 = 1.27 ⋅ 1020 kg ⋅m−1 ⋅ s−2. The corresponding component of
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the Einstein tensor within the sun is G00 = 2.64 ⋅ 10−23 m−2. By comparison, the
Einstein tensor of the flat Minkowski metric

��� =

⎛⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
is identically 0. We need to look at hyperenergetic phenomena, like a collapsing star,
to find an Einstein tensor component appreciably greater than this. Even though
the spacetime metric g�� is not generally flat, throughout most of the universe
(including interstellar space and average solar systems such as our own) it is “flat
enough” to be considered a small perturbation of a flat background metric:

g�� = ��� + ℎ�� ,(2.1)

where ��� is the Minkowski metric and each component of the perturbation tensor
ℎ�� has absolute value much less than 1, as does all of its derivatives ∂�ℎ�� . We
can recalculate geometric quantities like the Christoffel symbols, Riemann tensor,
and Einstein tensor in terms of the perturbation tensor; because its components are
so small, we can ignore terms containing products of components (in particular, we
can raise and lower indices with the Minkowski metric instead of the full metric)
and derivatives. Because these quantities are linear in the perturbation tensor, the
use of these simplifications is called the linear approximation to general relativity
or linearized gravity.

Lemma 2.2. In the linear approximation, the Christoffel symbols are

Γ�� = ���Γ�� = ���
1

2
(∂ℎ�� + ∂�ℎ� − ∂�ℎ�) .

Lemma 2.3. In the linear approximation, the Riemann tensor is

R��� = ���R��� = ���
1

2
(∂�∂ℎ�� + ∂�∂�ℎ� − ∂�∂ℎ�� − ∂�∂�ℎ�) .

We can contract the linearized Riemann tensor to find the linearized Ricci tensor
and scalar curvature fields. Of more importance is the Einstein tensor.

Lemma 2.4. In the linear approximation, the Einstein tensor is

G�� =
1

2

(
□ℎ�� + ���∂

�∂�ℎ�� − ∂�∂�ℎ�� − ∂�∂�ℎ��
)
,

where ℎ�� = ℎ�� − 1
2���ℎ with ℎ = ℎ�� and □ = ���∂�∂� = ∂�∂� is the

d’Alembertian wave operator.

Remark 2.5. Now the Einstein field equations can be written as

□ℎ�� + ���∂
�∂�ℎ�� − ∂�∂�ℎ�� − ∂�∂�ℎ�� = −16�G

c4
T�� .

While longer than the full field equations (1.2), the linearized equations are actually
much simpler. The Einstein tensor is a complicated quantity constructed solely for
the purpose of satisfying the field equations and has limited physical meaning itself.
The linearized equations, on the other hand, equate the stress-energy tensor with
a linear combination of second derivatives of the metric itself.
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Since general relativity is essentially concerned with geometric, coordinate-independent
quantities, we have a great deal of freedom in choosing the coordinate systems with
which we describe the dynamics of spacetime, matter, and fields.

Definition 2.6. The choice of coordinates {x�} with which we describe spacetime
is called a gauge. If a quantity is unchanged under gauge transformation, it is said
to be gauge invariant.

Lemma 2.7. Within the linearized approximation, let {x�} be a gauge on spacetime
and {x′� = x�+��(x)} be a new gauge, where the coordiante change functions have
derivatives ∂���(x) on the order of smallness as the perturbation components. Then
in the linearized approximation, the perturbation tensor is

ℎ′��(x) = ℎ��(x)− (∂��� + ∂���).

Theorem 2.8 (The Lorenz Gauge). We can choose a gauge so that

∂�ℎ�� = 0,

where ℎ�� is the modified perturbation defined in lemma 4.4. This is called the
Lorenz gauge.

Proof. According to lemma 2.7, in the linearized approximation the gauge trans-
formation of the metric perturbation tensor is

ℎ′�� = ℎ�� − (∂��� − ∂���) .

The trace of this transformed perturbation tensor is

ℎ′ = ���ℎ′�� =��� (ℎ�� − (∂��� + ∂���))

=���ℎ�� − ��� (∂��� + ∂���)

=ℎ− 2∂��
�.

The modified perturbation tensor in this gauge, ℎ̄′�� , can be written as

ℎ̄′�� = ℎ′�� −
1

2
���ℎ

′

= ℎ�� − (∂��� − ∂���)− 1

2
��� (ℎ− 2∂��

�)

=

(
ℎ�� −

1

2
���ℎ

)
− ∂��� − ∂��� + �∂��

�

= ℎ̄�� − (∂��� + ∂��� − ���∂���) .

Therefore

∂� ℎ̄′�� =∂� ℎ̄�� − ∂� (∂��� + ∂��� − ���∂���)

=∂� ℎ̄�� − ∂�∂��� − ∂�∂��� + ���∂
�∂��

�

=∂� ℎ̄�� −□�� − ∂�(∂��� − ∂���).

We see ∂��� = ���∂��� = ∂��
�, so the quantity within the parenthases vanishes;

we are left finding

∂� ℎ̄′�� = ∂� ℎ̄�� −□��.(2.9)

If we begin working in a gauge in which ∂� ℎ̄��(x) = f�(x), we can transform into
the Lorenz gauge by using coordinate change functions {��(x)} which satisfy the
equation □��(x) = f�(x). □
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An arbitrary type (0, 2) tensor on a 4-dimensional manifold has 16 components and
thus 16 degrees of freedom. Because the metric must be symmetric, the perturba-
tion tensor has at most 10 degrees of freedom. Making a gauge choice requires that
we specify 4 component change functions, so the perturbation tensor in the Lorenz
gauge has 6 degrees of freedom.

Remark 2.10. In the Lorenz gauge, the linearized Einstein equation, presented in
Remark 2.5, becomes

□ℎ̄�� = −16�G

c4
T�� .

Definition 2.11. In the absence of matter and physical fields, T�� = 0 and the
linearized Einstein equations (written in the Lorenz gauge) become

□ℎ̄�� = 0.(2.12)

Allowed solutions of the metric perturbation are tensor fields whose components
evolve like independent scalar fields according to the wave equation. Such solutions
are called gravitational waves.

Remark 2.13. Written explicitly, Equation 2.12 becomes

−∂
2ℎ��

∂x02
+
∂2ℎ��

∂x12
+
∂2ℎ��

∂x22
+
∂2ℎ��

∂x32
= 0.

The coordinate x0 equals ct and {x1, x2, x3} = {x, y, z}, so the above equation can
be again re-written as

∂2ℎ��
∂t2

= c2
(
∂2ℎ��
∂x2

+
∂2ℎ��
∂y2

+
∂2ℎ��
∂z2

)
.

Physically, gravitational waves propagate through space at the speed of light.

Gravitational waves have 6 degrees of freedom. We can reduce this to 2 degrees
and greatly simplify the appearance of the perturbation by specifying another gauge
transformation.

Theorem 2.14 (The Transverse-Traceless Gauge). Within the Lorenz gauge, we
can make further coordinate specifications requiring that the perturbation tensor
(ℎ�� in the Lorenz gauge and ℎ′�� now) satisfies the conditions

ℎ′0� = 0, ℎ′ii = 0, ∂jℎ′ij = 0.

This is called the transverse-traceless gauge; the perturbation tensor in the transverse-
traceless gauge is denoted ℎTT�� .

Proof. Let {��} be a new set of infinitessimal coordinate change functions. If we
require □�� = 0, then we will also find

□��� ≡ □ (∂��� + ∂��� − ���∂���) = 0,

because the wave operator commutes with partial derivatives. Under such a gauge
transformation, the perturbation tensor becomes (by Lemma 2.7)

ℎ′�� = ℎ�� − (∂��� + ∂���),

and the derivative of the modified perturbation becomes (by Equation 2.9)

∂� ℎ̄′�� = ∂� ℎ̄�� −□�� = ∂� ℎ̄�� = 0.
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The perturbation still satisfies the condition of the Lorenz gauge; a solution which
had the form of a gravitational wave before the new gauge transformation still has
the form of a gravitational wave, but we can further control the perturbation’s
components. We begin by choosing �0 so that the transformed modified trace
ℎ̄′ = ℎ̄′

�
� vanishes and follow up finding �i so that ℎ̄′0i = 0. We know

ℎ̄′ = ��� ℎ̄′�� = ���
(
ℎ′�� −

1

2
���ℎ

′
)

= ℎ′ − 2ℎ′ = −ℎ′,

so ℎ′ = ℎ̄′ = 0 and ℎ̄′�� = ℎ′�� . Now the requirement for the Lorenz gauge reads

∂�ℎ′�� = 0.

For � = 0, this equation can be rewritten as

∂0ℎ′00 + ∂iℎ′0i = 0.

We already know ℎ′0i = 0 for each i, so we can conclude that ∂0ℎ′00 = 0; the
00 component of the metric perturbation is constant in time. In relativity, we
are primarily interested in the derivatives of the metric, so ℎ′00 may as well be 0.
Now ℎ′0� = 0 for all �; we can easily raise the indices to find ℎ′0� = 0 as well.

The traceless condition ℎ′�� = 0 can be strengthened to ℎ′ii = 0, and the Lorenz

condition can be strengthened to ∂jℎ′ij = 0. □

The simplest form of gravitation wave is a plane wave,

ℎ�� = ℜ[A��eik�x
�

],

where ℜ[ ⋅ ] takes the real part of a complex argument and A�� is a complex ampli-
tude. The 4-dimensional wavevector is k� = ���k� . Within a coordinate system,

the spatial components of the wavevector form a 3-vector k⃗ which points in the
direction of the wave’s propagation. Let’s say for a moment that it is propagating
in the x3 direction: now the wavevector can be written as

k� =

⎛⎜⎜⎝
k0

0
0
k3

⎞⎟⎟⎠ .

Because a gravitational wave travels at the speed of light, it follows a null geodesic;
the wavevector has a squared magnitude

∣k�∣2 = 0

���k
�k� = 0

−k20 + k23 = 0.

The components of the wavevector in the direction of time and spatial propagation
have equal magnetude. The other components vanish.

This is all true in any coordinate system. However, we can say more in the
transverse-traceless gauge. If ℎTT0� is to vanish at every point in spacetime, then we
must require that the amplitudes A0� must also vanish in this gauge. To satisfy
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the Lorenz condition, we require

0 =∂iℎTTji

=∂1ℎTTj1 + ∂2ℎTTj2 + ∂3ℎTTj3

=∂1ℎ
TT
j1 + ∂2ℎ

TT
j2 + ∂3ℎ

TT
j3

=∂1ℜ[Aj1eik�x
�

] + ∂2ℜ[Aj2eik�x
�

] + ∂3ℜ[Aj3eik�x
�

]

=ℜ[i (Aj1k1 +Aj2k2 +Aj3k3) eik�x
�

].

Since the wave is traveling in the x3 direction, we know the components k1 and k2
vanish while k3 does not. The Lorenz condition becomes

0 = ℜ[ik3Aj3ei(−k0x
0+k3x

3)].

If this is to hold true everywhere, we need the amplitude itself to equal 0 for every
j. We already know A30 = 0, so we find A3� = 0 for every �, whether spatial
or temporal. We are left with only four potentially nonzero components of the
perturbation: ℎTT11 , ℎTT12 , ℎTT21 , and ℎTT22 . By the symmetry of the metric, we know
ℎTT12 = ℎTT21 ≡ ℎ×; because the perturbation is traceless in the transverse-traceless
gauge, we can also conclude ℎTT22 = −ℎTT11 ≡ −ℎ+. We are left with two distinct
components of the perturbation, corresponding to the two degrees of freedom left
over after we adopted the transverse-traceless gauge. The perturbation itself, in
matrix form, is

ℎTT�� = ℜ

⎡⎢⎢⎣
⎛⎜⎜⎝

0 0 0 0
0 ℎ+ ℎ× 0
0 ℎ× −ℎ+ 0
0 0 0 0

⎞⎟⎟⎠ ei(k0x
0+k3x

3)

⎤⎥⎥⎦ .
Of course, there aren’t many pure plane waves radiating through space. But we
can use plane waves as Fourier components to build up more general waveforms.

Definition 2.15. A planar pulse wave moving in the k⃗ direction is a gravitational
wave all of whose perturbation components can be written as a function of one
variable—ℎTT�� = f��(x0 − kixi)—and satisfy the limit

lim
x0−kixi→±∞

ℎTT�� (x0 − kixi) = 0.

We can evaluate the partial derivatives with the chain rule:

∂0ℎ
TT
�� = f ′��(k0x

0 − kixi)
∂jℎ

TT
�� = −kjf ′��(k0x

0 − kixi).

If n⃗ is a 3-vector normal (in space) to k⃗, then nj∂jℎ
TT
�� = 0. Therefore ℎTT�� is

constant throughout the spatial plane to which k⃗ is normal. Such a plane is called
a plane of equal phase.

Although planar pulses extend throughout spacetime, they are mathematically
functions of one variable and can thus be resolved into the integral of a Fourier spec-
trum of plane waves with parallel wavevectors. Assume, without loss of generality,

that k⃗ lies in the x3 direction. Now k3 = k0 for the whole wave and each compo-
nent. For the whole wave, we can assume the wavenumber into the wave function;
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we will leave them as the variable of Fourier decomposition in the components:

ℎTT�� (x0 − x3) =
1

2�

∫ ∞
−∞
ℜ[ℎ̂��(k0)eik0(x

0−x3)]dk0,

where ℎ̂��(k0) is the Fourier transform of the wave perturbation ℎTT�� (x0−x3) itself.
Since the entire perturbation is a gravitational wave solution in the transverse-
traceless gauge and the wave operator is linear, each Fourier component of the
perturbation must also be a gravitational wave solution in the transverse-traceless
gauge. The components are plane waves, and as we saw above, the ℎTT�3 components

of a plane wave traveling in the x3 direction vanish. If this is to be true thoughout

all spacetime, we must require that ℎ̂�3(k0) = 0 for all frequencies k0. This implies
that the (�3) components of the full perturbation also vanish. To satisfy the other
requirements of the transverse-traceless gauge, we must write the full perturbation
(in matrix form) as

ℎTT�� (x0 − x3) =

⎛⎜⎜⎝
0 0 0 0
0 ℎ+(x0 − x3) ℎ×(x0 − x3) 0
0 ℎ×(x0 − x3) −ℎ+(x0 − x3) 0
0 0 0 0

⎞⎟⎟⎠ .

This tensor recalls the perturbation of a plane wave, but while all the nonzero
components of the plane wave perturbation have the same functional form (namely,
that of a sinusoid) with component-dependent amplitude, the perturbation of planar
pulse has components of different functional forms.

3. The Change in Observational Period of Pulsar Signals

Definition 3.1. A pulsar is collapsed star consisting almost entirely of neutrons
which emits a collimated beam of electromagnetic radiation and quickly rotates
about some fixed axis. If an observer at rest with respect to the pulsar lies in
the beam of radiation at some time, he will lie in it again after the pulsar rotates
through a period; these are the only times that the observer can measure the
radiation, so he sees them as periodic pulses, explaning the pulsar’s name. This
leads us to a simplified but often satisfactory definition: for an observer far removed
from a pulsar, the pulsar may be regarded as an object that gives off bursts of
electromagnetic radiation periodically according to the pulsar’s proper time.

A radiation signal released by the pulsar follows a null geodesic through space-
time. The geometry of spacetime between the pulsar and an observer determines
what curves qualify as geodesics and thus what the observer sees. We wish to find
what effect a simple gravitational wave would have on an observer’s measurements.
To do this, we will find the Christoffel symbols for the gravitational wave and from
them the allowed geodesics. But before we begin that process, we must demonstrate
that the gravitational wave will not affect the pulsar and observer themselves.

Theorem 3.2. In the transverse-traceless gauge, any body initially at rest (dx
i

d� =

0, dx0

d� = 1) will remain at rest, with the progression of time undisturbed, under
the influence of a planar-pulse gravitational wave on a flat background spacetime
(assuming no non-gravitational forces are at work).
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Proof. Because no non-gravitational forces are acting on the body in question, it
will follow a geodesic through spacetime. The equation for the geodesic, x�(�),
satisfies the geodesic equation:

d2x�

d�2
= −Γ���

dx�

d�

dx�

d�
.

Because the body is initially at rest, the spatial components of the geodesic’s de-

rivative dxi

d� are zero at � = 0. This means that any term in the geodesic equation
with a spatial lower index in the Christoffel symbol will be zero:

Γ�i�
dxi

d�

dx�

d�
= Γ��i

dx�

d�

dxi

d�
= 0.

The geodesic equation depends only on the term with two temporal lower indices
in the Christoffel symbol. We find

d2x�

d�2
= −Γ�00

(
dx0

d�

)2

.

Now, dx0

d� certainly doesn’t equal zero at � = 0. However, when we look at this
component of the Christoffel symbol for the gravitational wave,

Γ�00 =
1

2
���

(
∂0ℎ

TT
�0 + ∂0ℎ

TT
0� − ∂�ℎTT00

)
,

we find that it does equal zero. Every term in the component’s definition involves a
(0�) component of ℎTT�� , and as we saw in the previous section, all these components
vanish. Therefore Γ�00 = 0, and all the second derivatives disappear:

d2x�

d�2
= 0.

If the second derivates are all zero, then the spatial derivates remain zero and
the temporal derivative remains 1. The body remains at rest, undisturbed by the
wave. □

Now we can begin the actual problem. Consider a planar-pulse gravitational
wave in the transverse-traceless gauge, moving in the x3 direction. It exhibits a
metric perturbation

ℎTT�� =

⎛⎜⎜⎝
0 0 0 0
0 ℎ+(x0 − x3) ℎ×(x0 − x3) 0
0 ℎ×(x0 − x3) −ℎ+(x0 − x3) 0
0 0 0 0

⎞⎟⎟⎠ .

Because this wave propagates on a flat, uniform spacetime, we can calculate the
Christoffel symbols directly from the perturbation:

Γ��� =
1

2
���(∂�ℎ

TT
�� + ∂�ℎ

TT
�� − ∂�ℎTT�� ).

It is immediately clear that many symbols will be zero. The perturbation is a
function of only two components, x0 and x3; any derivatives in the x1 or x2 direction
will be zero. Therefore any symbols with only indices of 1 and 2 will equal zero.
At the same time, any perturbation component with an index of 0 or 3 is zero, so
a Christoffel symbol will vanish if it does not have at least two indices of 1 or 2.
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We can conclude that the only nonzero symbols have one index of 0 or 3 and two
indices of 1 and/or 2. We find

Γ0
11 = 1

2ℎ
′
+(x0 − x3) Γ0

12 = 1
2ℎ
′
×(x0 − x3)

Γ0
21 = 1

2ℎ
′
×(x0 − x3) Γ0

22 = − 1
2ℎ
′
+(x0 − x3)

Γ1
01 = 1

2ℎ
′
+(x0 − x3) Γ1

02 = 1
2ℎ
′
×(x0 − x3)

Γ1
10 = 1

2ℎ
′
+(x0 − x3) Γ1

13 = − 1
2ℎ
′
+(x0 − x3)

Γ1
20 = 1

2ℎ
′
×(x0 − x3) Γ1

23 = − 1
2ℎ
′
×(x0 − x3)

Γ1
31 = − 1

2ℎ
′
+(x0 − x3) Γ1

32 = − 1
2ℎ
′
×(x0 − x3)

Γ2
01 = 1

2ℎ
′
×(x0 − x3) Γ2

02 = − 1
2ℎ
′
+(x0 − x3)

Γ2
10 = 1

2ℎ
′
×(x0 − x3) Γ2

13 = − 1
2ℎ
′
×(x0 − x3)

Γ2
20 = − 1

2ℎ
′
+(x0 − x3) Γ2

23 = 1
2ℎ
′
+(x0 − x3)

Γ2
31 = − 1

2ℎ
′
×(x0 − x3) Γ2

32 = 1
2ℎ
′
+(x0 − x3)

Γ3
11 = 1

2ℎ
′
+(x0 − x3) Γ3

12 = 1
2ℎ
′
×(x0 − x3)

Γ3
21 = 1

2ℎ
′
×(x0 − x3) Γ3

22 = − 1
2ℎ
′
+(x0 − x3).

Of course, the unwritten symbols are all zero. We can use the complete set of
Christoffel symbols to find the differential equations describing geodesics in the
presence of the gravitational wave:

d2x�

d�2
=− Γ���

dx�

d�

dx�

d�
;

d2x0

d�2
=− Γ0

11

(
dx1

d�

)2

+ 2Γ0
12

dx1

d�

dx2

d�
+ Γ0

22

(
dx2

d�

)2

=
1

2
ℎ′+(x0 − x3)

((
dx2

d�

)2

−
(
dx1

d�

)2
)
− ℎ′×(x0 − x3)

dx1

d�

dx2

d�
;

d2x1

d�2
=− 2Γ1

01

dx0

d�

dx1

d�
− 2Γ1

02

dx0

d�

dx2

d�
− 2Γ1

13

dx1

d�

dx3

d�
− 2Γ1

23

dx2

d�

dx3

d�

=ℎ′+(x0 − x3)

(
dx3

x�
− dx0

d�

)
dx1

d�
+ ℎ′×(x0 − x3)

(
dx3

d�
− dx0

d�

)
dx2

d�
;

d2x2

d�2
=− 2Γ2

01

dx0

d�

dx1

d�
− 2Γ2

02

dx0

d�

dx2

d�
− 2Γ2

13

dx1

d�

dx3

d�
− 2Γ2

23

dx2

d�

dx3

d�

=ℎ′×(x0 − x3)

(
dx3

x�
− dx0

d�

)
dx1

d�
+ ℎ′+(x0 − x3)

(
dx0

d�
− dx3

d�

)
dx2

d�
;

d2x3

d�2
=− Γ3

11

(
dx1

d�

)2

+ 2Γ3
12

dx1

d�

dx2

d�
+ Γ3

22

(
dx2

d�

)2

=
1

2
ℎ′+(x0 − x3)

((
dx2

d�

)2

−
(
dx1

d�

)2
)
− ℎ′×(x0 − x3)

dx1

d�

dx2

d�
.
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We can divide the problem into two major cases. One case takes the displacement
from the pulsar to the Earth to be in the direction the wave is traveling (i.e., the
x3 direction), so that the signal’s worldline will be a slight perturbation from the
background curve of

x�(�) =

⎛⎜⎜⎝
B0 +D�

0
0
D�

⎞⎟⎟⎠ ,

where D is the spatial distance from the pulsar to the Earth and we use the unit
parameterization, � ∈ [0, 1]; the other case considers the displacement to be perpen-
dicualr to the direction of the wave—withouth loss of generality, say the displace-
ment is in the x1 direction and take unit parameterization, so the signal worlidline
is a perturbation from

x�(�) =

⎛⎜⎜⎝
B0 +D�
D�
0
0

⎞⎟⎟⎠ .

A general planar pulse can be written as a sum of planar pulses traveling parallel
and perpendicular to the pulsar-Earth displacement, so it is sufficient to solve the
basis cases individually.

4. A Wave Traveling Parallel to the Pulsar-Earth Displacement

Let a pulsar and the Earth lie at rest in the transverse traceless gauge, tracing
out the worldlines

x�pulsar(�) =

⎛⎜⎜⎝
�
0
0
0

⎞⎟⎟⎠ , x�Earth(�) =

⎛⎜⎜⎝
�
0
0
D

⎞⎟⎟⎠ .

A photon emited by the pulsar, following the worldline x�(�), will be observed on
the earth if there is some value �∗ at which the worldline passes through the event

x�(�∗) =

⎛⎜⎜⎝
T
0
0
D

⎞⎟⎟⎠ .

The first component, T , is the coordinate time at which an observer on Earth sees
the photon: as long as the Earth is at rest, we consider a photon observed no matter
what T is. Since the pulsar emits photon ebursts periodically, an Earthbound
astronomer will observe them periodically, but we have no reason to assume that
the time interval between observations will be the same as the interval between
emissions, or even constant. In general, we expect the allowed null geodesics—
and thus the observation times—to depend on the geometry of spacetime (and in
particualr, the form of any gravitational wave) between the pulsar and the earth.

Above, we have the differential equations for geodesics in the presence of a planar
pulse wave moving in the x3 direction. It’s a second-order equation, and we already
know where the photons’ worldlines originate (as we saw above, if the pulsar begins
at rest, it remains at rest), so we need to give an initial wavevector k� = ẋ� =
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dx�

d� to specify a single worldline. We’re interested in the wavevectors that yield
photon worldlines that intersect the Earth’s worldline. It’s tempting to consider
the simplest possible wavevector, the one associated with the background curve:

ẋ�(0) =

⎛⎜⎜⎝
D
0
0
D

⎞⎟⎟⎠ ,

with unit parameterization. Every term in the geodesic equation we found above
contains either ẋ1 or ẋ2, which are both zero at � = 0. Therefore the second
derivative of this worldline the instant it is emitted from the pulsar is

ẍ�(0) =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ ;

if we differentiate the geodesic equations to find the higher-order derivatives, we will
find that they are are also 0 for the same reason. If all of the curve’s higher-order
derivatives are zero, then the first derivative must remain constant: ẋ�(�) = ẋ�(0)
for all �. If a photon is released from the pulsar at the origin at time t0, the
coordinate expression of the geodesic takes the form

x�(�) =

⎛⎜⎜⎝
ct0 +D�

0
0
D�

⎞⎟⎟⎠ .

It happens that this is exactly the kind of geodesic we were looking for: at � = 1,
x1 = x2 = 0 while x3 = D—the light’s worldline intersects the Earth’s worldline.
As long as the separation from the pulsar to the Earth is along the same direction as
the gravitational wave’s propagation, the signals follows the background worldline,
regardless of the functional form of the wave.

The pulsar will emit bursts at intervals of Δ� along its own proper time. Since
the pulsar remains at rest in our coordinate system, its proper time equals the
coordinate time; with a convenient choice for x0 = 0, we find that the pulsar emits
bursts withe worldlines begining at the events

B�n =

⎛⎜⎜⎝
nΔ�

0
0
0

⎞⎟⎟⎠
for integer n; the worldline x�n(�) beginning at B�n is observed at the event

O�n ≡ x�n(1) =

⎛⎜⎜⎝
nΔ� +D

0
0
D

⎞⎟⎟⎠ .

The Earth, too, is at rest, so the coordinate time also equals the Earth’s proper
time. The time between the observations of subsequent bursts is

O0
n+1 −O0

n = [((n+ 1)Δ� +D)− (nΔ� +D)] = Δ�.
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The time interval between the observation of subsequent bursts equals the time
between the bursts’ emissions. If the Earth lies at x3 = −D, so that the photon
must pass through the wave rather than ride along with it, we can choose the
worldlines

x�(�) =

⎛⎜⎜⎝
nΔ� +D�

0
0
−D�

⎞⎟⎟⎠ .

These curves also satisfy the geodesic equations and the boundary conditions; they
yeild observation periods equal to the emission periods. In both cases, the obser-
vation period is unaffected by the gravitational wave, which makes sense: the wave
does not affect distances in the x3 direction, so there is no reason for the photon’s
worldline to deviate from the simplest, most efficient path–straight along the x3

axis.

5. A Wave Traveling Perpendicular to the Pulsar-Earth
Displacement

Such an argument won’t hold true if the displacement of the Earth from the
pulsar is perpendicular to the direction of the wave’s propagation. Let the pulsar
follow the same worldline it did above, but now let the Earth follow the worldline

x�Earth(�) =

⎛⎜⎜⎝
�
D
0
0

⎞⎟⎟⎠ .

Again, let a planar pulse traveling in the x3 direction encounter the system. In
order to travel a distance D in the x1 direction, the dominant spatial component of
the photon worldline’s first derivative will have to be ẋ1, so the second derivatives
of the worldline will not, in general, vanish; we’ll have to take the functional form
of the wave (ℎ+ and ℎ× for the two modes of polarizations) and explicitly solve the
geodesic equations.

We can, however, make a significant simplification. Since we are working in
the linear approximation, the magnitudes of the metric perturbations are far less
than one. Geodiscs passing though the wave should only deviate slightly from the
unperturbed background geodesics, and the deviation should be about on the same
order of smallness as the perturbation magnitude. The geodesic equations involve a
product of the derivative of the perturbation (arising from the Christoffel symbols)
and two derivatives of the geodesic; accounting for the geodesic’s deviations in this
equation will give us terms on the order of the perturbation squared or cubed,
which can safely be ignored. Therefore, when calculating the real geodesic sharing
the endpoints of a background geodesic using the above equations, we may as well
substitute in the first derivatives of the background geodesic. The background
geodesic (with unit parameterization) between the pulsar and the Earth in this
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configuration is

x�(�) =

⎛⎜⎜⎝
D�
D�
0
0

⎞⎟⎟⎠ .

The linearized geodesic equations, adjusted about this background geodesic, are

d2x0

d�2
=− 1

2
D2ℎ′+(x0 − x3),

d2x1

d�2
=−D2ℎ′+(x0 − x3),

d2x2

d�2
=−D2ℎ′×(x0 − x3),

d2x3

d�2
=− 1

2
D2ℎ′+(x0 − x3).

At this point, we need to provide the gravitational wave’s waveforms and a pho-
ton’s initial wavevector to solve the equations and find the future trajectory of the
light’s worldline through the wave. We will begin by finding the family of geodesics
emanating from the pulsar in the presence of a specific gravitational wave. Then
we will find which null geodesics intersect the Earth’s worldline.

Perhaps the simplest nontrivial planar pulse wave is a triangle pulse of height a
and width l:

ℎ+(x0 − x3) =

⎧⎨⎩
0 x0 − x3 < − l+2

2a+
l+

(x0 − x3 + l+
2 ) − l+2 < x0 − x3 < 0

2a+
l+

( l+2 − (x0 − x3)) 0 < x0 − x3 < l+
2

0 l+
2 < x0 − x3,

ℎ×(x0 − x3) =

⎧⎨⎩
0 x0 − x3 < − l×2

2a×
l×

((x0 − x3) + l×
2 ) − l×2 < x0 − x3 < 0

2a×
l×

( l×2 − (x0 − x3)) 0 < x0 − x3 < + l×
2

0 l×
2 < x0 − x3,

where we have chosen our x0 coordinates so that the gravitational wave passes
through the x3 = 0 plane at x0 = 0. Of course, a perturbation can’t really take the
form of a triangular pulse: we require a metric to be smooth, and the triangular
pulse has three points where its first derivative fails to exist. Still, a triangular pulse
is similar enough in form to a more realistic waveform—say, for example, a Gaussian
pulse—that we should be able to use it to draw some qualitative conculsions.
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The linearized geodesic equations in the presence of a triangular pulse are

d2x0

d�2
=

⎧⎨⎩
0 x0 − x3 < − l+2

−D
2ka+
l+

− l+2 < x0 − x3 < 0
D2ka+
l+

0 < x0 − x3 < l+
2

0 l+
2 < x0 − x3,

d2x1

d�2
=

⎧⎨⎩
0 x0 − x3 < − l+2

− 2D2ka+
l+

− l+2 < x0 − x3 < 0
2D2ka+
l+

0 < x0 − x3 < l+
2

0 l+
2 < x0 − x3,

d2x2

d�2
=

⎧⎨⎩
0 x0 − x3 < − l+2

− 2D2ka×
l×

− l+2 < x0 − x3 < 0
2D2ka×
l×

0 < x0 − x3 < l+
2

0 l+
2 < x0 − x3,

d2x3

d�2
=

⎧⎨⎩
0 x0 − x3 < − l+2

−D
2ka+
l+

− l+2 < x0 − x3 < 0
D2ka+
l+

0 < x0 − x3 < l+
2

0 l+
2 < x0 − x3.

We can divide spacetime into four distinct regions: x0 − x3 < − l+2 , the flat region

“before” the wave; − l+2 < x0−x3 < 0, the region of the wave where the perturbation

is increasing; 0 < x0 − x3 < l+
2 , the region of the wave where the perturbation is

decreasing; and l+
2 < x0−x3, the flat region “after” the wave. Within each of these

regions, the geodesic’s second derivatives are constant; given the initial position
and derivative of a worldline (i.e., the coordinates of its emission event and its
initial wavevector), we can calculate its trajectory through the region in which it
is emitted. Then we can take the worldline’s four-position and wavevector at the
boundary between this and the next region and repeat the process, calculating the
worldline through the second region. We can repeat this process until the worldline
has encountered the Earth or passed into the fourth region—here spacetime is flat,
so geodesics will continue on with constant wavevector.

If we assume that the distance between the pulsar and the Earth is much greater
than the width of the wave pulse (i.e., D >> l+, l×), then we can consider five
relevent cases:

(1) The signal is emitted in the third spacetime region.
(2) The signal is emitted in the second spacetime region.
(3) The signal passes all the way through the wave in deep space.
(4) The signal is observed in the third spacetime region.
(5) The signal is observed in the second spacetime region.

Of course, if the signal is observed in the first region or emitted in the fourth, it
does not pass through the wave and we can take the simple, unperturbed solution.
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case 1: the signal is emitted in the third region

Here we consider photons emitted while they are in the third region, so the
photons’ worldlines must pass through parts of regions three and four. The curves’
second derivatives in the relevant vicinitees are

d2x0

d�2
=

{
D2a+/l+ 0 < x0 − x3 < l+

2

0 l+
2 < x0 − x3,

d2x1

d�2
=

{
2D2a+/l+ 0 < x0 − x3 < l+

2

0 l+
2 < x0 − x3,

d2x2

d�2
=

{
2D2a×/l× 0 < x0 − x3 < l×

2

0 l×
2 < x0 − x3,

d2x3

d�2
=

{
D2a+/l+ 0 < x0 − x3 < l+

2

0 l+
2 < x0 − x3.

If a geodesic has the initial conditions

x�(0) =

⎛⎜⎜⎝
B0

0
0
0

⎞⎟⎟⎠ , ẋ�(0) =

⎛⎜⎜⎝
ẋ0(0)
ẋ1(0)
ẋ2(0)
ẋ3(0)

⎞⎟⎟⎠
(where 0 < B0 < l+/2), we can reconstruct the geodesic within region 3 by finding
its components as MacLaurin series in �. Since the second derivatives are constant,
the component functions will be quadratic:

x�(�) = x�(0) + ẋ�(0)�+
1

2
ẍ�(0)�2

=

⎛⎜⎜⎜⎜⎜⎝
B0 + ẋ0(0)�+ D2a+

2l+
�2

ẋ1(0)�+ D2a+
l+

�2

ẋ2(0)�+ D2a×
l×

�2

ẋ3(0)�+ D2a+
2l+

�2

⎞⎟⎟⎟⎟⎟⎠ .

The worldline leaves the thrid region when x0 − x3 = l+/2. By inserting the
reconstructed components, we find that this occurs at the point of parameter

�1 =
l+
2 −B

0

ẋ0(0)− ẋ3(0)
;

the worldline’s position and first derivative at this point are

x�(�1) =

⎛⎜⎜⎜⎜⎜⎝
B0 + ẋ0(0)�1

D2a+
2l+

�21

ẋ1(0)�1 + D2a+
l+

�21

ẋ2(0)�1 + D2a×
l×

�21

ẋ3(0)�1 + D2a+
2l+

�21

⎞⎟⎟⎟⎟⎟⎠ , ẋ�(�1) =

⎛⎜⎜⎜⎜⎜⎝
ẋ0(0) + D2a+

l+
�1

ẋ1(0) + 2D2a+
l+

�1

ẋ2(0) + 2D2a×
l×

�1

ẋ3(0) + D2a+
l+

�1

⎞⎟⎟⎟⎟⎟⎠ .

If we require the worldline to have a continuous first derivative—the strongest
condition we can impose given the nonsmoothness of the perturbation—then we
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can extend it into the fourth region by taking its components’ Taylor series in �
about �1. The second derivatives vanish in this region, so the curve must be linear:

x�(�) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
B0 − D2a+

2(ẋ0(0)−ẋ3(0))2

(
l+
4 −B

0 + B02

l+

)]
+
[
ẋ0(0) + D2a+

ẋ0(0)−ẋ3(0)

(
1
2 −

B0

l+

)]
�

[
− D2a+

(ẋ0(0)−ẋ3(0))2

(
l+
4 −B

0 + B02

l+

)]
+
[
ẋ1(0) + 2D2a+

ẋ0(0)−ẋ3(0)

(
1
2 −

B0

l+

)]
�

[
− D2a×

(ẋ0(0)−ẋ3(0))2
l+
l×

(
l+
4 −B

0 + B02

l+

)]
+
[
ẋ2(0) + 2D2a+

ẋ0(0)−ẋ3(0)
l+
l×

(
1
2 −

B0

l+

)]
�

[
− D2a+

2(ẋ0(0)−ẋ3(0))2

(
l+
4 −B

0 + B02

l+

)]
+
[
ẋ0(0) + D2a+

ẋ0(0)−ẋ3(0)

(
1
2 −

B0

l+

)]
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We need to find the components of the initial first derivative such that the geodesic
encounters the earth. If we again choose the unit parameterization, we have four
unknowns:

ẋ0(0), ẋ1(0), ẋ2(0), ẋ3(0),

and four equations (taken from the conditions x1(1) = D, x2(0) = 0, x3(0) =
0, ẋ�ẋ� = 0):

−D2a+

(
l+
4
−B0 +

B02

l+

)

=
(
D − ẋ1(0)

) (
ẋ0(0)− ẋ3(0)

)2 −D2a+

(
1− 2B0

l+

)(
ẋ0(0)− ẋ3(0)

)
,

D2a×
l+
l×

(
l+
4
−B0 +

B02

l+

)

= ẋ2(0)
(
ẋ0(0)− ẋ3(0)

)2
+D2a×

l+
l×

(
1− 2B0

l+

)(
ẋ0(0)− ẋ3(0)

)
,

D2a+

(
l+
8
− B0

2
+
B02

2l+

)

= ẋ3(0)
(
ẋ0(0)− ẋ3(0)

)2
+D2a+

(
1

2
− B0

2l+

)(
ẋ0(0)− ẋ3(0)

)
,(

ẋ0(0)
)2

=
(
ẋ1(0)

)2
+
(
ẋ2(0)

)2
+
(
ẋ3(0)

)2
.

This system of equations can’t be solved analytically, but if we provide physical
numbers for the parameters D, a+, a×, l+, l× and B0, we can find an approximate
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solution by numerical methods. One set of realistic astrophysical numbers is

D =103 ly,

a+ =10−15,

a× =10−15,

l+ =10−6 ly,

l× =10−6 ly.

Here, we aren’t interested in the worldline of any single burst; we want to compare
the intersection of subsequent worldlines with the Earth. Therefore, rather than
assign one number to B0, we want a set of numbers. A pulsar period Δ� of 10−7 ly
will give us nine or ten pulsar bursts throughout the gravitational wave; therefore
we take

B0
n = nΔ� = n ⋅ 10−7 ly.

For these parameters, we find the solutions

n ẋ0(0) ẋ1(0) ẋ2(0) ẋ3(0)
0 1000 1000 −0.0050 −0.0025
1 1000 1000 −0.000000040 −0.000000020
2 1000 1000 −0.000000030 −0.000000015
3 1000 1000 −0.000000020 −0.000000010
4 1000 1000 −0.000000010 −0.000000005
5 1000 1000 0 0.

These results make qualitative sense. The burst at n = 0 needs to pass through
an entire half of the wave, so it will be bent the most; the burst at n = 5 doesn’t
pass through the wave at all, so we can use the flat-spacetime solution (note that
we chose D = 1000).

We wish to find the period between observation of subsequent pulsar bursts. We
can do this by calculating O0

n−1 −O0
n(1). The term

D2a+
(ẋ0(0)− ẋ3(0))2

(
l+
8
− B0

2
+
B02

2l+

)
is of the order 10−22; meanwhile, the term

D2a+
ẋ0(0)− ẋ3(0)

(
−B

0

l+

)
is of the order 10−13, so it is more significant in our analysis. Including this term
but not the former, we find

O0
5 −O0

4 = 10−7 − 1.00 ⋅ 10−13 ly,

O0
4 −O0

3 = 10−7 − 1.00 ⋅ 10−13 ly,

O0
3 −O0

2 = 10−7 − 1.00 ⋅ 10−13 ly,

O0
2 −OO1 = 10−7 − 1.00 ⋅ 10−13 ly,

O0
1 −O0

0 = 10−7 − 1.00 ⋅ 10−13 ly.
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The major term—10−7—is simply the period between emissions; we expect to see
it no matter the curvature of spacetime. However, each observation period is short-
ened by 1.00 ⋅ 10−13 ly. There is a real difference between the observation period
and emission period due to the gravitational wave. The emission period, in more
familiar units, is about 3.16 s; the difference is 3.16 ⋅ 10−6 s. The difference is not
large, but it is within the scope of measurement.

case 2: the signal is emitted in the second region

We now turn our attention to bursts released in the second region of spacetime

(B0 ∈ [− l+2 , 0]). The geodesics of these bursts must pass through a portion of
the second region (that of increasing metric perturbation), all of the third region
(decreasing perturbation), and a large stretch of the fourth region (flat spacetime).
We will therefore need to piece together three separate solutions rather than two,
as we did in case 1. Watching the process is not particularly enlightening, so we
can jump forward to the results. Within region 4, the signal’s worldline takes the
form

x�(�) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
B0 + D2a+

2(ẋ0−ẋ3)2

(
B02

l+
+B0 − l+

4

)]
+
[
ẋ0(0) + D2a+

2(ẋ0−ẋ3)

(
2B0

l+
+ 1
)]
�

[
D2a+

(ẋ0−ẋ3)2

(
B02

l+
+B0 − l+

4

)]
+
[
ẋ1(0) + D2a+

(ẋ0−ẋ3)

(
2B0

l+
+ 1
)]
�

[
D2a×

(ẋ0−ẋ3)2
l+
l×

(
B02

l+
+B0 − l+

4

)]
+
[
ẋ2(0) + D2a+

(ẋ0−ẋ3)
l+
l×

(
2B0

l+
+ 1
)]
�

[
D2a+

2(ẋ0−ẋ3)2

(
B02

l+
+B0 − l+

4

)]
+
[
ẋ3(0) + D2a+

2(ẋ0−ẋ3)

(
2B0

l+
+ 1
)]
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This is the section of the geodesic which will encounter the Earth, so by choosing
the unit parameterization and adding the conditions

x�(1) =

⎛⎜⎜⎝
T
D
0
0

⎞⎟⎟⎠ and ẋ�ẋ� = 0,

we can again solve for the signals’ inital wavevectors numerically. With these con-
ditions and the astrophysical values we used in case 1, we find the final results

O0
0 −O0

−1 = 10−7 + 1.00 ⋅ 10−13,

O0
−1 −O0

−2 = 10−7 + 1.00 ⋅ 10−13,

O0
−2 −O0

−3 = 10−7 + 1.00 ⋅ 10−13,

O0
−3 −O0

−4 = 10−7 + 1.00 ⋅ 10−13,

O0
−4 −O0

−5 = 10−7 + 1.00 ⋅ 10−13.

As in case 1, the gravitational wave introduces a correction one tenth the durration
of the emission period. However, now the correction is an addition: The observed
period is now increased by about 3.16 ⋅ 10−6 seconds, while the emission period is
still just 3.16 seconds.
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case 3: the signal crosses the wave in deep space

If a signal is emitted before B0 = −l+/2, then it begins its worldline by passing
through the flat first region and then encountering the wave. However, if the burst
begins its journey too soon, it will arrive at Earth durring or even before passing
through any of the wave. Therefore we must set a lower bound for the burst times
for this case, one which will depend on the nature of the geodesics. We will begin
by finding the form of the allowed geodesics radiating from the pulsar, and then
determining the time range of interest.

We can construct geodesics the same way we did in cases 1 and 2, by solving the
geodesic equation in each region and fitting each solution together with continuity
and differentiability. In the region 4—after passing through the wave—the geodesic
takes the form

x�(�) =

⎛⎜⎜⎜⎜⎜⎝
B0 − D2a+l+

4(ẋ0(0)−ẋ3(0))2 + ẋ0(0)�

− D2a+l+
2(ẋ0(0)−ẋ3(0))2 + ẋ1(0)�

− D2a×l+
2(ẋ0(0)−ẋ3(0))2

l+
l×

+ ẋ2(0)�

− D2a+l+
4(ẋ0(0)−ẋ3(0))2 + ẋ3(0)�

⎞⎟⎟⎟⎟⎟⎠ .

It is interesting to note that the four equations used to solve for the initial wavevec-
tor, x1(1) = D, x2(1) = x3(1) = 0, and ẋ�(0)ẋ�(0) = 0, are all independent of the
burst time B0. Therefore the initial wavevectors of signals considered in case 3 are
time-independent (as are the observation periods). For the astrophysical conditions
we’ve used above, the initial wavevector is

x�(0) =

⎛⎜⎜⎝
1000
1000

5.0 ⋅ 10−17

2.5 ⋅ 10−17

⎞⎟⎟⎠ .

This is negligibly different from the initial wavevector of the background geodesics,
and we will find similar results for any realistic physical setup. For the sake of
calculations, we may as well say that the real initial wavevector is equal to the
background wavevector:

x�(0) =

⎛⎜⎜⎝
D
D
0
0

⎞⎟⎟⎠ .

Above, we required that the signal pass all the way through the wave before being
observed on Earth. We know that the latest possible signal to fall into this case is

released at B0 = − l+2 ; any signal released after this is emitted while the pulsar lies
in the wave. The earliest possible signal included in this case is observed just as
the wave encounters the Earth, so

x0(1)− x3(1) =
l+
2

B0 + ẋ0(0)− ẋ3(0) =
l+
2

B0 =
l+
2
− (ẋ0(0)− ẋ3(0)).
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In almost any realistic system, this will effectively reduce to

B0 = −D +
l+
2
,

so case three considers signals emitted between x0 = −D+ l+
2 and x0 = − l+2 . The

observational period of any subsequent signals released in this time range is

x0n+1(1)− x0n(1) =

[
B0
n+1 −

D2a+l+
4(ẋ0(0)− ẋ3(0))2

+ ẋ0(0)

]
−
[
B0
n −

D2a+l+
4(ẋ0(0)− ẋ3(0))2

+ ẋ0(0)

]
= [(n+ 1)Δ� − (n)Δ� ]

= Δ�.

We didn’t even need to find a numeric solution for this case because the initial
wavevector—the very reason we needed to use numeric solutions earlier—is the
same for each signal and can be factored out, leaving the difference between one
quantity and itself. Regardless of the parameters of the gravitational wave, two
subsequent signals (provided they both pass all the way through the wave) will be
observed with the same period as which they are emitted.

However, that’s not to say that the signals are unaffected by the wave. We can
compare the bent geodesics to the background geodesic by subtracting the arrival
time of a bent worldline (i.e., x0n(1)) from the arrival time of a background worldlne,
D. We find

Δx0n =
D2a+l+

4(ẋ0(0)− ẋ3(0))2
.

The nth signal arrives at a time slightly different than it would if there were no
gravitational wave. Passing all the way through the wave does not affect the sig-
nals’ observational period, but it does affect their phase.

case 4: the signal is observed in the third region

If a signal is released before the time x0 = −D + l+
2 , it may be observed while

the gravitational wave is passing by the Earth. We have already done the work
in finding what the worldline of such a signal would look like: when studying the
third case, we calculated what a geodesic flowing from the first region, through the
second and into the third looks like. It will take this form regardless of whether it
continues into the fourth region, so we can use this equation by choosing an emission
time such that x�(1) intersects the Earth’s worldline within the third region. We
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find that the final form of such a geodesic looks like

x�(�) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
B0 + D2a+

2(ẋ0(0)−ẋ3(0))2

(
B02

l+
−B0 − l+

4

)]
+
[
ẋ0(0) + D2a+

ẋ0(0)−ẋ3(0)

(
B0

l+
− 1

2

)]
�+

[
D2a+
2l+

]
�2

[
D2a+

(ẋ0(0)−ẋ3(0))2

(
B02

l+
−B0 − l+

4

)]
+
[
ẋ1(0) + 2D2a+

ẋ0(0)−ẋ3(0)

(
B0

l+
− 1

2

)]
�+

[
D2a+
l+

]
�2

[
D2a×

(ẋ0(0)−ẋ3(0))2
l+
l×

(
B02

l+
−B0 − l+

4

)]
+
[
ẋ2(0) + 2D2a+

ẋ0(0)−ẋ3(0)
l+
l×

(
B0

l+
− 1

2

)]
�+

[
D2a×
l×

]
�2

[
D2a+

2(ẋ0(0)−ẋ3(0))2

(
B02

l+
−B0 − l+

4

)]
+
[
ẋ3(0) + D2a+

ẋ0(0)−ẋ3(0)

(
B0

l+
− 1

2

)]
�+

[
D2a+
2l+

]
�2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Again, numerical evaluations suggest that the difference between the real initial
wavevectors and the background wavevectors is negligible, so for our purposes we
can assume (ẋ0(0) − ẋ3(0)) = D for all worldlines released around this time. We
find the usual phase equation,

x0(�)− x3(�) = B0 + (ẋ0(0)− ẋ3(0))�

= B0 +D�;

Case 4 only considers signals which encounter the Earth in region 3, so 0 < x0(1)−
x3(1) < l+

2 ; the condition x0(1) − x3(1) < l+
2 tells us that the signal must be

released at a time B0 < −D + l+
2 , which we already know; the other condition,

0 < x0(0)− x3(0), tells us that the signal must be released at a time B0 > −D.
Now that we know what time range we are dealing with, we can determine the

change in observation period. Since we’re assuming ẋ0(0) − ẋ3(0) = D for all
worldlines in this case, we don’t need to resort to a numerical solution:

O0
n+1 −O0

n = Δ� +
a+
2

(
(2n+ 1)Δ�2

l+
−Δ�

)
+Da+

Δ�

l+
.

For realistic gravitational waves, the first correction term will be orders of magni-
tude less than the second, so we can simplify to

O0
n+1 −O0

n ≈ Δ�

(
1 +

Da+
l+

)
.

The gravitational wave has again changed the observational period. Using the phys-
ical numbers from before, it is extended by 3.16 ⋅10−6 s—the same change as in the
second case.

case 5: the signal is observed in the second region

All we have left to consider are signals sent before the time B0 = −D. If the signal

is sent before B0 = −D − l+
2 , it can follow the background geodesic and reach the

Earth before the wave arives at x0 = − l+2 , so the only interesting case left is that
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of signals observed in the second spacetime region, which originate in bursts after

−D − l+
2 but before −D.

As in case 4, we can take the geodesic calculated in case 3 and require that it
terminate in region 2. Doing so, we find the final portion of the curve takes the
form

x�(�) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
B0 − D2a+

2(ẋ0(0)−ẋ3(0))2

(
B02

l+
+B0 + l+

4

)]
+
[
ẋ0(0)− D2a+

ẋ0−ẋ3

(
B0

l+
+ 1

2

)]
�−

[
D2a+
2l+

]
�2

[
− D2a+

(ẋ0(0)−ẋ3(0))2

(
B02

l+
+B0 + l+

4

)]
+
[
ẋ1(0)− 2D2a+

ẋ0−ẋ3

(
B0

l+
+ 1

2

)]
�−

[
D2a+
l+

]
�2

[
− D2a×

(ẋ0(0)−ẋ3(0))2
l+
l×

(
B02

l+
+B0 + l+

4

)]
+
[
ẋ2(0)− 2D2a+

ẋ0−ẋ3

l+
l×

(
B0

l+
+ 1

2

)]
�−

[
D2a×
l×

]
�2

[
− D2a+

2(ẋ0(0)−ẋ3(0))2

(
B02

l+
+B0 + l+

4

)]
+
[
ẋ3(0)− D2a+

ẋ0−ẋ3

(
B0

l+
+ 1

2

)]
�−

[
D2a+
2l+

]
�2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can try to find the initial wavevectors of the signals observed on Earth, but as
in case 4, they differ negligibly from the background wavevector. We may as well
again assume ẋ0(0)− ẋ3(0) = D for all the relevant signals. Now the observational
period is

O0
n+1 −O0

n = Δ� − a+
2

(
(2n+ 1)Δ�2

l+
+ Δ�

)
−Da+

Δ�

l+
.

Again, we can ignore the first correctional term, leaving an observational period of

O0
n+1 −O0

n = Δ�

(
1− Da+

l+

)
.

For the numerical values we used before, the period will be shortened by about
3.16 ⋅ 10−6 s—the same change as in the first case.

6. Conclusions

We have seen that if a triangular gravitational wave pulse travels down the axis
of displacement from a pulsar to the Earth, an Earthbound observer will not see any
change in the pulsar’s period. And if the wave travels in a direction perpendicular
to the separation between the two bodies, we expect the period of the pulsar, as
observed on Earth, to quickly shorten and then lengthen back to normal, then to
remain constant for a long time, and then to quickly lengthen and then shorten
back to normal. The assumptions we made about the gravitational wave weren’t
very realistic, and in many places we relied on numerical solutions for specific
physical parameters, so the quantitative results we have found will probably not be
very useful. However, they do provide a fairly good qualitative picture of what is
happening. Softening a triangular pulse into a more natural, curved shape would
change the geodesic equations, but not radically so; neither would modifying the
magnitude or width of the wave (unless we make the perturbation magnitude less
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than zero, in which case our results suggest that when the period was shortened, it
is now lengthened, and vice versa). Furthermore, the geodesic equations presented
on page 10 are always valid for linearized gravity, so all that is needed to solve the
problem for other (planar-pulse) waves and pulsar-Earth orientations is patience
and computing power.
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