1. In class on October sixth, the empty set was discussed. The students in the classroom all seemed to agree, eventually, that the empty set is a subset of every set (this is the content of Exercise 1.11 of Script #1). In symbols:

\[\forall A \text{ s.t. } A \text{ is a set, } \emptyset \subset A. \]

However, it was noted in the discussion of Exercise 1.18 that, in the particular case where \(A = \{1, 2, 3\} \), the empty set was also a member of \(\mathcal{P}(A) \). In symbols:

\[A = \{1, 2, 3\} \Rightarrow \emptyset \in \mathcal{P}(A). \]

Let \(A \) be a set. Consider the three following statements:

\[\emptyset \in A \Rightarrow \exists B \text{ s.t. } A = \mathcal{P}(B); \]
\[\emptyset \in A \iff \exists B \text{ s.t. } A = \mathcal{P}(B); \]

\[\emptyset \in A \iff \exists B \text{ s.t. } A = \mathcal{P}(B). \]

Determine, with proof, which of statements (1), (2), and (3) is true.

2. Compute \(\mathcal{P}(\emptyset) \), \(\mathcal{P}(\mathcal{P}(\emptyset)) \), and \(\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) \). Do you see any pattern emerging?

3. Let \(A \subset \mathbb{Z} \) and let \(f : A \rightarrow \mathbb{Z} \) be a function. We say that

- \(f \) is monotonically increasing if \(m < n \Rightarrow f(m) \leq f(n) \);
- \(f \) is monotonically decreasing if \(m < n \Rightarrow f(m) \geq f(n) \);
- \(f \) is strictly increasing if \(m < n \Rightarrow f(m) < f(n) \);
- \(f \) is strictly decreasing if \(m < n \Rightarrow f(m) > f(n) \); and
- \(f \) is monotonic if \(f \) is monotonically increasing or \(f \) is monotonically decreasing.

Let \(A \subset \mathbb{Z} \) and let \(f : A \rightarrow \mathbb{Z} \) be a function.

(a) Prove or disprove: if \(f \) is monotonic, then \(f \) is injective.
(b) Prove or disprove: if \(f \) is strictly increasing or strictly decreasing, then \(f \) is injective.
(c) Prove or disprove: if \(f \) is injective, then \(f \) is monotonic.
(d) Prove or disprove: if \(f \) is injective, then \(f \) is strictly increasing or strictly decreasing.

We will revisit these ideas later in the year.