Axioms (Peano’s Postulates). The natural numbers are defined as a set \(\mathbb{N} \) together with a unary “successor” function \(S : \mathbb{N} \to \mathbb{N} \) and a special element \(1 \in \mathbb{N} \) satisfying the following postulates:

I. \(1 \in \mathbb{N} \).

II. If \(n \in \mathbb{N} \), then \(S(n) \in \mathbb{N} \).

III. There is no \(n \in \mathbb{N} \) such that \(S(n) = 1 \).

IV. If \(n, m \in \mathbb{N} \) and \(S(n) = S(m) \), then \(n = m \).

V. If \(A \subset \mathbb{N} \) is a subset satisfying the two properties:

 • \(1 \in A \)

 • if \(n \in A \), then \(S(n) \in A \),

then \(A = \mathbb{N} \).

Theorem (Mathematical Induction). For each \(n \in \mathbb{N} \), let \(P(n) \) be a proposition. Suppose the following two results:

(A) \(P(1) \) is true.

(B) If \(P(n) \) is true, then \(P(S(n)) \) is true.

Then \(P(n) \) is true for all \(n \in \mathbb{N} \).

Statement (A) is called the base case and statement (B) is called the inductive step. The assumption that \(P \) is true of \(n \) is called the inductive hypothesis.

1. Prove the theorem.

2. Assuming now that we have defined addition, multiplication etc. on \(\mathbb{N} \) so that all the usual properties hold, prove that for all positive integers \(n \),

\[
1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(2n+1)(n+1)}{6}.
\]

3. Prove that if \(n \geq 4 \), then \(n^2 \leq 2^n \).

4. Prove Bernoulli’s Inequality:

 If \(1 + x > 0 \), then \((1 + x)^n \geq 1 + nx \) for any \(n \in \mathbb{N} \).

Remark. From now on we assume that all the usual properties of \(\mathbb{N} \) and \(\mathbb{Z} \) hold. A list of properties will be posted.