AUTOMORPHISM AND DEFINABILITY

Some notes on Thursday’s lecture. We now focus on first-order logic.

- We defined formulas and sentences for a language \(\mathcal{L} \).
- We defined models and gave a recursive definition for when a sentence \(\varphi \) is true in a model \(M \), written \(M \models \varphi \). Models are sometimes called \(\mathcal{L} \)-structures to emphasize exactly which language is at stake.
- For any \(\mathcal{L} \)-structure \(M \), recall that \(Th(M) \), the theory of \(M \), is the set of all \(\mathcal{L} \)-sentences \(\varphi \) such that \(M \models \varphi \). We defined \(M \equiv N \) to mean \(Th(M) = Th(N) \) (so this is an equivalence relation on the class of \(\mathcal{L} \)-structures).
- An automorphism of a model \(M \) is a bijection \(f : \text{dom}(M) \to \text{dom}(M) \) which preserves relations, functions, and constants. More precisely, we require that:
 1. for each constant \(c \in \mathcal{L}, f(c^M) = c^M \).
 2. for each \(n \in \mathbb{N} \), each \(n \)-ary relation symbol \(R \) of \(\mathcal{L} \), and all \(a_1, \ldots, a_n \in \text{dom}(M) \), \(R^M(a_1, \ldots, a_n) \iff R^M(f(a_1), \ldots, f(a_n)) \).
 3. for each \(n \in \mathbb{N} \), each \(n \)-ary function symbol \(F \) of \(\mathcal{L} \), and all \(a_1, \ldots, a_n \in \text{dom}(M) \), \(F^M(a_1, \ldots, a_n) = F^M(f(a_1), \ldots, f(a_n)) \).
- Example. Let \(\mathcal{L} = \{ R \} \), a single binary relation. Let \(M \) have domain \(\mathbb{Z} \) and suppose \(R \) is interpreted as \(\{(n, -n) : n \in \mathbb{N} \} \). By our definition, the map given by \(n \mapsto -n \) is an automorphism of \(M \), whereas the map given by \(n \mapsto n + 1 \) is not. However, if we let \(M' \) have domain \(\mathbb{Z} \) but interpret \(R \) as \(< \), then \(n \mapsto n + 1 \) is an automorphism of \(M' \) whereas \(n \mapsto -n \) is not.
- Let \(A \subseteq (\text{dom}(M))^k \) be a set of \(k \)-tuples of elements of \(M \). Recall that \(A \) is definable if there exists some formula \(\psi(x_1, \ldots, x_k) \) such that for any \(a_1, \ldots, a_k \in \text{dom}(M) \), \(M \models \psi(a_1, \ldots, a_k) \) if and only if \(a_1, \ldots, a_k \in A \).

We will prove (after the exam, but in the meantime you are free to appeal to this fact) that

Theorem 1. If \(A \subseteq (\text{dom}(M))^k \) is a definable set, then any automorphism \(f \) of \(M \) preserves \(A \) setwise, i.e. \(f(A) = A \).

We discussed in class that in some sense, “most sets are not definable.” However, really our only technique so far for showing a set is not definable is to apply this theorem. On the other hand, to show a set is definable is easier: simply write down a defining formula.

Examples. Let \(\mathcal{L} = \{ R \} \) where \(R \) is a binary relation and \(S \) is a unary function.

Example 1: Let \(M \) be the model whose domain is \(\mathbb{Z} \), \(R \) is interpreted as \(<\). Show that \(\mathbb{N} \) is not a definable set in \(M \). [Use the contrapositive of the theorem: give an automorphism which does not preserve it.]

Example 2: Let \(M \) be the model whose domain is \(\mathbb{N} \), \(R \) is \(<\). Show that the graph of the successor function is a definable set. [Write down a formula.]

WARNING. Beware the converse: Just because a set is preserved by automorphisms need not mean it is definable. For instance, \(\langle \mathbb{N}, S \rangle \) has no nontrivial automorphisms (why?), but many subsets of its domain are not definable (why?).