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Abstract. We consider the question, of longstanding interest, of realizing types in regular ultra-
powers. In particular, this is a question about the interaction of ultrafilters and theories, which is
both coarse and subtle. By our prior work it suffices to consider types given by instances of a single
formula. In this article, we analyze a class of formulas ϕ whose associated characteristic sequence
of hypergraphs can be seen as describing realization of first- and second-order types in ultrapowers
on one hand, and properties of the corresponding ultrafilters on the other. These formulas act,
via the characteristic sequence, as points of contact with the ultrafilter D, in the sense that they
translate structural properties of ultrafilters into model-theoretically meaningful properties and
vice versa. Such formulas characterize saturation for various key theories (e.g. Trg, Tfeq), yet their
scope in Keisler’s order does not extend beyond Tfeq. The proof applies Shelah’s classification of
second-order quantifiers.

1. Introduction

Regular ultrafilters and countable first-order theories are both, a priori, quite complicated ob-
jects. And yet the mystery is that their interaction is often quite coarse, for reasons that have to
do both with model theory and with the structure of ultrafilters. In this article, we build and in-
vestigate a framework in which this interaction is visible: namely, certain sequences of hypergraphs
whose solution (in a sense defined below) alternately describes realization of first-order types in ul-
trapowers, existence of second-order structure in those same ultrapowers and structural properties
of the corresponding ultrafilters.

To begin, in §2, we motivate these investigations by looking at regular ultrapowers of countable
stable theories. We then define Keisler’s order and give the known results. We explain how
saturation of ultrapowers can be analyzed in terms of characteristic sequences, i.e. sequences of
hypergraphs defined on the parameter space of first-order formulas, following our prior work [6], [8].
We recall two relevant classical “dichotomies” between order and independence in unstable theories,
namely, independence/strict order and TP1/TP2. In [8] we showed that the “independent” half in
each of these cases has a Keisler-minimal theory of a certain simple form; namely, a theory in which
key formulas capture a certain interaction between types and ultrafilters which, in this paper, we
abstract and investigate.

Motivation 2.20 explains the objects of study in this paper, a basic but rich class of formulas
(or, more generally, their associated hypergraph sequences) called “fundamental” because they have
model-theoretic significance on one hand and capture properties of ultrafilters on the other. §3 gives
an example to show that analyzing such formulas depends on understanding a certain interaction
between first- and second-order structure in ultrapowers. §4 gives a formal correspondence: each
fundamental formula ϕ can be associated to a “second-order quantifier” in the sense of [11] via
its characteristic sequence. That is, for any regular ultrafilter D, D realizes all ϕ-types over small
sets if and only if D solves its associated quantifier, in the sense defined there. However, the real
interest of connecting our investigations to [11] is its proof that upto interpretability, there are very
few such quantifiers. In §5, we show that with some care, many of the interpretability arguments
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of [11] can be translated to ultrapowers. Applying these results, we show that any fundamental
formula is dominated (in the sense of Keisler’s order) either by the empty theory, by the random
graph, or by the minimal TP2 theory. In Theorem 5.21 we prove, among other things, that the
scope of the second-order quantifiers (and therefore the fundamental formulas) in Keisler’s order
does not extend beyond TP2. In §6 we apply the prior analysis to prove Theorem 6.1, which points
towards a a possible gap in complexity between independence and strict order.

Throughout this paper, variables and parameters written without an overline need not necessarily
have length 1.
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2. Background and Context

A regular ultrapower is a regular ultraproduct, i.e. a reduced product where equivalence is
computed modulo some regular ultrafilter D, in which the index models Mi are all taken to be the
same. (“Regular” is Definition 2.4 below, but may not be necessary for these first remarks.) A
model is λ+-saturated if it realizes all types over sets of size λ.

As mentioned in the introduction, the interaction of regular ultrafilters and countable first-order
theories is often quite coarse; it is interesting to examine why and how. An illustrative case is
the following. Suppose we are given two regular ultrafilters D1,D2 on λ and two countable stable
theories T1, T2. Let M1 |= T1,M2 |= T2. Can it happen that saturation of their ultrapowers is
independent, i.e. that if we ask whether Mλ

i /Dj (i, j ≤ 2) is λ+-saturated, the answer is
D1 D2

M1 yes no
M2 no yes ?

Surprisingly, it cannot ([12].VI.5). In fact, saturation of regular ultrapowers of stable theories
depends on one parameter: the minimal size (modulo D) of a pseudofinite set. More precisely, it
is a theorem of classification theory that a model of a countable stable theory is κ+-saturated if
and only if it is ℵ1-saturated and every maximal indiscernible set has size greater than κ. (This
relies heavily on uniqueness of nonforking extensions, so fails in unstable theories.) Since any
nonprincipal ultrapower, in particular a regular ultrapower, is ℵ1-saturated, it suffices to show that
every maximal indiscernible set is sufficiently large. One can show that this will be true precisely
when the minimal size, modulo D, of the product of an unbounded sequence of natural numbers is
strictly greater than λ. Call this minimal size µ(D).
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On the other hand, suppose M is a model of an equivalence relation E with a class of size n for
each n ∈ N. Suppose that for some sequence of natural numbers nt, we have that

∏
t<λ nt/D = n∗

where n∗ ≤ λ. Then the ultrapower N = Mλ/D contains an equivalence class of size n∗. Letting
〈ai : i < n∗〉 list the elements of this class, the type {E(x, ai) ∧ x 6= ai : i < n∗} has size ≤ λ but is
omitted in N . In general, say that a formula ϕ has the finite cover property if for arbitrarily large
n there is a set {ϕ(x; a0), . . . ϕ(x; an)} of instances of ϕ which is inconsistent but whose n-element
subsets are all consistent. Saturation of regular ultrapowers of countable stable theories can be
described as follows:

Theorem A. (Shelah [12] VI.5) Let T be a countable stable theory and λ an infinite cardinal.
• If T does not contain a formula with the finite cover property and D is any regular ultrafilter

on λ, then for any M |= T , Mλ/D is λ+-saturated.
• If T does contain a formula with the finite cover property and D is any regular ultrafilter

on λ, then for any M |= T , we have that Mλ/D is λ+-saturated if and only if the minimum
product of an unbounded sequence of natural numbers modulo D, i.e. µ(D), is at least λ+.

This theorem gives the only two known classes in Keisler’s order. More precisely, define:

Definition 2.1. (Keisler 1967 [2]) Let T1, T2 be countable theories and λ be an infinite cardinal.
(1) T1 Eλ T2 means: for every M1 |= T1,M2 |= T2, and for every regular ultrafilter D on λ, if

(M2)λ/D is λ+-saturated, then (M1)λ/D is λ+-saturated.
(2) (Keisler’s order) T1 E T2 means that T1 Eλ T2 for all λ ≥ ℵ0.

The hypothesis of regularity justifies the quantification over all models: if M ≡ N and D is a
regular ultrafilter on λ, then Mλ/D is λ+-saturated iff Nλ/D is, Fact 2.5 below. Definition 2.1(2)
describes a preorder on the countable first-order theories, often thought of as a partial order on the
E-equivalence classes. The major question is then:

Problem 2.2. [2] Determine the structure of Keisler’s order.

Convention 2.3. In the discussion of ultrapowers which follows, we will generally use M for the
index model, identify the index set with its cardinality λ, and use N for the ultrapower Mλ/D. We
fix in advance a canonical representative a ∈Mλ of each D-equivalence class, so that the projection
of a given element c ∈ N to its value in the t-th index model, denoted c[t], is well defined. Since
we primarily consider ultrapowers, not ultraproducts, in proofs we write e.g. “M |= ∃xϕ(x; c[t])”
rather than using M [t] to distinguish the t-th copy of M .

2.1. Regularity of ultrafilters. Before continuing our discussion of Keisler’s order, we consider
the hypothesis “regular.”

Definition 2.4. An ultrafilter D on I, |I| = λ ≥ ℵ0 is said to be regular if there exists X = {Xj :
j < λ} ⊆ D, called a regularizing family, with the property that for any σ ⊂ λ,⋂

j∈σ
Xj 6= ∅ iff |σ| < ℵ0

Equivalently, for any index t ∈ I, t belongs to only finitely many of the Xj . For an extensive
discussion of regular ultrapowers and Keisler’s order, with many examples, the interested reader is
referred to the paper [8], as well as the foundational sources [2] and [12] Chapter VI. However, for
completeness, we summarize several well known properties here.

Regular ultrafilters exist on any infinite cardinal (given |I| = λ and any bijection f : Pℵ0(λ) → I,
notice that {{t ∈ I : η ∈ f−1(t)} : η ∈ λ} can be extended to an ultrafilter). Moreover, the degree
of saturation of regular ultrapowers is a property of the theory and not of the index model:
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Fact 2.5. (Keisler [2] Corollary 2.1 p. 30; see also Shelah [12].VI.1) If M ≡M ′ and D is a regular
ultrafilter on λ, then Mλ/D is λ+-saturated iff (M ′)λ/D is λ+-saturated.

Thus the quantification over all models in Definition 2.1 makes sense. A related fact is that
saturation in regular ultrapowers reduces to satisfying a growing, but almost everywhere finite, set
of conditions in each index model:

Fact 2.6. Consider a type in a regular ultrapower. That is, suppose we are given M |= T , D a
regular ultrafilter on λ, N = Mλ/D, A ⊆ N , |A| ≤ λ, p ∈ S(A). Let Pℵ0(p) denote the set of finite
subsets of p. Then:

(a) There exists a map d : Pℵ0(p) → D, whose image is a regularizing family, such that:
• d is monotonic, i.e. u ⊆ v implies d(v) ⊆ d(u)
• d refines the  Loś map, i.e. if t ∈ d(u) then M |= ∃x

∧
ϕ(x;a)∈u ϕ(x; a[t])

Moreover for any such d, called a distribution, the following are equivalent:

(b) There exists a distribution d′ refining d which is multiplicative, i.e. d′(u)∩d′(v) = d′(u∪v).
(c) The type p is realized in N .

Proof. (a) Let 〈Xi : i < λ〉 be a regularizing family and for each u ∈ Pℵ0(p), let

f1(u) = {t < λ : M |= ∃x
∧

ϕ(x;a)∈u

ϕ(x; a[t])}

be the  Loś map. Fix a bijection g : λ → Pℵ0(p), and let f2(u) = f1(u) ∩ Xi, where i = g−1(u).
Finally, to ensure monotonicity, define (by induction on the size of |u|) the desired distribution
d(u) = f2(u) ∩

⋂
{d(v) : v ( u}, which remains D-large since u is finite.

For the “moreover” clause, notice that realizing the type depends simply on whether or not it is
almost everywhere true under some distribution that the projections
ϕi1(x; ai1 [t]), . . . ϕin(x; ain [t]) of the finitely many formulas ϕ11(x; ai1), . . . ϕin(x; ain) assigned to
the index t have a common solution, that is, whether or not the distribution can be chosen to be
multiplicative. More precisely, if (c) holds, let c realize the type and let f1 send any finite subset of
p to the set of indices t on which it is realized by c[t]. This map is multiplicative, but its image may
not be a regularizing set. To obtain a distribution, first fix an enumeration g : λ → Pℵ0(p). Let
f2(u) = f1(u) ∩Xg−1(u), so the image of f2 is a regularizing set. We now recover multiplicativity
as follows: for each u ∈ Pℵ0(p), |u| ≥ 1, define

f(u) = {t < λ : for each ϕ(x; a) ∈ u, t ∈ f2({ϕ(x; a)})}

Since t ∈ f2({ϕ(x; a)}) implies M |= ϕ(c[t]; a[t]), f refines the  Loś map, and it is clear that f
assigns only finitely many subsets u to each index model. So f is a multiplicative distribution as
desired.

If (b) holds, choose a common solution ct in each index model; by  Loś’ theorem and the definition
of distribution,

∏
t<λ ct/D will realize the type. �

In [5] we proved that the reductions just explained for regular ultrapowers – namely that first,
saturation depends on the theory and not the model chosen, and second, that realizing types
depends on almost everywhere finite projections to the index models – can be further reduced to
the study of types in finite fragments of the language:

Theorem 2.7. (Malliaris [5]) Let D be a regular ultrafilter on λ ≥ ℵ0 and let T be a countable
theory, M |= T . Then Mλ/D is λ+-saturated iff, for all formulas ϕ, Mλ/D realizes all ϕ-types
over sets of size ≤ λ. That is, local saturation implies saturation.
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For types in a single formula, the complexity of distributions (see Fact 2.6 above) can be usefully
abstracted by the following simple representation of a characteristic sequence, which we now explain.
These hypergraphs were introduced and developed in our prior work [6], [7], [8] as a context
where graph-theoretic arguments could be applied to give model-theoretic information, but we will
introduce ideas from those papers only as they are needed.

Definition 2.8. (Characteristic sequences, Malliaris [6]) Let T be a first-order theory and ϕ a
formula of the language of T .

• For n < ω, Pn(z1, . . . zn) := ∃x
∧
i≤n ϕ(x; zi).

• The characteristic sequence of ϕ in T is 〈Pn : n < ω〉.
• Write (T, ϕ) 7→ 〈Pn〉 for this association.

Without loss of generality, we will identify the predicates Pn with their interpretation in the monster
model. When it is important to specify the model, write PMn for interpretation in some given model
M .

Remark 2.9. In practice, when computing the characteristic sequence, we will often choose formu-
las of the form ϕ(x; y)∧¬ϕ(x; z), or θ(x; y, z, w) = ((z = w)∧ϕ(x; y))∨ ((z 6= w)∧¬ϕ(x; y)). For
instance, in the random graph, it is the characteristic sequence of ϕ(x; y, z) = xRy∧¬xRz, not that
of xRy , which captures the essential complexity. The characteristic sequence accurately describes
“positive” partial types, as the next remark shows; so if the formula chosen can code negation, we
can describe consistent partial types.

Remark 2.10. Note that for any characteristic sequence, and any A ⊂ P1, the following are
equivalent:

(1) An ⊂ Pn for all n
(2) {ϕ(x; a) : a ∈ A} is a consistent partial type.

We will call a set A ⊂ P1 satisfying either of these conditions a P∞-complete graph, or equivalently
a positive base set to emphasize its connection with types.

In the context of ultrapowers, the analogue of Fact 2.6 is simply:

Fact 2.11. (Malliaris [8] Lemma 4.8) Let D be a regular ultrafilter on λ and N = Mλ/D an
ultrapower. The following are equivalent for any characteristic sequence and any positive base set
A ⊆ N :

(1) The type p(x) = {ϕ(x; a) : a ∈ A} corresponding to A is realized.
(2) There exists d : A→ D whose image is a regularizing family and such that writing A[t] for

{a[t] : t ∈ d(a)}, we have that almost everywhere, A[t] is a P|A[t]|-complete graph in M .
Without loss of generality, for any positive base set A, if d : A→ D then we may assume d refines
a 7→ {t < λ : a[t] ∈ PM1 }.

Definition 2.12. Let D be a regular ultrafilter on λ, 〈Pn〉 a characteristic sequence, and N = Mλ/D
an ultrapower.

(1) Call A ⊆ N small if |A| ≤ λ.
(2) If Fact 2.11(2) holds for every small positive base set A ⊂ N , say that D solves 〈Pn〉.

2.2. Keisler’s order on unstable theories. By Theorem A, stable theories fall into precisely two
classes in Keisler’s order. However, despite much progress in the model-theoretic understanding
of unstable theories, the structure of Keisler’s order on unstable theories has remained elusive.
Before stating one further result, Theorem C, we recall a classic structure/randomness tradeoff for
unstable theories.
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Definition 2.13. (Stability and the order property) A theory is said to be stable if it does not
contain a formula with the order property. We say that: (note that `(x), `(y) need not be 1)

• ϕ(x; y) has the order property with respect to the background theory T if it is consistent
with T that there exist elements 〈ai : i < ω〉 such that for all j < ω, the following partial
type is consistent:

{¬ϕ(x; ai) : i < j} ∪ {ϕ(x; ai) : i ≥ j}
This is often stated as: there exist elements 〈ci, ai : i < ω〉 in some sufficiently saturated
M |= T such that M |= ϕ(ci, aj) iff i < j.

Note that “ϕ has the order property with respect to T” can be expressed by countably many
sentences.

Remark 2.14. The definition of order property remains agnostic as to whether or not types which
do not correspond to cuts over the ai are consistent. A fundamental structural property of unsta-
ble theories is the following “dichotomy” (strictly speaking, the two possibilities are not mutually
exclusive, but we use this word as they represent different ends of a spectrum).

Theorem B. (A dichotomy above stable theories, [12] Chapter II §2,4) Suppose T is unstable.
Then either:

• T contains a formula with the independence property, i.e. for some ϕ(x; y) there exists a
sequence 〈ai : i < ω〉 such that for any two disjoint finite σ, τ ⊆ ω, the following partial type
is consistent:

{¬ϕ(x; ai) : i ∈ σ} ∪ {ϕ(x; ai) : i ∈ τ}
• T contains a formula with the strict order property, i.e. for some ψ(x; y) there exists a

sequence 〈ai : i < ω〉 such that {ψ(x; ai)} ∪ {¬ψ(x; aj} is consistent if and only if j < i.

We can now state:

Theorem C. (Summary of known results on the structure of Keisler’s order, from introduction to
[8])

(1) The theories without the finite cover property (FCP) are minimal in Keisler’s order. [2]
(necessary), [12] (sufficient)

(2) There is a dividing line between theories with and without FCP. [2], [12]
(3) The stable theories with FCP are an equivalence class in Keisler’s order. [12]
(4) There is a dividing line between stable and unstable theories. [12]

...
(5) There is a maximum class, namely, the theories which are λ+-saturated iff the ultrafilter is

λ+-good. The strict order property is sufficient for maximality. In fact, SOP3 is sufficient
for maximality; however, the model-theoretic identity of the maximal class is not known.
[2], [12], [16], [1], [15]

Theorem C explains our interest in the independence property in this article. Namely, among
unstable theories, those with enough rigidity (i.e. those containing the strict order property of
Theorem B) are viewed by ultrafilters as maximally complex. Thus, speaking informally, they sink
to the bottom of the classification, whereas those whose complexity comes from many degrees of
freedom as in the independence property do not. Before giving some of our results, we record one
higher level of the dichotomy of Theorem B. Note that stable implies simple but the reverse does
not hold. (Also, any theory with the strict order property or SOP3 is not simple.)

Definition 2.15. A theory is said to be simple if it does not contain a formula with the tree
property, where this means: (note that `(x), `(y) need not be 1)

6



• ϕ(x; y) has the tree property (strictly speaking, the 2-tree property) if it is consistent with
T that there exist elements {aη : η ∈ ω>ω} such that for any η ∈ ω>ω, the elements of
{ϕ(x; aηai) : i < ω} are pairwise inconsistent but for every η ∈ ωω, the branch {ϕ(x; aη|n) :
n < ω} is consistent.

That is, there is a tree of instances of ϕ such that paths correspond to consistent partial types, and
the successors of any given node are pairwise inconsistent. Once again, notice that this definition
remains agnostic as to the consistency of instances from incomparable nodes without a common
immediate predecessor.

Here too, there is a very useful “dichotomy.”

Theorem D. (A dichotomy above simple theories, [13] Theorem 0.2 p. 177)
Suppose T is not simple. Then either:

• there are ϕ, aη witnessing the tree property, such that furthermore, for any η, ν ∈ ω>ω such
that neither of η, ν is an initial segment of the other, we have that ϕ(x; aη), ϕ(x; aν) are
contradictory. In this case, say that ϕ has SOP2, sometimes called TP1. The strict order
property implies SOP2.

• there are ϕ, a`n (`, n < ω) such that the elements of Γ` = {ϕ(x; a`n) : n < ω} are pairwise
inconsistent, but for any η ∈ ωω, the set {ϕ(x; a`η(`)) : ` < ω} is consistent. In this case, say
that ϕ has TP2.

Note that the second item is (a priori) stronger than simply adding a compatibility condition onto
the tree property for nodes not already determined to be inconsisent. It says, roughly speaking,
that we have countably many distinct sets of pairwise inconsistent choices, but these choices are
independent.

2.3. Results of our prior work and motivation for fundamental formulas. We now connect
the two structural “dichotomies” between independence and rigidity, Theorem B and Theorem D,
to our prior work and our aims in this article.

Definition 2.16. Trg is the theory of the Rado graph, here informally called the random graph,
in the language with a single binary relation R. Tfeq, studied in [14] 2.1, [1], [16], [8] is the model
completion of the following theory: there are two sorts X,Y and a three-place relation E(x, y, z)
on X × Y × Y such that for each x ∈ X, E(x, y, z) is an equivalence relation on Y with infinitely
many infinite classes. Write Ex(y, z) to indicate that y, z are Ex-equivalent.

Theorem 2.17. (Malliaris [8]) There is a minimal unstable theory in Keisler’s order, namely the
theory Trg of the random (Rado) graph. There is a minimal TP2 theory, namely the theory Tfeq of
a parametrized family of independent equivalence relations.

Remark 2.18. Theorem 2.17 shows that in both of the “independent” halves of the dichotomy
results Theorem B and Theorem D, there is a Keisler-minimal theory which, moreover, has a par-
ticularly simple form. That is, both Trg and Tfeq contain formulas which assert the existence of
certain partitions in the ultrapower. In ultrapowers of the random graph, realizing 1-types corre-
sponds to finding elements R-related to all elements in some set A and not to any elements of
B, which can be done exactly when the sets A,B can be almost everywhere separated, Example
3.3 below. Realizing 1-types in the formula ϕ(x; y, z) = Ex(y, z) asks that the ultrafilter be able to
separate larger families of sets, namely, the proposed equivalence classes, almost everywhere. This
observation suggests the following definition.

Definition 2.19. (Fundamental formulas) Let ϕ be a formula and 〈Pn : n < ω〉 its characteristic
sequence with respect to a background theory T . Say that ϕ is fundamental if the following both
hold:
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(1) 〈Pn〉 is =-definable, i.e. for each Pn there is a formula νn(y1, . . . yn) in the language of
equality such that |= Pn(a1, . . . an) iff |= νn(a1, . . . an).

(2) 〈Pn〉 has finite support, i.e. there is k < ω such that for all n > k, Pn(y1, . . . yn) iff
Pk(yi1 , . . . yik) holds on all k-element subsets {i1, . . . ik} ⊆ {1, . . . n}.

We will also use the word fundamental to refer simply to characteristic sequences satisfying these
two conditions.

Motivation 2.20. The apparent nature of Keisler’s order, in which certain paradigmatic configu-
rations serve as points of contact between theories (that is, they correspond to realization of certain
ϕ-types) and ultrafilters (that is, they make clear demands on certain regularizing families), sug-
gest that it is potentially very useful to define and classify the formulas exhibiting the “particularly
simple form” of Remark 2.18. Definition 2.19 proposes a formal description of this class. Infor-
mally speaking, we look for formulas which, (α) on the one hand, have model-theoretic significance:
e.g. ϕ(x; y, z) = xRy ∧ ¬xRz in the random graph captures the independence property, whereas
Ex(y, z) ∧ ¬Eu(v, w) captures TP2, which can be thought of as independence in the presence of
dividing. On the other hand, (β) we ask that realization of ϕ-types be expressible in terms of
conditions on the filters: e.g. partitioning or separating certain families of sets in the ultrapower.
What motivates this work is the observation that classifying these fundamental formulas is likely
to be useful both for establishing equivalence classes and for determining dividing lines in Keisler’s
order:

(1) (Equivalence classes) Prior results, e.g. Theorem A suggest that such paradigmatic examples
may bring many other theories with them. Such paradigmatic examples tend, informally
speaking, to provide the ultrafilter with clear invariants, like partition properties or growth
rates of nonstandard integers, which it may then manipulate.

(2) (Dividing lines) Any equivalence established between realization of certain types and proper-
ties of ultrafilters helps the construction problem by isolating structural properties of ultra-
filters with model-theoretic significance. It is in principle easier to build a filter which, say,
can separate pairs of sets but not families of sets, than to try, before this reduction, simply
to saturate models of the random graph while not saturating some non-simple theory.

Remark 2.21. We remark that Definition 2.19 satisfies (α) and (β) from Motivation 2.20 above
in the following sense:

(α) The model-theoretic significance of the fundamental formulas is to give a series of “inde-
pendence properties” of potentially increasing complexity. That is, they assert that sets of
instances of ϕ always have a common witness provided that there is no explicit contradiction
in the parameters as given by the formulas νn.

(β) Each fundamental formula corresponds to an assertion about induced structure in the ultra-
power by Claim 4.10 below.

3. The example of the random graph

A first key observation is that what is at stake in studying the fundamental formulas is the rela-
tion of first-order and second-order structure in regular ultrapowers, which the following example
illustrates. Suppose that M is the countable model of the theory Trg of the random (i.e. Rado)
graph in the language L = {=, R(x, y)}. Let D be a regular ultrafilter on λ. Recall that ultrapowers
commute with reducts:

Fact 3.1. Let M be a model of signature L, L0 ⊂ L and D an ultrafilter on λ. Then(
Mλ/D

)
|L0 = (M |L0)λ /D
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Thus any ultrapower N = Mλ/D can naturally be expanded to a model of the full theory of M
(the theory in a language of size 2|M | in which all possible relations, functions and constants are
named). In particular, the following class of sets will play an important role in reflecting structure
between M and N :

Definition 3.2. (Induced) Let N = Mλ/D. A set Q ⊂ Nk is said to be induced if it is equal to
the ultraproduct (modulo D) of its projections to the index models.

Example 3.3. The following are equivalent for M |= Trg and a regular ultrafilter D on λ:

(1) N := Mλ/D is λ+-saturated.
(2) For any two disjoint A,B ⊂ N with |A|+ |B| ≤ λ, there exists an induced unary predicate

Q such that A ⊂ Q and B ∩Q = ∅.

Proof. First, by quantifier elimination, N is λ+-saturated iff it realizes all types of the form:
p(x,A,B) := {xRa : a ∈ A} ∪ {¬xRb : b ∈ B} for all disjoint sets A,B ⊂ N with |A|+ |B| ≤ λ.

(1) → (2): Let A,B be given and let c realize the type p(x,A,B) in N . Let Q[t] := {y ∈ M :
M |= c[t]Ry)}. Then Πt<λQ[t]/D is the desired set.

(2) → (1): Let Q be given and, as above, write Q[t] for its trace in the index model M . Let
d : A∪B → D be a map whose image is a regularizing family. Refining this map by  Loś’ theorem,
we may assume that almost everywhere, A[t] ⊂ Q[t] and B[t] ∩ Q[t] = ∅. Define c[t] to be an
element satisfying p(x,A[t], B[t]) in M , if it exists; it will almost everywhere, by the axioms of the
random graph and the fact that the traces of A,B are almost everywhere finite and disjoint. Then
c := Πt<λc[t]/D will realize p(x,A,B) in N . �

In other words, in ultrapowers of the random graph, we can find an induced unary predicate
which separates two given sets of size λ (i.e. we can realize a certain second-order type) if and only
if a certain type in the formula xRy ∧ ¬xRz is realized over those sets.

3.1. Analysis of the example. We make some observations which will then generalize. First, we
observe that characteristic sequences (Definition 2.8 above), introduced in [6] to analyze first-order
types, have a larger scope.

Remark 3.4. By analogy to Definition 2.8, we can describe the existence of a unary predicate Q
in Example 3.3 by writing down the (a priori non-first-order) sequence 〈PQn : n < ω〉 given by

PQn ((y1, z1), . . . (yn, zn)) = ∃Q

∧
i≤n

ψ(Q, yi) ∧ ¬ψ(Q, zi)


where ψ(Q, y) = Q(y) has one second-order and one first-order variable.

That is, in any model M (not necessarily an ultrapower) the interpretation of PQk in M holds
on a k-tuple of pairs of elements of M whenever it is possible to expand the model by a unary
predicate whose interpretation is as required.

Notice, however, that in Example 3.3 the PQn associated to the induced predicate are first-
order definable because their truth depends only on collisions between the parameters yi, zj . The
predicate PQk holds on a k-tuple of pairs of elements of some model M exactly when the set of first
coordinates of the pairs does not intersect the set of second coordinates. More generally, a possibly
infinite subset A ⊂ M2 is a PQ∞-complete graph precisely when it is possible to expand the model
by a unary predicate which separates first and second coordinates of A. Thus in Remark 3.4, the
second-order structure simply records the existence of a possible partition.

Returning to the random graph:
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Observation 3.5. Let ϕ(x; y, z) = xRy∧¬xRz and T = Trg, and 〈Pn : n < ω〉 be its characteristic
sequence. Then ϕ is fundamental in the sense of Definition 2.19 above.

Proof. We check the conditions of Definition 2.19. (1) It suffices to check that, writing yi = (zi, wi),
we have that {z1, . . . zn} ∩ {w1, . . . wn} = ∅. (2) In fact, k = 2 suffices. �

Conclusion 3.6. Example 3.3 can be explained via Fact 2.11 by noting that the characteristic
sequences 〈Pn〉 for ϕ and 〈PQn 〉 for Q are identical and, moreover, both sequences are fundamental
in the sense of Definition 2.19.

4. Second-order quantifiers

We now generalize the analysis of Example 3.3 to all fundamental formulas.
In his paper “There are just four second-order quantifiers” [11], Shelah gives the definition

(suggested by Stavi):

Definition 4.1. A second order quantifier is of the form Qψ, where ψ = ψ(r) is a first-order
sentence with the single predicate r, and (Qψ(r))φ means “There is a relation r satisfying ψ such
that φ...”

For instance, Qψ may be a unary predicate, a bijection, a linear order, or an equivalence relation
all of whose classes have size 2. We will need the following notation:

Definition 4.2. [11] Let Qψ be a second-order quantifier as in Definition 4.1. Then for any set
B, Rψ(B) = {R : R is an `(ψ)-ary relation over B and B |= ψ[R]}.

Definition 4.3. (D solves Qψ) Let D be a regular ultrafilter on λ and Qψ a second-order quantifier.
(1) Given a set A and Q ∈ Qψ with `(ψ) = n, we write A |= Q = R to abbreviate: Q ∩ An =

R ∩An.
(2) Say that D solves Qψ if for any infinite M , any small set A ⊆ N = Mλ/D, and any

Q ∈ Rψ(A), there exists an induced predicate R such that R ∈ Rψ(N) and A |= Q = R.

As in Remark 3.4, we may naturally assign characteristic sequences to assertions of the form
Qψφ:

Definition 4.4. To any second-order quantifier Qψ and associated formula φ(Q, y) from Definition
4.1, we may associate the characteristic sequence 〈Pn : n < ω〉 given by:

Pn(y1, . . . yn) ⇐⇒ Qψ(R)

∧
i≤n

φ(R, yi)


For concreteness, we will be most interested in formulas φ which allow us to determine the “type”

of the predicate Qψ over some set of size ≤ λ. The use of the word “type” looks towards Claim
4.11 below.

Definition 4.5. Let Qψ be a second-order quantifier of arity n. Let φ(R, y1, . . . yn, z, w) = ((R(y1, . . . yn)∧
z = w) ∨ (R(y1, . . . yn) ∧ z 6= w)). Then φ is a formula in the language of equality with a single
second-order variable R (alternately, a first-order formula in the language with a symbol for R).
We say that φ is a true description of Qψ.

Informally, a true description allows us to determine how R partitions some given set of parame-
ters. In general, of course, one can do this with many different formulas in the language of equality
coding the assertions “R(x)” and “¬R(x)”.
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Convention 4.6. Below, when we write “〈Pn〉 is ‘a’ characteristic sequence of Qψ” this will al-
ways mean that it is the characteristic sequence of Qψφ(r, y) computed with respect to the true
description φ just given in the language of equality (Definition 4.5). However, it will not matter
much in our context if another true description is chosen; “a” rather than “the” reflects this fact.

We now briefly discuss the hypothesis of “finite support” in Definition 2.19. Recall that a
characteristic sequence has finite support if for some n < ω and for all m > n, Pm(y1, . . . ym)
holds iff Pn holds on all n-element subsets of {y1, . . . ym}. In the first-order case, the characteristic
sequence of ϕ has finite support iff ϕ does not have the finite cover property, see [6].

Remark 4.7. If ψ asserts that R is an equivalence relation, and φ(R, x, y, z, w) = (R(x, y) ↔ z =
w) ∧ (¬R(x, y) ↔ z 6= w)) is a true description, then the associated characteristic sequence has
finite support, in fact support 2.

Likewise, in the Example 3.3 of the random graph above, saturation depends on a formula
ϕ(x; y, z) = xRy ∧ ¬xRz of finite support. Still, any unstable theory contains a formula with the
finite cover property (recall definition on page 3):

Fact 4.8. ([12] Theorem 4.2 p. 62) If ϕ(x; y) has the order property, then the formula

θ(x; y1, y2, y3, y4) = (ϕ(x; y1) ↔ ¬ϕ(x; y2)) ∧ (ϕ(x; y3) ↔ ϕ(x; y4))

has the finite cover property.

In particular, this can be reflected in second-order quantifiers.

Example 4.9. Let QM be the monadic quantifier (which corresponds to the unstable formula xRy
in the random graph) and consider the related quantifier Qψ where

ψ(r) = ∀x(r(x) = r(x)) ∧ ∃x¬r(x) ∧ ∃xr(x)

Then the formula (r(x) ↔ ¬r(y)) ∧ (r(z) ↔ r(w)) is a true description of Qψ whose associated
characteristic sequence does not have finite support.

However, this is not an essential loss, as the fundamental formulas are covered by the second
order quantifiers:

Claim 4.10. (Fundamental formulas and quantifiers)
(1) Each characteristic sequence 〈Pn : n < ω〉 of finite support which is definable by formulas

〈θ1, . . . θk〉 in the language of equality is a characteristic sequence of some second-order
quantifier Qψ.

(2) Each second-order quantifier Qψ in the sense of Definition 4.1 has a characteristic sequence
〈Pψn : n < ω〉 which is definable in the language of equality.

Proof. (1) Let 〈Pn : n < ω〉 be such a characteristic sequence; suppose it has support k, and let
θ1, . . . θk be the defining formulas for P1, . . . Pk respectively. Let m be the arity of a tuple from P1.
Then let ψ(R) be the formula

∀y(r(y) ≡ r(y)) ∧
∧
i≤k

∀y1 . . . yi

∧
j≤i

(
r(yj) =⇒ θi(y1, . . . yi)

)
(2) Suppose the arity of Qψ is m. Let 〈Pn〉 be a characteristic sequence of Qψ. Note first that

for any (sufficiently large) set B, R ∈ Rφ(B) and f : B → B a bijection, if we identify R with its
interpretation in B then f carries R to some other R′ ∈ Rφ(B) and thus preserves the quantifier.
So for each k < ω, Pk(y1, . . . yk) depends only on the (principal) type of y1, . . . yk in the language of
equality, and we may define it by taking the disjunction of the finitely many such types on which
it is satisfied. �
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The next result says that all such second-order quantifiers “descend” to some first-order rep-
resentative of equivalent complexity, i.e. with the same characteristic sequence; we delay the
(straightforward but lengthy) proof to the Appendix, page 20.

Lemma 7.1. (see p. 20 below) Suppose Qψ is a second-order quantifier of arity m. Let

ϕ(r, y1, . . . ym+2) = (r(y1, . . . ym) ∧ ym+1 = ym+2) ∨ (¬r(y1, . . . ym) ∧ ym+1 6= ym+2)

be a true description and 〈Pn〉 its associated characteristic sequence.
Then there exist a first-order theory T in the language L = {=, X, Y, ρ} where X, Y are unary

predicates and ρ is an (m + 1)-ary relation such that 〈Pn〉 is also the characteristic sequence of
(T, ξ), where

ξ(x, y1, . . . ym, z, w) =

{
ρ(x, y1 . . . ym) if z = w

¬ρ(x, y1 . . . ym) if z 6= w

We have the following equivalence between any fundamental formula and second-order quantifier
which share a characteristic sequence:

Claim 4.11. The following are equivalent, for a regular ultrafilter D on λ:

(1) D solves the second-order quantifier Qψ in the sense of Definition 4.3.
(2) D solves 〈Pn〉 in the sense of Definition 2.12, where 〈Pn〉 is a characteristic sequence of

Qψ.
(3) Any D-ultrapower of some model of Tρ realizes all ρ-types over sets of size ≤ λ, where

Tρ, ρ are the theory and formula constructed in §7 such that the characteristic sequence of
ρ modulo Tρ is a characteristic sequence of Qψ.

(4) Any D-ultrapower of some model of T realizes all ϕ-types over sets of size ≤ λ, where T, ϕ
are such that the characteristic sequence of ϕ w.r.t. T is the same as that of Qψ.

Proof. By construction, characteristic sequences work in precisely the same way for the first- and
second-order types: namely, Fact 2.11 applies. In other words, the following are equivalent: (1) D
solves 〈Pn〉, (2) for any small positive base set A ⊂ PN1 in any regular ultrapower N = Mλ/D, there
is a distribution d : A → D which is a.e. a P∞-complete graph as required. But this corresponds
to (3), (4) as well just by the fact that Qψ and ϕ share the same characteristic sequence. �

Given this correspondence between solution of second-order quantifiers and realization of certain
first-order ϕ-types, we now consider how this identification can help with the original goal of
evaluating saturation for these types.

As the title of his paper suggests, Shelah [11] proved the following remarkable result:

Theorem E. ([11] Theorem 2 p. 285) Each Qψ is equivalent to exactly one of the following
quantifiers:

A) QFO, the trivial quantifier, i.e. Qψ1, ψ1 = r, n(ψ1) = 0, so the language with this additional
quantifier is just first order logic.

B) QM , the monadic second-order quantifier, i.e. QψM
, ψM = (∀x)[r(x) ≡ r(x)], and n(ψM ) =

1.
C) Qσ, the permutational second-order quantifier, ranging over permutations of the universe

of order 2, i.e. Qψσ where ψσ = (∀x)[f(f(x)) = x].
D) QII , the (full) second-order quantifier, i.e. QψII

, ψII = (∀xy)[r(x, y) ≡ r(x, y)], n(ψII) = 2.

Note that QFO and Qσ are called QI and QP , respectively, in [11]. “Equivalent” in Theorem E
means up to interpretability, Definition 5.1.

12



5. Interpretability

We now consider whether Theorem E remains true when the relevant definition of “interpreta-
tion” is considered in the context of ultrapowers.

Definition 5.1. ([11], p. 282) The quantifier Qψ1 is interpretable in Qψ2 if there is a first-order
formula θ(x, y1, . . . , r1, . . . ) such that for any infinite set A, and relation R over it such that A |=
ψ1[R], there are elements a1, · · · ∈ A and relations S1, . . . over A, with A |= ψ2[Si] for each i, such
that A |= (∀x (R(x) ≡ θ(x, a1, . . . , S1, . . . )).

Remark 5.2. To illustrate the subtlety of translation to ultrapowers, consider a simple example.
We might argue “in the real world” that QII interprets Qσ as follows. First, if we have available any
equivalence relation with infinitely many infinite classes, then we certainly can name any infinite
set: simply let this be one of the classes. Thus, to interpret an equivalence relation with infinitely
many classes of size 2 on some set A ⊂ B, we might first choose an equivalence relation on B
with infinitely many infinite classes (whose restriction to A is as desired), and then intersect this
with a monadic predicate naming A. This works well on some fixed infinite set. However, in
an ultrapower, we do not have access to every second-order predicate, but only the induced ones.
Induced sets are very large and they interact with each other in “large” (i.e. coarse) ways. While
it is certainly possible to find an equivalence relation E and a monadic predicate P which have the
desired type over some small A ⊂ N , this is no guarantee that E ∩P will be an equivalence relation
with classes of size 2 on the rest of the model (or, what amounts to the same thing, in most index
models). So this attempted “interpretation” has no purchase since the proposed copy of Qσ over A
which we obtain may not be itself induced.

However, by appealing to the precise reductions made in the course of Shelah’s proof, we now
show that interpretability works in our context as well (with one twist). Throughout, we will make
repeated use of Fact 3.1 combined with  Loś’ theorem, as well as induced sets, Definition 3.2.

Definition 5.3. Let Qφ, Qψ be quantifiers. Say that Qφ E Qψ if for all λ ≥ ℵ0 and all regular
ultrafilters D on λ, if D solves Qψ then D solves Qφ. If Qψ E Qφ E Qψ, write Qφ �Qψ.

Remark 5.4. The notation E reflects an analogy to Keisler’s order: if ϕ1 (wrt T1), ϕ2 (wrt T2)
are first-order formulas whose characteristic sequences coincide with those of Qψ1 , Qψ2 respectively,
then by Claim 4.11, Qψ1 E Qψ2 iff any ultrafilter which realizes all small ψ2 types in ultrapowers
of models of T2 also realizes all small ψ1 types in ultrapowers of models of T1.

Observation 5.5. QM E Qσ.

Proof. Let A,B be disjoint small subsets of some given ultrapower N . To solve QM in this
instance, it is sufficient to find an induced permutation σ of order 2 which fixes A pointwise
and does not fix any of the elements of B pointwise. That is, given σ as described, the set
X = {x : σ is a permutation of order 2 and σ(x) = x} is also induced and separates A,B almost
everywhere by  Loś’ theorem. �

Claim 5.6. The following are equivalent for a regular ultrafilter D on λ.
(1) D solves Qσ, the quantifier asserting the existence of a permutation of order 2.
(2) D solves Qβ, the quantifier asserting the existence of a bijection f (without loss of generality

we will choose the sequences A,B enumerating the domain and range to be disjoint)

Proof. 1 → 2: Clear.
2 → 1: Let us check that we can allow for the possibility that the permutation has fixed points.

Let ai 7→ bi (for i < λ) describe the desired permutation, and let X ⊆ λ be the set on which ai = bi.
Now we know that there exists some infinite, coinfinite induced predicate P which does not contain
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{bi : i /∈ X}. For each i ∈ X, choose ci ∈ N which does not equal any of the elements ai (easy as
any infinite induced predicate will have size at least λ+). Now we ask for a bijection f such that
f(ai) = ci if i ∈ X and f(ai) = bi otherwise. Let ϕ(f) say that f is a bijection in the language
with a symbol for f (see Fact 3.1). Now we distribute the elements via:

for i ∈ X, set d(ai) = d(ci) = {t < λ : P (ci) ∧ ϕ(f) ∧ f(ai) = ci}
for i /∈ X, set d(ai) = d(bi) = {t < λ : ¬P (ci) ∧ ϕ(f) ∧ f(ai) = ci}
Now for each index t < λ, we define a function gt as follows: (1) if f(x) = y, y /∈ P then set

g(x) = y, g(y) = x. If f(x) = y and y ∈ P , then set f(x) = x, f(y) = y. Now g =
∏
t gt/D is as

desired. �

Observation 5.7. Likewise, QE (the quantifier asserting the existence of an equivalence relation)
is implied by the quantifier Qf asserting the existence of a many-to-one function.

Proof. Let the preimages be the desired equivalence classes. �

Claim 5.8. Qσ E Qf .

Proof. Work in some ultrapower Mλ/D. Suppose we want to realize a type which asks that E(ai, bi)
(for i < λ, and E |= Qσ, and parameters from the ultrapower). By hypothesis we may find an
induced many-to-one function f which satisfies f(ai) = bi for all i < λ, and likewise find an
induced many-to-one function g which satisfies g(bi) = ai for all i < λ. Now distribute the elements
ai, bi by sending any element with subscript i to the set h(i) := {t < λ : M [t] |= (f(ai[t]) =
bi[t]) ∧ (g(bi[t)) = ai[t]) ∧ “f , g are functions”} ∈ D. Since f, g are (almost everywhere) functions,
we have that if t ∈ h(i), h(j) for i 6= j, then |{ai[t], bi[t]} ∩ {aj [t], bj [t]}| 6= 1. So we can construct
the desired permutation in each index model. �

Conclusion 5.9. QFO E QM E Qσ E Qf .

Notice, however, that for now this is a statement about these four specifically, not about the
class they belong to up to interpretability.

Recall the definition of TP2 from Theorem D page 7 above. It was shown in [8] §6 that any
ultrafilter which saturates models of some theory with TP2 must have the following property,
which we will make extensive use of. (More precisely, as mentioned above, it was shown that there
is a Keisler-minimal TP2-theory and that this next property suffices for its saturation). Recall that
“small” for Mλ/D means ≤ λ.

Definition 5.10. (D solves (ω, ω), Malliaris [8])
(1) Let 〈Pn〉 be a characteristic sequence. An (ω, ω)-array is an infinite set C = {cti : t <

ω, i < ω} such that first, P2(cti, c
s
j) iff (i 6= j) ∨ (t = s), i.e. elements in the same column

are pairwise inconsistent, and second, the sequence restricted to C has support 2, i.e. any
subset of C which contains no more than one element from each column is P∞-complete.

(2) Let D be a regular ultrafilter on λ, N = Mλ/D, 〈Pn〉 a characteristic sequence and C ⊆M
an (ω, ω)-array for 〈Pn〉. Without loss of generality, by Fact 3.1, suppose the language has
a predicate for C, so CN is its interpretation in N . We say that D solves (ω, ω) if D solves
any small positive base set A ⊂ N such that A ⊆ CN .

Equivalently, by  Loś’ theorem, D solves (ω, ω) if it solves any small positive base set A such that
for almost all indices t, A[t] ⊆ CM . In other words, a particular kind of type (which can be seen
from the configuration as arising from many pairwise compatible instances of dividing) is known
to be solvable.

Now the first-order theory intervenes. QE , the quantifier asserting the existence of an equivalence
relation, and (ω, ω) represent a priori different conditions on ultrafilters: informally speaking, QE
asks us to separate infinitely many infinite sets, while (ω, ω) and Qf ask us to choose a single
element out of each of these sets. However, from the first-order point of view, QE implies (ω, ω).
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Claim 5.11. Let 〈Pn〉 be a characteristic sequence for QE. Let ϕ be a first-order formula with the
same characteristic sequence modulo some background theory T . Then for any regular ultrafilter D
on λ and M |= T , if Mλ/D is λ+-saturated, then D solves (ω, ω).

Proof. Let ϕ be the formula given (see Lemma 7.1 for an example). So ϕ parametrizes a family of
equivalence relations which, since the characteristic sequence is =-definable, are independent. But
if E(x; y, z) is a x-indexed family of independent equivalence relations, then ψ(y;x, z) = E(x, y, z)
has TP2. By [6] Claim 3.8 (or see [8] §6), any regular ultrafilter D which solves some formula with
TP2 solves (ω, ω). �

Below, this will be enough to show any such filter will solve Qf (c.f. Observation 5.7).

Corollary 5.12. Let Q2e be the quantifier asserting the existence of an equivalence relation with
classes of size 2. Let 〈Pn〉 be a characteristic sequence for Q2e. Let ϕ be a first-order formula with
the same characteristic sequence modulo some background theory T . Then for any regular ultrafilter
D on λ and M |= T , if Mλ/D is λ+-saturated, then D solves (ω, ω).

Proof. By the analogous argument; for dividing it is enough to have classes of size 2. �

Lemma 5.13. Suppose Qψ is interpretable by QFO. Then any regular ultrafilter which solves QFO
solves Qψ.

Proof. By Shelah’s classification, Qψ does not interpret QM . In the notation of that paper, say that
two sequences a1, a2 are similar over a set C if they satisfy the same quantifier-free type over C in
the language of equality. Then by Claim 4B p. 286, for every formula φ(x, y, r), so in particular the
formula φ(x, r) = r(x), we have that for any set A and R ∈ Rψ(A) there exists a finite set CR ⊆ A
(uniformly definable in terms of R) such that if a1, a2 are similar over CR then A |= R(a1) ≡ R(a1).

Let A ⊂ N = Mλ/D be a small subset of an infinite regular ultrapower, and fix R ∈ Rψ(A).
We would like to find an induced Q ∈ Rψ(N) such that A |= R = Q. Let CR be the finite set
given by the previous paragraph. Since CR is finite, we may assume that on a D-large set X ⊆ λ
its projection to the index s ∈ X has the same quantifier-free type in the language of equality as
does CR in N . Let k be the arity of R. Now each k-tuple of elements of A will have one of the
finitely many possible similarity types of k-tuples over CR (in the language of equality), and by
the quoted Claim 4B, this will entirely determine whether or not it belongs to R. Let d : Ak → D
be a map whose image is a regularizing family and which takes each tuple a to a subset Y of X
such that for each s ∈ Y , a[s] satisfies the same similarity type over CR[s] as it does in N . By  Loś’
theorem, since the characteristic sequence is definable in the language of equality, we will have that
for almost all indices s, there is Qs ∈ Rψ(M) such that for all a ∈ Ak with s ∈ d(a), M |= Qs(a[s])
iff A |= R(a) in N . But then letting Q be the induced predicate whose projection to index s is Qs

satisfies our demands. �

Remark 5.14. Note that this proof shows more, namely, that Qψ is solved by any infinite reg-
ular ultrafilter. In particular, this implies by Theorem A above that any formula which shares a
characteristic sequence with Qψ must be stable without the finite cover property.

Fact 5.15. We will use the following two steps from [11] in the analysis of quantifiers Qψ which
do not interpret Qσ.

(1) ([11] Claim 5H p. 292) If Qσ is not interpretable by Qψ, then for every A,R ∈ Rψ(A),
e+(R,A) = {〈a, b〉 : a, b ∈ A, and the permutation f such that f(a) = b, f(b) = a, f(c) = c
for c 6= a, b is an automorphism of (A,R) } is an equivalence relation with finitely many
equivalence classes.
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(2) ([11], proof of Lemma 5, bottom of p. 293, in the context of any infinite set) If Qσ is not
interpretable by Qψ then there is some n5 < ω such that for any A, R ∈ Rψ(A), e+(R,A)
has ≤ n5 equivalence classes. Let us show that this implies Qψ is interpretable by QM . This
implies that for evary A,R ∈ Rψ(A) there are sets B1, . . . B` ⊆ A, the e+(R,A)-equivalence
classes, such that for any tuple of elements of A, the truth value of R(a1, . . . an(ψ)) depends
only on the truth values of ai = aj and ai ∈ Bk. Hence there is a quantifier free formula φ
such that

A |= (∀x)[R(x) ≡ φ(x,B1, . . . B`)]

Lemma 5.16. Suppose Qψ is interpretable by QM . Then any regular ultrafilter which solves QM
solves Qψ.

Proof. Let A ⊂ N = Mλ/D be a small subset of some regular ultrapower, and let R ∈ Rψ(A) be
given. If Qψ is interpretable by QM , then by Theorem E it does not interpret Qσ. By Fact 5.15,
there is a partition of A into finitely many sets Bi such that for any tuple of elements of A, the truth
value of R(a1, . . . an(ψ)) depends only on the truth values of ai = aj and ai ∈ Bk. By hypothesis, D
solves QM , i.e. we are guaranteed an induced monadic predicate which has the desired type over
any given small set. Define, by induction on i ≤ `, induced sets C1, . . . C` such that

(1) C1, . . . C` partition N
(2) A |= Ci = Bi for each i ≤ `
(3) if |Bi| < ℵ0, then |Ci| = |Bi|, so no new elements outside A are added to finite sets

Let Q(x) = φ(x,C1, . . . C`). Then Q is also induced, since it is definable in terms of induced sets.
By compactness (since the characteristic sequence is =-definable), Q ∈ Rψ(N). By construction,
A |= R = Q, which completes the proof. �

Remark 5.17. In particular, any regular ultrafilter which saturates models of the random graph
solves any Qψ which is interpretable by QM , by the analysis of Example 3.3. Since the random
graph is minimal among the unstable theories in Keisler’s order [8], we can equivalently say that
any regular ultrafilter which saturates some unstable theory solves any such Qψ.

However above monadic there is a surprise. A first indication of this was the analysis of [8] §6,
given in a slightly different language, proving the existence of a minimal TP2 theory in Keisler’s
order.

Definition 5.18. [8] Let D be a regular ultrafilter on λ, N = Mλ/D and A ⊂ N with |A| ≤ λ.
A true distribution of A is a map d : A → D whose image is a regularizing family such that for
almost all t < λ and for all a 6= b ∈ A, if t ∈ d(a) ∩ d(b) then a[t] 6= b[t].

In particular, it was shown that any regular ultrafilter which could saturate some theory with TP2

must be able to give a true distribution of any small set, and therefore certain induced predicates
would always be available. Here a slight generalization of that argument gives more power.

Claim 5.19. Let D be a regular ultrafilter on λ and suppose that in any ultrapower N = Mλ/D,
if A ⊂ N , |A| ≤ λ then there exists a true distribution of A. Then for any k < ω and any set
C = {ai1, . . . aik : i < λ} ⊆ Nk, there is a map d : C → D whose image is a regularizing family and
such that for any two k-tuples ai1, . . . a

i
k, aj1, . . . a

j
k from C,

if t ∈ d(ai1, . . . a
i
k) ∩ d(aj1, . . . a

j
k) then for all ` ≤ k, M |= ai`[t] = aj` [t] iff N |= ai` = aj`

Proof. Write Cj for the set {aij : i < λ} of jth coordinates of elements of Cj . For each pair `, j ≤ k

(not necessarily distinct) let d`,j : C` ∪ Cj → D be a true distribution. Now define the desired d
by ai1 . . . a

i
k 7→

⋂
`,j≤k d`,j(a

i
j). As the quantifier-free type in the language of equality depends on

checking all pairs of elements, this is sufficient. �
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Let us give this sharper notion a name (which refers to goodness of an ultrafilter).

Definition 5.20. Let D be a regular ultrafilter on λ. Say that D is good for equality if the
following holds: for any infinite M , if N = Mλ/D, k < ω and A ⊂ Nk with |A| ≤ λ, then there
exists d : A → D whose image is a regularizing family such that for almost all t < λ and for all
a 6= b ∈ A, writing qa,b(x, y) for the type of {a, b} in the language of equality, if t ∈ d(a)∩ d(b) then
M |= qa,b(a[t], b[t]).

This has the following consequences for quantifiers. We discuss its significance in Remark 5.22.

Theorem 5.21. The following are equivalent for a regular ultrafilter D on λ ≥ ℵ0.
0. D solves (ω, ω).

(1) D is good for equality.
(2) D solves Qσ.
(3) D solves every second-order quantifier.

Proof. (0) → (1) It was proved in [8] Lemma 6.8 that (0) implies that any small set A ⊆ N has
a true distribution modulo D. Briefly, given A ⊂ N of size λ, let d : A → D be any map whose
image is a regularizing family. Then the trouble is that we may have many pairs a 6= b ∈ A such
that a[s] = b[s] on a given index s ∈ d(a) ∩ d(b); we would like to refine d so this does not happen.
This can be coded into a combinatorial problem visible to (ω, ω) as follows. Assign to each element
a ∈ A an element b in the model of (ω, ω) such that if a, a′ are distinct in A but a[t] = a′[t],
then b[t] 6= b′[t] however b[t], b′[t] are in the same column of the (ω, ω) array. By  Loś’ theorem the
elements b push forward to a set B of elements in distinct (ω, ω) columns. Thus B is a positive base
set in the (ω, ω) context, and any solution of B corresponds to a true distribution for A. Applying
Claim 5.19 gives (1).

(1) → (3) follows from Claim 5.19: it amounts to saying we can distribute any positive base set
in a characteristic sequence of Qψ so that it is almost everywhere a positive base set (since each of
the predicates Pn is definable in the language of equality).

(3) → (2) is immediate.
Finally, let us show (2) → (0). Suppose that we are given an (ω, ω)-array in M whose image

in the ultrapower N is an array W ⊂ N , and assume, without loss of generality by Fact 3.1,
that we have a unary relation symbol for W , a binary relation symbol E interpreted in N as
the induced equivalence relation on W in which P2-incomparable elements are E-equivalent, and
a unary relation symbol C which chooses one canonical representative from each W -equivalence
class. Now the combinatorial problem is the following: we are given a small set A ⊂ W with the
property that for a, a′ ∈ A, ¬E(a, a′). We would like to find a distribution d : A→ D such that for
each s ∈ λ and each a, a′ ∈ A, if s ∈ d(a) ∩ d(a′) then a[s] 6= a′[s] =⇒ ¬EM (a[s], a′[s]). This will
solve (ω, ω).

Define for each a ∈ A and element ca ∈ CN as follows: ca =
∏
s ca[s]/D where ca[s] is the unique

element of CM such that EM (ca[s], a[s]). By hypothesis (2), there exists an induced bijection f
which takes ca to a for each a ∈ A. Now consider the distribution d : A→ D given by:

a 7→ {s < λ : f is a function and f(ca) = a and E(ca, a)} ∩ d0(a)

where d0 : A → D is any map whose image is a regularizing family. By  Loś’ theorem, this
distribution is as required. �

Remark 5.22. How to interpret Theorem 5.21, i.e. why is the existence of a bijection enough to
give goodness for equality, and thus guarantee the solution of any =-definable second-order quanti-
fier? One answer is to appeal to the characterization of Morley-Vaught: the saturated models are
exactly the homogeneous-universal ones [9]. It is not difficult to see that if D is a regular ultrafilter
on λ, then Mλ/D is universal for elementarily equivalent models of cardinality ≤ λ. Thus failures
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of saturation come from failures of homogeneity. Theorem 5.21 may then be understood as saying
that to require the existence of an induced bijection between any two sequences of size λ ensures
homogeneity on the level of equality.

In the following definition, we remember the fact that realizing ϕ-types always occurs in the
context of a theory, and that we care about the realization of all types in such a theory. Thus
certain configurations which are not a priori of the same strength (in ultrapowers) when considered
as as quantifiers may nonetheless be related when they are represented by some first-order formula.

Definition 5.23. (Equivalent at the level of theories)
(1) Let Qψ be a second-order quantifier. Let T be a first-order theory. Say that T represents

Qψ if there exists a formula ϕ in the language of T such that (T, ϕ) 7→ 〈Pn〉 for some
characteristic sequence 〈Pn〉 of Qψ.

(2) Let Qψ, Qρ be second-order quantifiers. Say that Qψ implies Qρ at the level of theories if
for any infinite cardinal λ, any regular ultrafilter D on λ, any T which represents Qψ and
any M |= T , if Mλ/D is λ+-saturated then D solves Qρ.

(3) Say that Qψ, Qρ are equivalent at the level of theories if each implies the other in the sense
of (2).

Claim 5.24. (1) Q2e and Qσ are equivalent at the level of theories.
(2) QE and Qf are equivalent at the level of theories.

Proof. By Claim 5.11 and Corollary 5.12, any ultrafilter which saturates models of some theory
representing either Q2e or QE will solve (ω, ω). By Theorem 5.21, it will therefore solve both Qσ
and Qf .

The other direction is given by Theorem 5.21 (2) → (3) in the first case, and Observation 5.7 in
the second. �

Remark 5.25. To complete this classification, it would be enough to show, analogously to Claim
5.11 and Corollary 5.12, that any theory which represents a quantifier which interprets QM has the
independence property, and that any theory which represents a quantifier which interprets Qσ has
TP2. By the analysis of [6], this appears feasible as dividing and infinite D-rank are visible in the
characteristic sequence.

Conclusion 5.26. From our analysis above the fundamental formulas can be characterized as
follows. (Each comes with some background theory T .) “Interprets” means in the sense of [11].

(1) ϕ 7→ 〈Pn〉 7→ Qψ where Qψ does not interpret QM . Then 〈Pn〉 is solved by any regular
ultrafilter.

(2) ϕ 7→ 〈Pn〉 7→ Qψ where Qψ interprets QM but does not interpret Qσ. Then any ultrafilter
D which solves QM , or equivalently, saturates models of the random graph will solve 〈Pn〉.

(3) ϕ 7→ 〈Pn〉 7→ Qψ where Qψ interprets Qσ. Then any ultrafilter D which solves Qσ, or,
equivalently, saturates models of Tfeq will solve 〈Pn〉.

Proof. By Theorem E, these are the only possible cases. The conclusion of Case (1) is Lemma 5.13
and the conclusion of Case (2) is Lemma 5.16. Case (3) follows from Theorem 5.21. �

6. = and <, or independence and order

We began, in §2.2 above, with a discussion of various tradeoffs in unstable theories between
independence and order. It appears this “dichotomy” (again, quotes as the possibilities are not
mutually exclusive for a theory or formula but are in some sense structurally opposite) is of basic
interest in understanding Keisler’s order. It was argued in Motivation 2.20 and Remark 2.21 that
the fundamental formulas express various levels of independence. By Theorem 5.21, their scope
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does not extend past TP2, which captures “goodness for equality”. On the other hand, by Theorem
C, we know that (ω,<) is maximal in Keisler’s order. Thus the distance to maximality is already
covered by ultrafilters whose distributions almost everywhere respect another binary relation, linear
order <.

It would be very interesting, both for Keisler’s order and for model-theoretic analysis more
generally, to determine whether, and if so where, there exists a dividing line among the non simple
theories. The theories at stake, those with the tree property but without SOP3, are increasingly an
object of model-theoretic study. Still, as far as we are aware, despite recent results on SOP3 (see
[15], [16], [1]; also, [8] Theorem 7.11, connects SOP3 to high density in the characteristic sequence
in the sense of Szemerédi regularity) it is generally considered that finding a dividing line is not
tractable until the structure of such theories is model-theoretically more understood.

Our methods in this paper, however, bring to light a potentially useful gap between two non-
simple theories, to do with the distinction between independence and order. Recall that “small”
for Mλ/D means of size no more than λ.

Theorem 6.1. Let M = (ω,<). Let D be a regular ultrafilter on λ which solves Trg (equivalently,
QM ) and N = Mλ/D. Let ϕ(x; y, z) = y < x < z. Then for any A ⊂ N2 and any small ϕ-type p
over A, there exist B ⊆ N2 with |A| = |B| and a small ϕ-type q over B, such that:

(1) N realizes p if and only if N realizes q.
(2) There is a true distribution of B modulo D.

In other words, provided D saturates the minimum unstable theory, the difficulty of realizing a cut
in N , i.e. finding a distribution of its base set which almost everywhere respects <, is not made
easier if there is a distribution of its base set which almost everywhere respects =.

Note that by quantifier elimination, types of this form determine saturation of ultrapowers of
(ω,<).

The following observation will be useful for the proof. For clarity of notation, we distinguish the
index set: let D be an ultrafilter on I, where |I| = λ.

Observation 6.2. Let p be a small type in N = (ω,<)I/D, given by {a0
i < x < a1

i : i < λ}. Let
r be another small type in N , given by {c0i < x < c1i : i < λ}. Write ai for the pair (a0

i , a
1
i ) and

ci for (c0i , c
1
i ), so we have that A = {ai : i < λ} and C = {ci : i < λ} are positive base sets for the

characteristic sequence 〈Pn〉 of ϕ. Note that this sequence has support 2.
Suppose that for all i < j < λ,

Xi,j := {s ∈ I : M |= P2(ai[s], aj [s])} = {s ∈ I : M |= P2(ci[s], cj [s])}
Then N realizes p if and only if N realizes r.

Proof. The conclusion is symmetric, so let us show that if N realizes r then N realizes p. Let
d : C → D be a distribution which is almost everywhere P∞-complete, given by Fact 2.11. Define
the analogous distribution d′ : A→ D by ai 7→ d(ci). By choice of d, if i < j then d(ci)∩d(cj) ⊆ Xi,j

and so by choice of d′, d′(ai)∩d′(aj) = d(ci)∩d(cj) ⊆ Xi,j . By hypothesis and definition of Xi,j , this
means the distribution d′ is almost everywhere a P2-complete graph. As noted, this characteristic
sequence has support 2. So d′ is almost everywhere P∞-complete, thus p is realized, as desired. �

We now return to the proof of the theorem.

Proof. (of Theorem 6.1) Let p be a small type in N = (ω,<)I/D, given by {a0
i < x < a1

i : i < λ},
where i < j < λ implies a0

i < a0
j < a1

j < a1
i . Once again, write ai for (a0

i , a
1
i ) and let A = {ai : i <

λ}, so A is a positive base set.
Let d : A → D be a.e. in PM1 . By the assumption that D solves QM , we may further assume

that under d the sets Lp = {a0
i : i < λ} and Rp = {a1

i : i < λ}, describing the left and right sides
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of the cut p, are disjoint under the distribution d. If d is a true distribution of both Lp and Rp, we
are done: let B = A, q = p. If not, for any s ∈ I, denote by Ys the set {i < λ : s ∈ d(ai)} of indices
of elements represented at index s. For each s ∈ I, we may define equivalence relations Es` , E

s
r on

Ys by Es` (i, j) ⇐⇒ (a0
i [s] = a0

j [s]), and likewise Esr(i, j) ⇐⇒ (a1
i [s] = a1

j [s]), which record the
collisions. (By construction, the only collisions will be between elements on the same side of the
cut.)

Define a linear order <s on the set of pairs {(t, i) : t < 2, i ∈ Ys} by: (t, i) <s (t′, i′) if:
• t = t′ = 0 and Es` (i, i

′) and i < i′

• t = t′ = 1 and Esr(i, i
′) and i′ < i

• t 6= t′ and ati[s] < ati′ [s]
By the hypothesis that Lp and Rp are disjoint at s, this is well defined and is indeed linear.

Essentially, what we have done is the following. At index s the projected elements cluster into
blocks (elements whose projections to s are equal). Each block consists entirely of elements from
either the left or the right side of the cut, though of course the blocks may alternate in the linear
order < on M = (ω,<). We define a second order <s which refines the given order on the blocks
by ordering the elements within each block according to their natural order as seen in N . We
will then want to choose witnesses B whose order-type in M with respect to < is the same as the
order-type of the projected parameter set A[s] with respect to <s. This may require “spreading
out” the elements along the linear order to accommodate the expansion. Thus we ensure goodness
for equality of this second set, while preserving the configuration from A with respect to <.

More formally, we construct B as follows. At each index s, let f : Ys → M ×M choose a set
of pairs of elements {bi[s] = (b0i [s], b

1
i [s]) : i ∈ Ys} which satisfies bti[s] < bt

′
i′ [s] in M if and only if

(t, i) <s (t′, i′). For each i < λ, let bi =
∏
s∈I bi[s]/D.

The set B = {bi : i < λ} has a true distribution, i.e. d(bi) := d(ai), by construction. Now let
i < j and let ai, aj and bi, bj be the corresponding elements of A,B respectively. For any s ∈ I,
P2(ai[s], aj [s]) iff a0

j [s] < a1
i [s] iff b0j [s] < b1i [s] iff P2(bi[s], bj [s]), by definition of <s and the fact that

the blocks were uniformly composed of left or right elements. In particular, since the characteristic
sequence of ϕ(x; y, z) = y < x < z has support 2, we have that B is a positive base set, and we may
call its corresponding type q. By Observation 6.2, p is realized iff q is realized, which completes the
proof. �

7. Appendix: Construction of theories

In this appendix, we show that the characteristic sequences of second-order quantifiers coincide
with =-definable characteristic sequences of certain first-order formulas, as mentioned on page 12
above. The construction will require some intermediate definitions.

Lemma 7.1. Suppose Qψ is a second-order quantifier of arity m. Let

ϕ(r, y1, . . . ym+2) = (r(y1, . . . ym) ∧ ym+1 = ym+2) ∨ (¬r(y1, . . . ym) ∧ ym+1 6= ym+2)

be a true description and 〈Pn〉 its associated characteristic sequence. Let νn be the formula in the
language of equality which defines the predicate Pn, given by Claim 4.10.2.

Then there exist a first-order theory T in the language L = {=, X, Y, ρ} where X, Y are unary
predicates and ρ is an (m + 1)-ary relation such that 〈Pn〉 is also the characteristic sequence of
(T, ξ), where

ξ(x, y1, . . . ym, z, w) =

{
ρ(x, y1 . . . ym) if z = w

¬ρ(x, y1 . . . ym) if z 6= w

Remark 7.2. For the complexity of this theory, as compared to that of the formula ρ, see Remark
7.6.
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First part of the proof. Consider the language L with equality, two disjoint unary predicates (or
sorts) X and Y which will partition the domain, and an (m + 1)-ary relation ρ(x, y1, . . . ym) with
domain X × Y m. We will build M as the union of an increasing chain of L-structures Mi.

At stage 0: X0 is empty, Y0 has m distinct elements, ρ is empty.
At odd stages i+ 1: Say that C ⊆ (Yi)m is a maximal P∞-complete graph if (1) for each ` < ω

and c1, . . . c` ∈ C, we have P`(c1, . . . c`) and (2) no C ′, C ( C ′ ⊆ (Yi)m satisfies this condition. For
each maximal P∞-complete graph C ⊂ (Yi)m, add, if no such element already exists, a new element
a to Xi+1 and set ρ(a, c) to hold iff c ∈ C. The structure with all such witnesses added is Mi. At
odd stages, Y does not change; let Yi+1 = Yi.

End of first part; proof continues on page 22. �

Before describing the even stages, we need one further definition.
To simplify the exposition, let us assume that z takes values in the natural numbers, though this

is understood to be shorthand for an expression with many more variables definable in the language
of equality as long as there are enough elements in the model (e.g. consider inputs z1, . . . , z` and
divide cases according to what combination of zi = zj are true).

Definition 7.3. Recall that ϕ(X, y1, . . . ym) is a true description of the second-order quantifier
Qψ, and that `(ψ) = m. Recall that the formula ψ defining the quantifier can be thought of as a
first-order sentence with a symbol for the predicate r. Without loss of generality, the variable x does
not appear in ψ. Let ψ′ be the first-order sentence constructed from ψ as follows: for any m-tuple
of variables y1, . . . ym of L, if the string r(y1, . . . ym) appears in ψ replace this with ρ(x, y1, . . . ym).
Note that since the result will be a sentence, the variables do not need to coincide with those of the
formula θ we now define.

Define the reverse description θ(y;x, y1, . . . ym, z) as follows. We assume x ∈ X, yi ∈ Y .

θ(y;x, y1, . . . ym, z) =


ψ′(x) ∧ ρ(x, y1, . . . ym) if z = 0, z > 2m
ψ′(x) ∧ ρ(x, y1, . . . , yz−1, y, yz+1, . . . ym) if 1 ≤ z ≤ m

y 6= yz if m+ 1 ≤ z ≤ 2m

In other words, θ allows us to describe all possible types in this context which an element y of a
given set A may have relative to other elements yi and to the element x, which is just the first-order
counterpart of the predicate ρ in the next construction. For instance, if x induces an equivalence
relation on A and we have decided which x-classes the elements of A fall into, the consistent partial
θ-types over {x} ∪ A would include the type of an element x-equivalent to some {a1, . . . an} but
not equal to any of the ai; and a consistent partial θ-type over {x1, x2} ∪A would include the type
of an element x1-equivalent to some a but not x2-equivalent to a.

Remark 7.4. Let θ be a reverse description of the quantifier Qψ, in the notation of Definition
7.3. Let 〈P θn : n < ω〉 be the characteristic sequence of θ(y;x, y1, . . . ym, z). As the characteristic
sequence 〈Pn〉 of Qψϕ is =-definable, the sequence 〈P θn : n < ω〉 is {=, ρ}-definable.

Proof. Let π = {θ(y; ai, bi1, . . . b
i
m, ti) : i < k, ti ≤ 2m} be a finite partial type. It suffices to deter-

mine consistency in the case where the ai are all equal to a single a (such cases are independent), so
assume this is the case for π. First consider the subtype π0 = {θ(y, a, bi1, . . . bim, ti) : i < k,m+ 1 ≤
ti ≤ 2m}, which is definable in the language of equality. If π0 is consistent, let c realize it and let
π1 = tp=(b11, . . . b

k
m, c) be the type of such a tuple in the language of equality.

Let πr = {θ(c;x, bi1, . . . bim, ti) : i < k, ti ≤ m} ⊆ π be the relevant formulas from π.
Now π is consistent just in case the type πr(x; c, b)∧ π1(c, b) is consistent, i.e. we can add a new

element c provided that requiring a to relate to it in the specified way will not violate the condition
ψ′(x). But each Pm in the characteristic sequence of Qψ is =-definable by a formula ζm, so this can
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be definably checked. Note that the predicate symbol ρ appears in ψ′, which (usually) prevents the
characteristic sequence of θ from being =-definable. �

We can now complete the construction for Lemma 7.1.

Continuation of proof of Lemma 7.1. At even stages i > 0: Let 〈P θn : n < ω〉 be the characteristic
sequence of the reverse description θ. Since this sequence is definable in the language {=, ρ}, we
can evaluate it on B. For every P θ∞-complete graph B0 ⊆ Y m+1, add, if one does not already exist,
a new element b to Yi and set ρ to hold following the template of this partial type. The structure
with all such witnesses added is Mi+1. Note that at even stages, Xi+1 = Xi.

Finally, let M =
⋃
i<ωMi, so X =

⋃
Xi, Y =

⋃
Yi. Let T = Th(M).

This completes the construction of the theory T and the formula ρ. It remains to check, in the
following Claim, that this construction works. �

Claim 7.5. The theory of the structure just built eliminates quantifiers and ξ behaves as intended.

Proof. It suffices to show that any formula ∃zφ(z, . . . ) is equivalent to a quantifier-free formula,
where φ is a boolean combination of atomic and negative atomic formulas. In our context, this
means either

∃x

x ∈ X ∧
∧
i

ρ(x; yi1, . . . y
i
m) ∧

∧
j

¬ρ(x; yj1, . . . y
j
m) ∧

∧
k

x = xk ∧
∧
`

x 6= x`


or

∃y

y ∈ Y ∧
∧
i

ρ(xi; yi1, . . . y, . . . y
i
m) ∧

∧
j

¬ρ(xj ; y
j
1, . . . y, . . . y

j
m) ∧

∧
k

y = yk ∧
∧
`

y 6= y`


which correspond to statements expressible in terms of the predicates Pn and P θn , respectively. Since
each of these are definable by construction, there is a quantifier-free equivalent in the language {=}
and {=, ρ}, respectively.

As for the statement that “ξ behaves as intended,” this means simply that the characteristic
sequence of ξ in T is indeed a characteristic sequence of Qψ. This follows from the fact that, by
construction, the same definition schema works for both sequences, as the predicates Pn are just
names for sets definable modulo the theory T . �

This completes the correspondence between predicates and formulas described in Definition 2.19
above. To conclude, we note that the second-order nature of these quantifiers is somehow essential
to their fineness; though the combinatorial problems they present accurately reflect, and can be
accurately reflected by, first-order formulas, this cannot necessarily be done on the level of theories
without an increase in complexity:

Remark 7.6. Let Qψ assert the existence of a total linear order. Then by Theorem 5.21 the
complexity of Qψ is simply that of saturating some theory with TP2. On the other hand, the reverse
description is maximally complex, because any theory with the strict order property is maximal in
Keisler’s order (see Theorem C above). As earlier sections in this paper have suggested, given
indications of a large gap between goodness for equality and goodness for order, it would be very
surprising if the minimal TP2 theory were itself already maximal. But then it appears unlikely
that one could modify the construction of a “canonical theory” given above to construct some first-
order theory associated to Qψ in which the quantifiers “descend” to first-order objects and yet the
complexity is not increased. For this “descent” seems to necessarily involve using elements to name
the instances of Qψ, and therefore to name at least one definable linear order.
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