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LOGARITHMIC STRUCTURES OF FONTAINE-ILLUSIE

By Kazuya KaTo

Logarithmic structures.

Fine logarithmic structures.

Smooth morphisms.

Several types of morphisms.
Crystalline sites.

. Crystals and crystalline cohomology.
Complements.

SN AN

Introduction. In this note, we present a general formulation of “log-
arithmic structure’” on a scheme found by J. M. Fontaine and L. Illusie.
Following their plan, we develop the theory of crystals with logarithmic
poles using this logarithmic structure.

The logarithmic structure is “‘something” which gives rise to differen-
tials with logarithmic poles, crystals and crystalline cohomology with loga-
rithmic poles, . . . etc. For example, a reduced divisor with normal cross-
ings on a regular scheme is such ‘‘something,” and the logarithmic
structure of Fontaine and Illusie is a natural generalization of this example
to arbitrary schemes. Their logarithmic structure is defined to be a sheaf of
commutative monoids M on the etale site X, of a scheme X, endowed with
a homomorphism M — Oy satisfying a certain condition. (Cf. Section 1.)
For X regular and D a reduced divisor with normal crossings on X, the
corresponding M is the sheaf of regular functions on X which are invert-
ible outside D. In general, the homomorphism M — Oy is not assumed to
be injective.

Algebraic geometry works especially well with smooth morphisms.
We can regard the theory of toroidal embeddings as a theory of varieties
with smooth logarithmic structures over a field (cf. (3.7)(1)). The logarith-
mic structure introduces a new range of smoothness, and we expect to have
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192 KAZUYA KATO

good algebraic geometry for smooth morphisms between logarithmic
structures. In subsequent papers [HK] [K '], as was the motivation of Fon-
taine and Illusie, we apply our theory to schemes with semi-stable reduc-
tion, which are examples of schemes with smooth logarithmic structures
over discrete valuation rings. (Cf. Complement 2 at the end of this note.)

I am very thankful to Fontaine and Illusie for the original definition of
the logarithmic structure, their permission for me to develop their theory
in this paper, advice and discussions. 1 was studying originally crystals
with log. poles for regular schemes and reduced divisors with normal cross-
ings, and I wished to write a note on log. str.’s of Fontaine-Iliusie to know
the best formulation of crystals with logarithmic poles.

Discussions between Illusie and M. Raynaud, and between Illusie and
P. Deligne gave good influences to the theory.

The theory of logarithmic structures and crystals with logarithmic
poles was developed independently by G. Faltings, and some parts of his
papers [Fa,] [Fa,] overlap with our study. Our formulation is different
from his (cf. Complement 1) and not covered by his theory. The theory of
de Rham-Witt complex with logarithmic poles was considered by O.
Hyodo [H,] [H,] and by M. Gros (unpublished). The theory of N. Katz
[K] on connections with logarithmic poles was the guide for our theory.

I thank Université de Paris-Sud and Institut des Haute Etude Scien-
tifique for the supports and hospitality during my study and writing.

1. Logarithmic structures. In this note, a monoid (resp. a ring)
means a commutative monoid (resp. ring) with a unit element. A homo-
morphism of monoids (resp. rings) is required to preserve the unit ele-
ments.

For a monoid M, M# denotes the associated group {ab ™ };a, beM};
ab™' = ¢d ™' & sad = sbhc for some s € M.

For a scheme X and x € X and for a sheaf & on the etale site X,,, F;
denotes the stalk of & at the separable closure X of x. In particular, Oy ;
denotes the strict henselization of Oy ,.

(1.1). Pre-log. structures. Let X be a scheme. A pre-logarithmic
structure on X is a sheaf of monoids M on the etale site X,, endowed with a
homomorphism « : M — Oy with respect to the multiplication on Oy.

A morphism (X, M) — (Y, N) of schemes with pre-log. str.’s is de-
fined to be a pair (f, #) of a morphism of schemes f: X — Y and a homo-
morphism & : f~'(N) = M such that the diagram
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[UN) == M

l l

FHOy) — Oy

is commutative. (We use the notation f~!, not f*, for the inverse image of
a sheaf, for we shall make a special use of the notation f*, cf. (1.4).)

(1.2). Log. structures. A pre-logarithmic structure (M, a) is called
a logarithmic structure if

a (0% = 0F via «

where 0% denotes the group of invertible elements of Ox. (We shall often
identify o~ !'(0%) C M with OF via this isomorphism.) A morphism of
schemes with log. str.’s is defined as a morphism of schemes with pre-log.
str.’s.

(1.3). The log. str. associated to a pre-log. str. For a pre-log. str.
(M, o) on X, we define its associated log. str. M to be the push out of

a (0% — M

l

o%
in the category of sheaves of monoids on X,,, endowed with
M* = Oy; (a, b) > ala)b (aeM, b e OF).
Then, M* is universal for homomorphisms of pre-log. str.’s from M to log.

str.’s on X.

(Remark. If G SCHS5Misa diagram of monoids with G a group,
its push out is described as (M @ G)/ ~, where (m,g) ~m’',g’) e
there exist k,, h, € H such that mt(h,) = m’t(h,), gs(h;) = g’'s(hy))

(1.4). The direct image and the inverse image. Letf:X — Y be a
morphism of schemes. For a log. str. M on X, we define the log. str.on Y
called the direct image of M, to be the fiber product of sheaves
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S+(M)

l

Oy —> fx(0x).

For a log. str. M on Y, we define the log. str. on X called the inverse
image of M and denoted by f*(M), to be the log. str. associated to the pre-
log. str. f~1(M) endowed with the composite map f~(M) — f~1(O,) —
Ox. For a log. str. M on X and for a log. str. N on Y, the following three
sets are canonically identified: The set of homomorphisms from N to the
direct image of M, the set of homomorphisms from the inverse image of N
to M, and the set of extensions of f to a morphism (X, M) — (Y, N).

The following facts concerning inverse images will be used frequently.
Let M be a log. str. on Y.

(1.4.1). fU(M/O%) = (F*M)/O%.

(1.4.2). If M is the log. str. associated to a pre-log. str. M’ on Y,
f*(M) coincides with the log. str. associated to the pre-log. str.
fTUM) = Ox.

(1.5). Examples of log. str.’s. (1) A standard example which we
keep in mind is (X, M) where X is a regular scheme with a fixed reduced
divisor D with normal crossings, and M is the log. str. on X defined as

M = {g € Ox; g is invertible outside D} C Oy.

The reason why we preferred the etale topology to the Zariski topology
in this note is that the definition of *‘normal crossings” is etale local.

(2) For any scheme X, we call M = 0¥ C Oy the trivial log. str. on X.
This is the initial object in the category of log. str.’s on X. On the other
hand, M = Oy is the final object in this category. The example (1.5)(1) is
interpreted to be the direct image of the trivial log. str. on the open sub-
scheme X — D.

(3) Let P be a monoid, X a scheme, and assume we are given a homo-
morphism P — I'(X, Oy), or equivalently Py — Ox where Py denotes the
constant sheaf on X corresponding to P. Then, let M be the log. str. asso-
ciated to the pre-log. str. Px — Ox. The log. str. of this type will play
important roles in this paper. An interpretation of M is the following. For
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aring R, if R[P] denotes the monoid ring on P over R, Spec(R[P]) has a
canonical log. str. associated to the canonical map P — R|[P]. The above
log. str. M on X is the inverse image of the canonical log. str. on
Spec(Z[P]) under the morphism X — Spec(Z|P]). We mention what this
M is, under a certain assumption.

Claim. Inthe above, if P has the property “‘ab = ac = b = ¢’ and if
X is a scheme over a ring R such that the induced morphism X —
Spec(R[P]) is flat, then M is identified with the sub-monoid sheaf of Ox
generated by 0% and P.

The proof of this claim will be given at the end of this section.

(1.6). Finite inverse limits. The category of schemes with log. str.’s
has finite inverse limits. If (X,, M)) is a finite inverse system, the inverse
limit is (X, M) where X is the inverse limit of the system of schemes X,,
and M is obtained as follows. Let py : X — X, be the projection, take the
inductive limit M’ of the inductive system of sheaves of monoids
px ' (M),), and then let M be the log. str. associated to the pre-log. str.
M’ — Oy.

(1.7). Logarithmic differentials. Leta:M — Oyand3:N — Oybe
pre-log. str.’s, and let f : (X, M) — (Y, N) be a morphism. Then, we
define the O y-module Q},y(log(M/N)), which is denoted simply by Wy
for simplicity when there is no risk of confusion about the pre-log. str.’s, to
be the quotient of

Qx/y D (0x ®7 M#r)
(Qy is the usual relative differential module) divided by the O x-submo-

dule generated locally by local sections of the following forms.

() (dala), 0) — (0, ala) ® a) witha e M.
(ii) (0, 1 ® a) with a € Image(f""(N) = M).

The class of (0, 1 ® a) fora € M in wy,y is denoted by d log(a).
It is easily seen that if M“ and N¢ denote the associated log str.’s,
respectively, we have

Qv (og(M/N)) = Qk,y(log(M*/N)) = Q,y(log(M“/N)).
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If M and N are log. str.’s, we have a surjection
OX ®1 Mer — w;(/y; a®b—ad lOg(b),

and the kernel is the O y-submodule generated locally by local sections of
the forms

(D)ala) ®a — L, u; ® u; witha e M and u; € OF such that a(a) =
v,
(i1) 1 ® a with a € Image(f~'(N) = M).

If we have a cartesian diagram of schemes with log. str.’s

X', M) L (x, M)

l l

(Y, N') —> (Y, N),
we have an isomorphism
f*w,l\’/y = Wiy

(1.8). For example, let P and Q be monoids, Q — P a homomor-
phism, R aring, X = Spec(R[P]), Y = Spec(R{Q]), and endow X and Y
with the canonical log. str.’s (1.5)(3), respectively. Then,

Ox ®z (Per/Image(Q*")) = wy,y; a ® b adlog(bh).

(1.9). Inthe situation (1.7), we define wy,y to be the exterior algebra
on the O y-module wk/y. It becomes a complex of (O y)-modules in the
natural way.

(1.10) Proof of the Claim in (1.5)(3). The problem is the injectivity
of M — Ox. By the description of the push out in Remark in (1.3), it suf-
fices to prove the following: If x € X, a, b € P and ab~' € O% ., then there
existsc, d e Psuch thatc, d € 9% ., andac = bd. (Note an element of Pis a
nonzero-divisor on X by the flatness assumption, and hence the expression
ab™! € O% . makes sense.) Let p be the image of x in Spec(R[P]). Then,
since R{P], = Oy, is faithfully flat, we have ab~' € R[P]*. Hence 3f, g €
R[P] which are not contained in the prime ideal p such that af = bg in
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R([P]. Write f = £, f.c, g = L.g.c, wherec € P, f., g. € R. Takec € P
such that f., ¢ & p. Then, the equation af = bg shows that there exists d €
P such that ac = bd. Since ¢  p and ab™' € R[P]¥, we have d € p.

2. Fine log. structures.

(2.1). A log. str. M on a scheme X is called quasi-coherent (resp.
coherent) if etale locally on X, there exists a monoid (resp. finitely gener-
ated monoid) P and a homomorphism Px — Ox whose associate log. str. is
isomorphic to M.

If (X, M) — (Y, N) is a morphism of schemes with quasi-coherent
log. str.’s, wy/y (1.7) is a quasi-coherent O x-module. If furthermore M is
coherent and X is noetherian and locally of finite type over Y, it is a coher-
ent O xy-module.

(2.2). A monoid is called integral if “ab = ac = b = ¢” holds. A
log. str. M on a scheme X is called integral if M is a sheaf of integral
monoids.

(2.3). We call a log. str. “fine” if it is coherent and integral.
In this note, we consider mainly fine logarithmic structures. (To my
experience, nonintegral log. str.’s are too much pathological.)

(2.4). The following facts are proved easily.

(2.4.1). Iff:X — Yisamorphism and M is a quasi-coherent (resp.
coherent, resp. integral) log. str. on Y, so is f*(M).

(2.4.2). A quasi-coherent (resp. coherent) log. str. M on a scheme X
is integral if and only if etale locally on X, M is isomorphic to the log. str.
associated to the pre-log. str. Py — Oy for some integral (resp. finitely
generated integral) monoid P.

(2.4.3). If M is coherent (resp. integral), the stalk M;/0%; is afi-
nitely generated (resp. integral) monoid for any x € X.

Example (2.5). (1) The log. str.on a regular scheme X correspond-
ing to a reduced divisor with normal crossings (1.5)(1) is fine. Indeed, etale
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locally on X, write D = U, *m; = 0” where “xr; = 0"’ are regular closed
subschemes of X. Then, M is associated to the pre-log. str.

N" = Ox; (n)<isr o L i
1

and the monoid N" is clearly finitely generated and integral.
(2) If X = Spec(k) for an algebraically closed field k, there is a bijec-
tion between the two sets

{isomorphism classes of integral log. str.’s on X'}
{isomorphism classes of integral monoids having no invertible ele-
ment other than the unit element }

given in the following way. For an integral monoid P as above, the corre-
sponding log. str. is M = Of @ P with

M — Oy; (a, b) > a (resp.0) if b =1 (resp.b # 1).

ProrosITION (2.6). The inverse limit of a finite inverse system of
schemes with log. str.’s (1.6) is coherent if each member of the system is

coherent.

Proof. 1t is enough to consider finite direct products and equalizers.
By the description of finite inverse limits in (1.6), the case of finite direct
products is clear, and for equalizers, it is enough to prove the following.
Assume we are given two homomorphisms g, # : M = N of log. str.’son X,
let L’ be the co-equalizer of (g, #) in the category of sheaves of monoids,
and let L be the log. str. associated to L’. Then, if M, N are coherent, L is
coherent. To see this, take finitely generated monoids P, Q and homomor-
phisms s : Py = M, t : Qx = N which induce (Px)* = M, (Qx)* = N. If
we have homomorphisms g, 2’ : P = Q compatible with g and 4, respec-
tively, then L is associated to the coequalizer of (g’, #") in the category of
monoids (which is endowed with the induced homomorphism to Oy), and
hence is coherent. In general we may not have such (g’, #’), but consider-
ing the commutative diagram

iy(resp. i,) ,
P——> Q" =POPDQ
I/:(R.h.l)l

- h
g(resp. i) N
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(i1 (x) = (x,0,0), i,(x) = (0, x, 0)), we see that it is enough to construct
etale locally a finitely generated monoid Q” and a factorization of ¢’ as
Q' — Q” — N such that (Q”x)* = N. Fix x € X and take a system of
generators (a;);<;<, of Q. Then t'(a;), = t'(b,),u; for some b, € Q and
u; € 0¥ .. Let Q” be the monoid (Q’ @ N’)/ ~ where ~ is the relation
generated by the relations a; = b,e(1 = i = r) with (e¢;); the canonical
base of N”. On an etale neighbourhood U of X, weextend ¢t tot” : Q" —
M by e;  u;. Then, (Qu)¢ — (Q”y)" is surjective and the composite
(Qu)* = (Q" )" = M|y is an isomorphism. Hence (Q” )¢ = M |y.

ProposiTioN (2.7). The inclusion functor from the category of
schemes with fine log. str.’s to the category of schemes with coherent log.
str.’s has a right adjoint.

Proof. Let (X, M) be a scheme with a coherent log. str. We con-
struct (X', M’) over (X, M) with M’ fine which is universal for
morphisms from schemes with fine log. str.’s. We may work etale locally,
and hence assume that we have X — Spec(Z[P]) which induces M. Let

X =X XSpeC(Z[P]) SpeC(ZIPi’”])

where P = Image(P — P#7), and let M’ be the log. str. on X' induced
by X’ — Spec(Z[P™]). It is easy to see that this (X', M) is universal.
We shali denote the above universai (X', M') by (X, M),

(2.8). If(X,, M))is a finite inverse system of schemes with fine log.
str.’s and (X, M) is its inverse limit (1.6) in the category of schemes with
log. str.’s, (X, M)™ (2.7) is the inverse limit of (X, M) in the category of
schemes with fine log. str.’s. Various properties of morphisms between
schemes with fine log. str.’s defined in later sections (smoothness, etale-
ness, etc.) are preserved by base changes using the fiber products in the
category of schemes with fine log. str.’s.

Definition (2.9). (1) For a scheme X with a fine log. str. M, a chart
of M is a homomorphism Py — M for a finitely generated integral monoid
P which induces (Px)* = M.

A chart of M exists etale locally.

(2) For a morphism f : (X, M) — (Y, N) of schemes with fine log.
str.’s, a chart of fis a triple (Px > M, Qy = N, Q = P) where Px = M,
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Qy — N are charts of M and N, respectively, and Q — P is a homomor-
phism for which

QOx —> Py

b

STUN) — M

is commutative.
A chart of f also exists etale locally. This fact is deduced easily from

LEMMA (2.10).  Let X be a scheme with a fine log. str. M, let x € X,
G a finitely generated abelian group, and let h : G = M*¥’ be a homomor-
phism such that G —> M%¥ /0% . is surjective. Let P = (h®*?)~'(M,). Then,
P — M, is extended to a chart Py — M| for an etale neighbourhood U
of x.

Proof. First, P is finitely generated since
(*) P/(a subgroup) = M,/0%

and M;/0% ; is finitely generated. When we extend P — M, to a homo-
morphism Py — M|, for an etale neighbourhood U of X, (¥) proves
((Py)*): = M,. This shows that (P,.)* = M|y for an etale
neighbourhood U’ of x — U.

3. Smooth morphisms.

(3.1). We call a morphism of schemes with log. str.’s/ : (X, M) —
(Y, N) a closed immersion (resp. an exact closed immersion) if the under-
lying morphism of schemes X — Y is a closed immersion and i*N — M is
surjective (resp. an isomorphism).

(3.2). We shall often consider a commutative diagram of schemes
with fine log. str.’s

(T", L") —> (X, M)
il , fl
(T, L) — (Y, N)



LOGARITHMIC STRUCTURES 201

such that 7 is an exact closed immersion (3.1) and 7" is defined in T by an
ideal I such that 12 = (0).

(3.3). Smoothness and etaleness. A morphism f: (X, M) = (Y, N)
of schemes with fine log. str.’s is called smooth (resp. etale) if the underly-
ing morphism X — Y is locally of finite presentation and if for any commu-
tative diagram as in (3.2), there exists etale locally on T (resp. there exists
a unique) g : (T, L) = (X, M) such that gi = s and fg = ¢.

A standard example of a smooth (resp. etale) morphism is given by
the following (3.4). In (3.5), which is the main result of this section, we
shall see that all smooth (resp. etale) morphisms are essentially of the type
of this standard example.

ProposiTiON (3.4). Let P, Q be finitely generated integral mo-
noids, Q — P a homomorphism, R a ring, such that the kernel and the
torsion part of the cokernel (resp. the kernel and the cokernel) of Q¥ —
P#r are finite groups whose orders are invertible in R. Let

X = Spec(R[P)), Y = Spec(R[Q))

and endow them with the canonical log. str.’s M and N, respectively.
Then, the morphism (X, M) — (Y, N) is smooth (resp. etale).

Proof. Consider a commutative diagram as in (3.2). Then, if we
embed I in L via the injective homomorphism

I1—-0%CL; x b 1+ x,
we have a cartesian diagram

L — L/I=1L"

(3.4.1) l l

Ler —> [&r/] = (L')#

By the assumption on Q& — P#_ we have the following dotted arrow etale
locally (resp. uniquely) which makes the diagram commutative;

(L")er <~ .px

b

Ler < Qer,
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By the cartesian diagram (3.4.1), we obtain P — L which induces the de-
sired morphism (7, L) — (X, M).

TrEOREM (3.5). Letf: (X, M) — (Y, N) be a morphism of schemes
with fine log. str.’s. Assume we are given a chart (2.9) Qy = N of N. Then
the following conditions (3.5.1) and (3.5.2) are equivalent.

(3.5.1). fis smooth (resp. etale).

(3.5.2). Etale locally on X, there exists a chart (Py = M, Q, — N,
Q — P) of f(2.9) extending the given Q, — N satisfying the following
conditions (i)(ii).

(1) The kernel and the torsion part of the cokernel (resp. The kernel
and the cokernel) of Q# — P# are finite groups of orders invertible on X,

(i) The induced morphism from X — Y Xy, zq) Spec(Z[P]) is
etale (in the classical sense).

Remark (3.6). The proof of (3.5) will show the following facts. We
can require in the condition (3.5.2)(i) that Q# — P#» is injective, without
changing the conclusion of (3.5). In the part concerning the smoothness of
f, we can replace the etaleness of the morphism from X to the fiber product
in (3.5.2), by the smoothness (also in the classical sense), without changing
the conclusion of (3.5).

Examples (3.7). (1) Let k be a field and let X be a scheme over &
locally of finite type with a fine log. str. M. Then, by (3.5), (X, M) is
smooth over Spec(k) if and only if etale locally on X, there exists a finitely
generated integral monoid P and an etale morphism X — Spec(k|P]) sat-
isfying the following conditions; M = PO¥ C Oy, the torsion part of P#” is
of order invertible in k. Thus (X, M) corresponds to a toroidal embedding
[KKMS] which is locally given by the open immersion

X XSpec(k[Pl) SpeC(k[PH"]) C X.

We assume P# is torsion free in the usual theory of toroidal embed-
dings, but essentially, the theory of toroidal embeddings is nothing but the
theory of schemes with smooth fine log. str.’s over a field (with respect to
the trivial log. str. on the base field).

(2) Let A be a discrete valuation ring, X a regular scheme over 4
such that etale locally on X, there is a smooth morphism X -
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Spec(A[T, ..., TAAT, -+ T,— =) forr = 1 and a prime element =
of A. (In this situation, X is called of semi-stable reduction over 4.) Then,
if M (resp. N) denotes the log. str. on X (resp. Spec(A)) corresponding to
the special fiber of X (resp. the closed point of Spec(A4)), which is a re-
duced divisor with normal crossings on a regular scheme, the morphism
(X, M) — (Spec(A), N) is smooth.

For the proof of (3.5), we use the following facts.

ProrosiTiON (3.8). Let f: (X, M) - (Y, N) be a morphism of
schemes with fine log. str.’s such that f*N = M. Then fis smooth (resp.
etale) if and only if the underlying morphism X — Y is smooth (resp.
etale).

Proof. Exercise.

ProposiTioN (3.9).  In (3.2), assume we are given one morphism g :
(T,L) = (X, M)such that gi = s and fg = t. Then there exists a bijection

{h (T, L) > (X.M); hi = s, fh =t} > Homg,(s*wk/y, )
which sends h to the homomorphism
da = h*¥(a) — g*(a) for a €Oy,
dlog(a) > ua) — 1 for aeM,

where u(a) is the unique local section of Ker(0F — 0F) C L such that
h*(a) = g*(a)u(a).

Proof. Exercise.
The proofs of the following (3.10) (3.12) are reduced to (3.9) in the
same way as in the theory of the classical smoothness.

ProposiTion (3.10). Let f : (X, M) — (Y, N) be a smooth

morphism of schemes with fine log. str.’s. Then the Oy-module wk,y is
locally free of finite type.

CoroLLARY (3.11). If f: (X, M) = (Y, N)is smooth in the diagram
(3.2), a morphism g : (T, L) = (X, M) such that gi = s and fg = t exists
whenever T is affine.

Indeed, the obstruction to glueing local g lies in HY(T’,
Homor'(s*w,lwya D) = (0).
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ProposITION (3.12). Let (X, M) 5 (Y, N) % (S, L) be morphisms
of schemes with fine log. str.’s, and let
frwxs - wyis = wyy 0

be the associated exact sequence. Consider the following conditions.

(1) fis smooth (resp. etale).
(ii) s is injective and the image of s is locally a direct summand (resp.
s is an isomorphism).

Then, we have the implication (i) = (ii). If gf is smooth, we have

(i) = (i).

(3.13). Proof of (3.5). The implication (3.5.2) = (3.5.1) follows
from (3.4) (3.8).

We prove the converse. We construct P etale locally as follows.

Fix x € X. Take elements ¢y, . . . , t, of M, such that (d log(¢,) <<,
is a basis of wy,y . (3.10). Consider

N®Q —~ M,

induced by N = M_; (m;) = I, ¢} and by Q — f'(N), = M,. Note
M,/0% . is finitely generated. The map

Wy = K(X) Rz (MT/(OF  Image(f 1 (N))
dlogla) » 1 ®a (aeM,)
shows that
K(X) @z (Zr D Q) = k(X) Xz (MY/0% )
is surjective, and hence the cokernel of
Z @ Q% — MY/0%,

is a finite group annihilated by an integer which is invertible in Oy ;. By
using the fact that O% . is n-divisible, we can easily construct a finitely
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generated abelian group G D Z" @ Q¥ such that G/(Z" @ Q#7) is annihi-
lated by n and such that the map Z' @ Q# — M% is extended toh : G —
M*®” which induces a surjection G = M%" /0% .. Let P = h~'(M,). Then
Q#r — P& = G is injective and the torsion part of P#/Q¢#” is annihilated
by n. We have

Ox.. Ry (P#/Q¥) = wyy.
By (3.10), by replacing X by an etale neighbourhood of X, we have
(*) Ox @ (P/Q#) = wyy.

Furthermore, by (2.10), P = M, is extended to a chart of M|, for some
etale neighbourhood U of X. By replacing X with U, we have a morphism g
from X to the fiber product X' = Y Xgyczop Spec(Z[P]). It remains to
prove g is etale. To see this, endow X' with the inverse image of M~ of the
canonical log. str. of Spec(Z[P]). Since the inverse image of M’ on X is
M, it is sufficient (3.8) to show that (X, M) — (X', M) is etale. But this
follows from (3.12) and g*wy .,y = w,y ((1.8) and (*¥) above).

The theory of infinitesimal liftings for smooth morphisms hold in the
logarithmic situation as follows. This (3.14) and the related theorem (4.12)
were obtained following faithfully suggestions of L. Illusie.

ProposITION (3.14). Let f : (X, M) — (Y, N) be a smooth
morphism between schemes with fine log. str.’s, and let i : (Y, N) —
(Y, N) with N fine be an exact closed immersion (3.2) such that Y is de-
fined in Y by a nilpotent ideal I of Oy. Then we have:

(1) If X is affine, a smooth lifting of (X, M, f) exists and is unique
up to isomorphism. Here, by a smooth lifting of (X, M, f), we mean a
scheme X with a fine log. str. M endowed with a smooth morphism VE
(X, M) = (Y, N) and with an isomorphism

g: (X, M) = (X, M) X35 (Y, N) over (Y,N).

(2) Assume I’ = (0). Then, for a smooth lifting (X, M, f, g) of
(X, M, f), there exists a canonical isomorphism

Aut(X, M, f, g) = Homg,(wx/v, 10%).
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(3) Assume I?> = (0). If we are given one fixed smooth lifting of
(X, M, f), we have a bijection from the set of all isomorphism clusses of

smooth liftings of (X, M, f) to
HY(X, Homoy(wiry, 10%)).
(4) A smooth lifting of (X, M, f) exists if I° = (0) and if
HX(X, Homoy(wy/y, 10%)) = (0).

Proof. Once we prove that a smooth lifting exists etale locally on X,
the statements in (3.14) are deduced from it by the classical arguments as
in SGA I Exposé 3. Etale locally we have a chart (Py > M, Qy —> N, Q —
P) of fsatisfying the condition (3.5.2) such that Qy — N factors through a
chart Qy — N of N. Let

X' =Y ><Spec(ZlQl) SpeC(Z[P])v /\7/ = )7 XSpcc(ZIQ]) SpeC(ZIP])

Lift the etale scheme X over X’ to an etale scheme X over X' (this is
classical; SGA I Exposé 1), and endow X with the inverse image M of the
canonical log. str. on Spec(Z([P]). Then, (X, M, f g) with the evident
definitions of f, g is a smooth lifting.

4. Several types of morphisms. We define integral morphisms
(4.3), exact morphisms (4.6), and morphisms of Cartier type (4.8), de-
scribe their properties, and prove a Cartier isomorphism (4.12).

Prorosition (4.1). (1) Let h : Q = P be a homomorphism of inte-
gral monoids. Then, the following conditions (i) and (iv) are equivalent

(resp. (i), (iii) and (v) are equivalent).

(i) For any integral monoid Q' and for any homomorphism g : Q —
Q’, the push out of P < Q — Q' in the category of monoids is integral.
(ii) The homomorphism Z|Q) — Z|P) induced by h is flat.
(iii) For any field k, the homomorphism k|Q) — k| P} induced by h
is flat.
(iv) Ifa;, a,€Q, by, bePand h(a,)b, = h(a,)b,, there exist a;,
a,€Qand b € Psuch that by = h(a3)b, by = h(a4)b, and a,a; = asay.
(v) The condition (iv) is satisfied and h is injective.
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(2) Letf: (X, M) — (Y, N) be a morphism of schemes with integral
log. str.’s. Then, for x € X, the conditions (i)-(v) in (1) for Q = (f*N),
and P = M, are equivalent, and they are equivalent to each of (i)-(v) for
Q =f""(N/O¥),and P = (M/0O%),.

(4.2). Proofof(4.1). (1) We omit the proof of (4.1)(2) since it is easy
by considering the conditions (4.1)(1)(iv) and (v).

(i) = (iv). Let ay, a, € Q, by, bye Pand h(a,)b, = h(a;y)b,. Define
Q' = (Q®N?)/~, where ~ is the equivalence relation

(c,m,n) ~(c’".m’,n’) e

mon . m’ a’

m+n=m"+n’" and cala’ = c'al a3,

and let P’ be the push out of P <+ Q — Q’. Since Q" is integral and (i) is
satisfied, P’ is also integral and we see from this that (5,. 1, 0) and (b, 0,

1) coincide in P’. It follows that there exists a sequence vq, . . . , v, of
elements of P@ N2 such that vy = (b, 1,0), v, = (b, 0, 1) and such that
foreachi = 1,..., r.thereexistc,c’ €Q, m, n, m’,n’ e Nandw €

P ®N?satisfying v,y = (h(c), m, m)w,v; = (h(c' )}, m’ ., n")w, m +n=
m’ +n’, caai=c’al a% . Asis easily seen, this implies that there exist
a;, as € Q and b € P such that b, = h(ay)b, by = hlab and aja; =
a»ay.

(iv) = (i). Let P’ be the push out. We prove the surjection P’ —
(P’)™ is bijective. Let by, b, € P, ci, c; € Q' and assume b,c, and byc;
coincide in (P’)™. Then, an easy observation on the push out of P4 «
Q& — (Q')#" shows that there exist a,, a» € Q such that h(a))b, =
h(ay)b,in P and g(a,)c; = g(a,)c, in Q'. By the condition (iv), we have
b, = h(ay)b, b, = h{ay)b, a,ay = a,a,for some a;, a;€ Q, b e P. We
have g(a;)c; = glas)c, in Q7. and hence we have in P’ (not only in
(P")m),

bic, = (h(a3)b)c; = b(glay)c,) = b(glag)cr) = (h(adb)cy = bycs.

(iii) = (v). We show first £ is injective. Let a, ¢, € Q and let k be
any field. As is easily seen, the kernel of the multiplication by a; — @, on
k[Q] is generated, as an ideal, by elements of the form Xz, ¢; (n = 1,
c;eQ)suchthat a;c; =a,c;yfori = 1,...,n — tanda} = a5. By the
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flatness of k[Q] — k[P], the images of these elements in k[P] generates as
an ideal, the kernel of the multiplication by h{a;) — h(a,) on k[P]. If

h(a,) = h(a,), the above elements satisfy h(c,) = - -+ = h(c,) and hence
k|P]is generated as an ideal by the elements h(Z, <i=n ;) = nh(cy). Hence
n is invertible in any field k and hence n = 1, that is, ¢, = a,.

Next assume h(a )b, = h(a3)b,, a,, a;eQand b, b, e P. Let § be
the kernel of

k[QI®kI1Q] — kQl: (f,g)bag— ayf
By the flatness, the kernel T of
kIP) @ k[P] = k[P]; (f, g) b hla)g — har)f

is generated as a k[P]-module, by the image of S. Since (b, b;) € T, we
can write

(*) by= L h(c)fi b, = > h(d)f:, a,¢; = ayd,;

I<sisr lgigr

for some ¢;, d; € k[Q], f; € k[P] (1 =i = r). The expression of b, in (*)
shows that there are a3 € Q and b € P and i such that a; appears in c;, b
appearsin f;, and b, = h(a3)b. By a,c; = a,d,, there exist a, € Q which
appear in d; such that a¢,a; = a,ay. We have b, = h(ay)b by

h(ax)b, = h(a)b, = h(a,a3)b = h(ay)h(ay)b.

(v) = (it). The Z[Q]-module Z[P] becomes a filtered inductive limit
of free Z[Q]-modules which are direct sums of Z{Q]-modules of the form
Z[Q)b with b e P.

Definition (4.3). Let f:(X, M) — (Y, N) be a morphism of schemes
with integral log. str.’s. We say f is integral if for any x € X, the equivalent
conditions in (4.1)(2) are satisfied.

That f is integral (Resp. In the case M and N are fine, that f is inte-
gral) is equivalent to the following

(4.3.1). For any scheme Y’ with an integral (resp. a fine) log. str.
N’ and for any (Y’, N’) — (Y, N), the log. str. of the fiber product
(X, M) Xy n(Y’, N’)is integral.
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(The implication ““(4.1)(i) for Q = (f*N), and P = M, holds for any
x e€X = (4.3.1)” is proved easily. The implication “(4.3.1) = (4.1)(iv) for
Q = (f*N); and P = M, holds for any x € X" is proved by the method of
the proof of (iv) = (i) given in 4.2).)

COROLLARY (4.4). A morphism f: (X, M) = (Y, N) of schemes
with integral \og. str.’s is integral in each of the following cases:

(1) M is isomorphic to the inverse image of N.
(ii) For any y € Y, the monoid (N/O%), is generated by one element.

Proof. For the case (ii), consider the condition (iv) in (4.1)(1).
For example, the morphism (X, M) — (Spec(A), N) in (3.7)(2) (the
semi-stable reduction situation) is integral.

COROLLARY (4.5).  If a morphism f of schemes with fine log. str.’s is
smooth and integral, the underlying morphism X — Y is flat.

Proof. By using (i) of (4.1)(1), we can find etale locally a chart
(Py = M, Qy — N, Q — P) satisfying (3.5.2) such that Z[Q] — Z[P] is
flat.

Definition (4.6). (1) We say a homomorphism of integral monoids
h:Q — Pisexactif Q = (h*") '(P) in Q# where h#’ : Q& — PP,

(2) We say a morphism of schemes with integral log. str.’s f': (X, M)
— (Y, N)is exact if the homomorphism (f*N), = M; is exact for any
xeX.

Following facts are proved easily. Exact morphisms are stable under
composition. For fine log. str.’s, exact morphisms are stable under base
changes in the category of schemes with fine log. str.’s in the sense of (2.8).
An integral morphism is exact. If f is exact, the homomorphism f*N — M
is injective. (This last fact shows that a closed immersion (3.1) between
schemes with integral log. str.’s is exact if and only if it is an exact closed
immersion in the sense of (3.1).)

Now we consider characteristic p.

Definition (4.7). Let p be a prime number. For a scheme X over
F, = Z/pZ and a log. str. M on X, we define the absolute frobenius
Fx.m : (X, M) = (X, M) as follows. The morphism of schemes underly-
ing Fx.u) is the usual absolute frobenius Fy : X — X, and the homomor-
phism Fy'(M) = M is the multiplication by p on M under the canonical
identification of Fyx (M) with M.
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Definition (4.8). Letf:(X, M)— (Y, N)bea morphism of schemes
with integral log. str.’s. Assume Y is a scheme over F, with p a prime
number. We say that f is of Cartier type if f is integral and the morphism
(f, Fx.my from (X, M) to the fiber product of

(X, M)
;

Fomy

(Y, N)— (Y. N)

is exact.

For example, f is of Cartier type if f has locally a chart of the form
Q =N, P=N"(r =z 1), and Q — P is the diagonal map. (This happens in
the semi-stable reduction situation (3.7)(2).)

Morphisms of Cartier type are stable under compositions and base
changes.

(4.9). Let p be a prime number and let f: (X, M) = (Y, N) be a
morphism of schemes with integral log. str.’s over F,,. We say f is weakly
purely inseparable if the following (i)-(iii) are satisfied.

(i) The map X — Y of underlying topological spaces is a homeomor-
phism.
(ii) For x € X and ¢ € M, there exists n = 0 such that a”" €
Image(f~1(N),).
(iii) If x € X and if a, b € f~'(N), have the same image in M, a”" =
b?" for some n = 0.
We say f is purely inseparable if it is exact and weakly purely insepa-
rable.

ProposiTioN (4.10). Let f: (X, M) = (Y, N) be au morphism of
schemes with fine log. str.’s.

(1) Assume that for any x € X and a € M, there exists n = 1 such
that a® € Image(( f*N), = M,). Then, etale locally on X, f has a factoriza-
tion f = f'f" such that f' is an etale morphism of schemes with fine log.
str.’s and f” is exact.

(2) Assume Y is a scheme over F, for a prime number p and f is
weakly purely inseparable (4.9). Then f has a unique factorization f =
f'f” such that f’ is an etale morphism between schemes with fine log. str.’s
and f" is purely inseparable (4.9).
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Proof. In the situation of (1) (resp. (2)), it is easily seen that etale
locally on X, there exists a chart (Py > M, Qy > N, h: Q = P)of f
satisfying the following condition (i) (resp. (i) and (ii)).

(i) For any a € P, there exists n = 1 (resp. n = 0) such that a” €
h(Q). (resp. a”” € h(Q).

(ii) For any a, b € Q such that h(a) = h(b), there exists n = 0 such
that a?" = b?"))

Let Q' = (h#)~'(P) where h&’ : Q#» — P#r, et
Y' =Y Xspeeion Spec(Z[Q7)),

and endow Y’ with the inverse image N’ of the canonical log. str. of
Spec(Z[Q']). Then, f' : (Y',N’) = (Y, N)is etale by (3.5). We prove that
f" (X, M) - (Y’,N’)isexact. Note that Q" — Pisexact. Letx € X, and
write the homomorphisms P — M, Q' — (f"*N’);, Q' — P,
(f"*N'); > M;bys, t, h', g, respectively. Our task is to prove that if a,
be(f"*N'); and g(a) € g(b)M,, then a € b(f"*N’');. We may assume
a = t(ay), b = t(b,) forsomeay, by Q’. We have h'(ag)c = h'(by)d for
some c, d € P such that the image of ¢ in M, belongs to O% ,. Taken = 1
such that ¢” = h’'(e), e € Q'. Then, h’(age) = h’(by)c" 'd. Since h’ is
exact, we haveage € byQ’. Sinces(e) € OF ., we havea e b(f”*N’),. This
completes the proof of (1). Furthermore, in the situation of (2), f” is
weakly purely inseparable as is easily seen, and we obtain the local exis-
tence of the factorization in (2). It remains to prove the uniqueness of the
factorization in (2), from which the global existence follows from the local
existence. Assume we have two factorizations (X, M) — (Y|, N{) —
(Y, N) and (X, M) — (Y;, N;) = (Y, N) of f satistying the condition
stated in (2). Let g, : (Y, N{) Xy.n (Y3, Ny = (Y/, N/) be the
projections (i = 1, 2). Then, g, is etale and purely inseparable. Hence g, is
an isomorphism by the following (4.11) (which we apply to the case where s
and ¢ are isomorphisms). This proves the uniqueness.

LemMA (4.11). Let p be a prime number and let

(T', L") —> (X, M)

| |

(T, L) —> (Y, N)
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be a commutative diagram of schemes with fine log. str.’s over F, such that
i is purely inseparable, and such that [ is etale. Then, there exists a unique
morphism h : (T, L) = (X, M) such that hi = s and fh = t.

Proof. By taking a chart of f satisfying the condition (3.5.2), the
proof proceeds just as the proof of (3.4).

TueoreM (4.12) (Cf. [D1], [11,).). Letp bea prime number and let f
(X, M) = (Y, N) be a smooth morphism of schemes with fine log. str.’s
overF,. Let f' : (X', M") (Y, N) be the base change of f by the abso-
lute frobenius Fy n): (Y, N) = (Y, N), let

F

(X, M) > (X', M") ~ (X, M)

be the factorization of Fx m) characterized by the property f = f'F, and
consider the factorization

X, M) 5 (X7, M7y S (X7, MO

of Fi' : (X, M) = (X', M')™ given by (4.10)(2).

(1) Assume f is smooth. Let s be the composite morphism
(X", M") = (X', M") = (X, M). Then we have a canonical isomor-
phism of Ox--modules

C ' wh,y = I wxy)
for any q € Z characterized by
C~(ad log(s*(b))) A -+ ANd log(s*(b,)))
= g*(a)d log(b) A --- Nd log(b,)
(a €Oy, by, ...,b,eM).
(2) Assume f is smooth and integral. Assume we are given a scheme

with a fine log. str. (Y, N) such that Y is flat over Z/p*Z, and an isomor-
phism

(Y, N) = (¥, N) Xspec/pzy SPec(F))
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where Spec(Z/p?Z) and Spec(F,) are endowed with trivial log. str.’s.
Then, there exists a canonical bijection between the set of all isomorphism
classes of smooth liftings of (X", M ") over (Y, N) (3.14) and the set of all
splittings of T < wk,y in the derived category of the category of O x--mod-
ules (cf. [D1) Section 3). If a smooth lifting of (X, M) over (Y, N) exists,
there is an isomorphism

Tep Wxry = Pogicp Wyl —il

in the derived category of the category of Ox -modules.
(3) Assume the following (i)-(iii).
(i) fis smooth and of Cartier type. (Note that (X", M") =(X",M")
in this case.)
(ii) The underlying morphism X — Y is proper.
(iii) Etale locally on Y, there exist (Y, N)as in (2) and a smooth lift-
ing of (X', M") over (Y, N).

Then, the Hedge spectral sequence
Ey' = R'fxwkxy = R fewisy

satisfies EY' = E% for s, t such that s + t < p. Furthermore, the Oy-
modules Rifywy,y for g < p are locally free and commute with any base
changes.

Proof. Since the proof is a simple modification of those given in [DI]
(classically smooth case) and in [Il,] (the case of morphisms of “‘semi-
stable reduction type” between smooth schemes), we give here only the
proof of the Cartier isomorphism (4.12)(1), and left the other part of the
proof to the reader. (As in [I1,], the other part is deduced from (1) and
(3.14) by the arguments in [DI].) I just note that the assumption f is inte-
gral in (2) is used to have the flatness over Z/p?Z (4.5) of smooth liftings of
(X”, M”). Now we prove (1). By a standard argument, we may assume
that there is a cartesian diagram

X — SpeC(F,;[PJ)

l l

Y —> Spec(F,[Q))
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where P, Q are finitely generated integral monoids with a homomorphism
Q — P such that Q# — P#” is injective and the torsion part of P#”/Q#" is
of order invertible on Y, and M and N are the inverse images of the canon-
ical log. str.’s, respectively. Let H be the submonoid of P containing Q
defined by
H = {a € P; a = bc in P# for some b € P# and c € Q*"}.
Then we have
" =Y XSPCC(FI;IQU Spec(F,,[H]).
In this identification, X” — X (resp. X” — Y, resp. X = X”) is given by
Fiyn X (@t a?; P = H) Y Xgpeerr, o) Spec(F,[H]) = Y XspeeF, o)
Spec(F,[P]) (resp. pri 1 Y Xspeer Q) Spec(F,[H] — Y, resp. id. X
(H — P)); Y X Spec(FplQ) Spec(F,,[P]) - Y X Spec(F,lQD) Spec(Fp[H])) For
vePew/Q# ®,F,, let E, be the F,[Q]-submodule of F,, [P] generated by
elements of P which belong to v, and define the complex C; by
Ci =0y ®Fp'Q' E, ®F,, /\Z{)((Pﬂl’/Qﬂ") ® F,)
with the differential C? - C¢*" induced by
AE (Pr/Q#) ® F,) = /\%:'((PHI’/Q&’P) ®F,); abvAa.

We have

wixy = D0y

The complex C, is acyclic if v # 0, and so wx,y is quasi-isomorphic to C.
On the other hand, the differential of Cj is zero, £y = F,[H], and

CY = Oy D 01 F,[H] ®p, AL (P#/Q) R F,) = ey
(cf. (1.8)).
Remark (4.13). In (4.12)(1), if Y = Spec(k) for a field k and N is

the trivial log. str., and if X is normal, X" coincides with the normaliza-
tion of X’




LOGARITHMIC STRUCTURES 215

5. Crystalline sites. A fact for log. str.’s which is different from the
classical facts is that the crystalline cohomology theory is easier than the ¢
(# char.)-adic etale cohomology theory. (I have not yet a good definition
of the etale site for a log. str. A related problem is to define the K-group of
a scheme with a log. str.)

(5.1) Asabase, we take a4-ple (S, L, I, y) where S is a scheme such
that O is killed by a nonzero integer, L is a fine log. str. on §, I is a quasi-
coherent ideal on S, and v is a PD (=divided power) structure on 1.

(5.2) Let(S, L, I,v)be as above, let (X, M) be a scheme with a fine
log. str. over (S, L) such that v extends to X. Then, we define the crystal-
line site (X, M)/(S, L, I, ¥))ens (denoted also simply by (X/.S‘){.‘}f.X if there
is no risk of confusion) as follows. An object is a S-ple (U, T, M, i, 6)
where U is an etale scheme over X, (T, M) is a scheme with a fine log. str.
over (S, L), i is an exact closed immersion (3.1) (U, M) — (T, M) over
(S, L), and & is a PD-structure on the ideal of O, defining U which is
compatible with y. A morphism is defined in the evident way. A covering is
a covering for the usual etale topology forgetting the log. str.’s.

The structure sheaf Oy, s on (X/S)ff}_‘f,x is defined by

Ox/s(U, T, My, i, 8) = I(T, Op).

We sometimes abbreviate (U, T, M, i, 6) simply as 7. We some-
times denote v,(a) and 8,(a) as a™.

We have the following fact by applying (1.4.)to U » T;1f g : T" —
T is a morphism in (X/S)('.‘}_%’,.,,, g¥(M7) = My is an isomorphism.

We have a logarithmic version of the PD-envelope:

ProposITION (5.3).  Let (S, I, ) be as in (5.1). (We forget L here).
Let © be the category of closed immersions (3.1) i : (X, M) = (Y, N) of
schemes with log. str.’s over S such that M is fine and N is coherent. (By
definition, a morphism i’ — i is a commutative diagram

(X', M) == (Y', N

Voo

(X, M) —> (Y, N)
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over S.) Let C' be the category of pairs (i, §) where i is an exact closed
immersion (3.1) (X, M) — (Y, N) of schemes with fine log. str.’s over §
and & is a PD-structure on the ideal of Y defining X which is compatible
with . Then, the canonical functor €' — C has a right adjoint.

Definition (5.4). In(5.3), leti: (X, M) — (Y, N)bean object of C
and let (7 : (X, M) = (Y, N), 6) be the result of applying the right adjoint
functor to i. We call (/, 8) (or sometimes (Y, N)) the PD-envelope of
(X, M) in (Y, N) with respect to v, and denote it by D x ) ((Y, N)Y/(S, 1,
v)) (or simply by D3(Y)).

(5.5). The construction of the PD-envelope given below shows the
following facts:

(5.5.1). Ifiis an exact closed immersion, DY4(Y) coincides with the
usual PD-envelope Dx(Y) endowed with the inverse image of N.

(5.5.2). If y extends to Y, (X, M) = (X, M) is an isomorphism.
(5.5.3). M always coincides with the inverse image of M.

(5.6). Proofof (5.3). We construct (i, 8) of (5.4). We may assume N
is fine, since (i, 8) for (X, M) — (Y, N)is the same thing with (7, 8) for (X,
M) — (Y, N)" (2.7). We may work etale locally, and hence we have a
factorization i = gi’ withi’ : (X, M) — (Z, M) an exact closed immer-
sion and g etale (4.10)(1). Let (i : X — D, 6) be the PD-envelope of i” with
respect to y in the usual sense, and endow X (resp. D) with the inverse
image M (resp. M) of M (resp. M7). It is not hard to see that (7 : (X,
M) — (D, Mp), §) has the desired universal property.

Example (5.7). Let k be a field of characteristic p > 0, let X =
Spec(k[T)), Y = Spec(k[T, To]), X > Yby T; > T (i = 1, 2). Endow X
(resp. Y) with log. str. M (resp. N) corresponding to the divisor 7" = 0"
(resp. “T; = 0" U “T, = 0”). Take the base S = Spec(k), I = (0). Then
the PD-envelope D¥#(Y) is the usual PD-envelope of X in Z = Spec(k[T},
T, T,Ty"' T>T1']) = Spec(k[T,, V, VN (V=TT;", Vi lon X)
endowed with the inverse image of the log. str. M, on Z corresponding to
the divisor “7, = 0" (= “T, = 07). Indeed, the closed immersion (X,
M) — (Y, N) is not exact, but (X, M) — (Z, M) is an exact closed im-
mersion and (Z, M,) — (Y, N) is etale.
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Remark (5.8). Let (S, L) be asin (5.1) (we forget here [ and v). We
can define the n-th infinitesimal neighbourhood in the logarithmic sense as
follows, similarly to the PD-envelopes. Forn = 0, let C, be the category of
exact closed immersions (X, M) — (Y, N) of schemes over (S, L) such that
X is defined in Y by an ideal J with the property J**! = 0. Then the canon-
ical functor @, — € (€ is as in (5.3)) has a right adjoint. Indeed, let
(Z, M) be as in (5.6), and let D be the n-th infinitesimal neighbourhood
of X in Z in the usual sense endowed with the inverse image Mp of Mz.
Then, (X, M) — (D, Mp) is the desired universal object. In the case of the
diagonal embedding (X, M) — (Y, N) = (X, M) X 5.y (X, M) withn =
1, if we denote by J the ideal of X in D, we have

(5.8.1) wys = J/I
(5.9). We have the functoriality of the crystalline topoi. Let

x'. M) L= x M

| l

(S, L', I',y")y — (S, L, I,v)

be a commutative diagram where the assumptions of (5.1) (5.2) are satis-
tied by both (X, M)/(S, L, I,y)and (X', M")/(S", L’, I',~v’). Then we
have the morphism of topoi

Fers 1 (X7 /S)E)™ = (X/8)%)~
(the ~ denote the topoi associated to sites) characterized by

fcrys*(g)(u, T, MT, i, 6) = Mor((Uy T, MT? i! 6)~y g)

where (U, T, M 1,1, 8)~ is the sheaf on (X’ /S’)‘C‘if,s whose valuein (U’, T’,
My, i’, 8') is the set of all pairs (g, &) of morphisms g : (U”, M) - (U,

M), h: (T’, M1) = (M, T) for which the diagram

xX',M)— U ,M)— (T',Mp) —> (§'. L)
|

| “ g l

X, M) — WU, M) — (T,Mp) —> (S, L)
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commutes and such that & commutes with 6 and &”.

The proof of the fact f.,,+ determines a morphism of topoi (i.e. ferysa
has a left adjoint which commutes with finite inverse limits) is proved by
the same way as in the classical theory of crystalline topoi ([B] Chapter 3,
Section 2), by using the notion (5.4) of PD-envelopes.

6. Crystals and crystalline cohomology. In this section, let (S, L, /,
v) be as in (5.1) and let f : (X, M) — (S, L) be a morphism of schemes
such that M is fine and vy extends to X.

Definition (6.1). A crystalon (X/S)L‘;%s is a sheaf of Oy /s-modules &
on (X/S8)%, satisfying the following condition: For any morphismg : 7' —
T in (X/S)L‘;%S, if we denote by & and - the sheaves on T, and T, in-
duced by F respectively, g*(F ) = Fo is an isomorphism.

THEOREM (6.2). Let (Y, N) be a scheme with a fine log. str. which is
smooth over (S, L), and let (X, M) > (Y, N) bea closed immersion (3.1).
Denote the PD-envelope of (X, M) in (Y, N)as (D, Mp). Then, the fol-

lowing two categories (a) (b) are equivalent.

log

(a) The category of crystals on (X/S)cy.
(b) The category of O p-modules M on D, endowed with an additive
map

Vim_’m®oywly/s

having the following properties (i)-(iii).

(i) V(ax) = aV(x) + x ® da fora € Opand x € .
(ii) The composite

v v
1 2
M - M ®0wa/s - M ®L‘7wa/S
is zero, where we extend V to
M R, wlhe = MR, whiy;
ay Dyss Oy Wysss

x®wb Vx)Aw + x ® do.
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(iii) Let x € X and let t; (1 = i = r) be elements of M, such that
(d log(t))1<i<, s a basis of (J.le/sv_\-. Then, for any i and for any a € My,
there exist my, . . . ,my, ny, ..., n; € Nsuch that

(T (v m_,.)",f>(a) = 0.

lsisrilsjsk
Here V%% is defined by: if V(a) = L <, a; ® d log(t,), then V*(a) = a..

(It is proved as in the classical case, that if the condition (iii) holds for
one choice of (¢;);<;<,, then it holds for any choice of (¢;), <, <,.)

Remark (6.3). Ift; € %, and V,, denotes tf‘V}?g, then

Vo=t I (V=)

0=j=n—I1

Thus, the condition (b) (iii) in (6.2) is the natural logarithmic version of the
classical notion of the *“‘quasi-nilpotence’ ([B] Chapter 2, Section 4.3).

THEOREM (6.4). Let (X, M), (Y, N)and D be as in (6.2), let § be a
crystal on (X/S)}fﬁx, and let N be the corresponding O p-module with V.
Then,

Rll;)igs*(g) =M ®OY O)-y/s.

Here u'S is the canonical morphism ((X/S)l‘}_%x) - = (X,,) "~ characterized
by

('8 )(F)(U) = the global section of F on (U/S)}.‘}%S
X/S :

for a sheaf T on (X/S)5%.
For the proofs of (6.2) and (6.4), the following (6.5) is essential.

ProrosiTiON (6.5). Under the assumption of (6.2), let (D', Mp-)
be the PD-envelope (5.4) of the diagonal morphism (X, M) = (Y, N)
Xy (Y, Ny,andletp,, p,: (D', My) = (D, Mp) be the first and the
second projections, respectively. Let x € X, taket,, . . . , t,€ N such that
(dlog(t))1<i<,Is a basis of Wyss.c»and let u; (1 i < r) be the elements of
Ker(OF ; = 0% ) C (Mp.), defined by p¥(t;) = p¥(t)u; (the existence



220 KAZUYA KATO

of u; follows from (M p.),/0%. , = M./0% ). Then we have the descrip-
tion of D’

O;)"‘.<T], “ e ey T,) = (91)’..\‘; T}”] [ nd (u,» - 1)""

where O (T, ..., T, denotes the PD-polynomial ring.

(6.6). Proof of (6.5). By the construction of the PD-envelopes in
(5.6), we may assume that (X, M) — (Y, N)is an exact closed immersion.
Etale locally at x, take an exact closed immersion (X, M) = (Z, My)
where M is fine and (Z, M) is etale over ((Y, N) X, (Y, N)™
(4.10)(1). Let g; : Z — Y (i = 1, 2) be the two projections. Then, the stalks
at ¥ of the sheaves M, and ¢*(N) (i = 1, 2) coincide. So, by replacing Z by
an etale neighbourhood of x = Z, we may assume that M, = ¢g*N (i = 1,
2). Then, g; are smooth in the usual sense by (3.8). Since D (resp. D’) is
the usual PD-envelope of X in Y (resp. Z), and since ¢ ¥(¢,) 'g¥(t,) — 1
(1 = i = r) form a smooth coordinate of Z over Y with respect to (say) g,
and their restrictions to X are zero, the statement of (6.5) follows.

(6.7). Proof of (6.2). We follow the classical theory ([B] Chapter 4,
Section 1). Let (9, V) be an object of (b). We show how to define the
corresponding object of (a). Let x € X, let (t,); be as in (b)(iii), and let D’
and (u;); be as in (6.5). Then we have an isomorphism at x

!

(6.7.1) FN = prOM;

1®ar X < O (u — 1)1"l> <1g,s,,05,5,,~1(vh'g_'f)>(“)

neN” \l1=si=r
(a € M), which satisfies the ‘‘transitivity condition”

phm = pHnphn)

([B] Chapter 2, 1.3.1) on the PD-envelope D" of (X, M)in(Y, N) Xs.1)
(Y, N) X (5.1, (Y, N) where py, pi3, p are the projections D” — D".
Now we obtain an object & of (a) from (M, V) as follows. Let (U, T, Mr, i,
) be an object of (X/S)If}_%s. Then, etale locally on T, (X, M) = (D, Mp)is
extended to a morphism k : (T, My) — (D, Mp) over (S, L) by the
smoothness of (Y, N) = (S, L). We define & 7 to be h*JN etale locally on
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T. If we have two such a; : (T, My) = (D, Mp) (i = 1, 2), they define 2’ :
(T, My) = (D’, Mp.) such that h; = p;h’, and the isomorphism (6.7.1)
induces A¥M = A¥M. Thus F is independent of # and defined globally
onT.

Conversely if we have an object F of (a), let M = F . Then, the defin-
ing condition of the crystal gives an isomorphism % : pF9M = p ¥ satisfy-
ing the “transitivity condition”’. By writing 7 in the form

1 ®ar L I u — D ® y,a),

neN” l=si<r
we define V by

V)= L n.,(a) ® d log(t;)

l<i=r

IIA

where (e;)| <<, is the canonical base of N.

(6.9). Proof of (6.4). This is also a repetition of the classical argu-
ment. For an Op-module 9T on D,,, let L(91) be the crystal on (X/S)lfi_%s
corresponding to the O p-module p ¥ with

V:pfol — pfa ®oyw§//s; a®@viv®&da
(a€eOp., ved, with D’ as in (6.5)). Here d is the composite map
Op = Op ®oz wys = Op ®oy wys
with Z as in (6.6). The same argument as in the classical theory shows
R(uy8)xL(MN) = N,

where we identified X, with D,,. If F is a crystal corresponding to (0, V),
we have a resolution

F = LM Do, wyss)
We obtain from this

R(ul;()f’s)*ff = (u;’%)*L(fm R oy wys) = M Doy, wys.



222 KAZUYA KATO

The following (6.10) (the base change theorem) and (6.11) (the Kiin-
neth formula) are proved by the same method in the classical theory (|B]
Chapter 5, Sections 3 and 4).

THEOREM (6.10). Assume we are given a commutative diagram

g’

X M)y — X, M

AR

(Yy', Ny —> (Y, N)

(S'. L. 1I'.8) —> (5. L. 1.8)

where all the log. str.’s are fine, Y is quasi-compact, fis smooth and inte-
gral, the underlying morphism X — Y of f is quasi-separated, and the
upper square is cartesian. Let § be a quasi-coherent crystal on (X/S):.‘,’jg,s
which is flat over Ox,s. Then, we have a canonical isomorphism

’

Lg:‘kn_,s(RfA":m*(SF)) = th"rys*(gcryx*(g))-

THEOREM (6.12). Let f: (Y, My) > (X, My)and g : (Z, M) —
(X, M) be smooth integral morphisms between schemes with fine log.
str.’s over (S, L), and assume that X is quasi-compact and the under-
lying morphisms Y — X, Z — X are quasi-compact and quasi-
separated. Let (V, My) be the fiber product of (Y, My) and (Z, My)
over (X, Mx)withp : (V, My) = (Y, My), q : {(V, My) = (Z, My),
h:(V,My) = (X, My), and let & (resp. T) be a quasi-coherent crystal on
(Y/S)!.",féx (resp. (Z/S)!.‘i_ﬁ_‘) which is flat over Oy,s (resp. Oz5). Then,
we have a canonical isomorphism

Rfcry:*(g) ®Iéx/5 Rgcry:*(g) = Rh(rvs*(p:krw(g) ®@V/S q(*ns(g))~

Complement 1. We explain the relation between the log. str. of this
note and that of Faltings in [Fa,]. A definition of log. str. equivalent to
that of Faltings was found by Deligne ([D]) independently.

The log. str. of Faltings in [Fa,] on a scheme X is a family (£,,
x<i<, Of invertible sheaves £, on X and global sections x; of £;. An
equivalent definition (take the dual) given in [D] is that a log. str. on X isa
family (£,, 5,)1 <<, of invertible sheaves £, on X and homomorphismss; :
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£; — Oxof Ox-modules. To compare with our log. str., we adopt the latter
definition of Deligne for it is nearer to our definition, and we call the log.
str. (£, s;) in the sense of Deligne the DF. log. str.

We claim that a DF. log. str. on X is equivalent to a pair (M, t) of a
fine log. str. (in our sense) M on X and a homomorphism ¢ : N = M/0¥
which lifts etale locally on X to a chart N — M of M. Indeed, for such a
pair (M, t), we define (£;, s,) as follows. Let (¢;), <;<, be the cannical base
of N”. Then, the inverse image of t(e;) under M — M/0O% is a principal
homogeneous space over O¥ and corresponds to an invertible sheaf £;, and
the homomorphism M — Oy defines s;. Conversely, we can reconstruct
(M, t) from (L, 5;) as follows. Define first the pre-log. str. M’ to be the
sheaf of pairs (n, a) where n € N” and a is a local generator of ®,-£,®”",
endowed with the homomorphism M’ — Oy induced by ® s ®,LEm
— Oy. Then, define M to be the log. str. associated to M’, and ¢ to be the
composite of the inverse of the isomorphism

M’'/0% - Ny; (n,a) > n

with the canonical homomorphism M’ /0¥ — M/0%.

The log. str. of Fontaine-Iilusie is more general than the DF. log. str.:
A fine log. str. M on a scheme X has a chart of the form Ny — M withr =
0 on an etale neighbourhood of x € X if and only if

MJ/O%, =N

for some s = 0. One has also that for a finitely generated integral monoid
P in which the unit element is the only invertible element, and for a non-
zero ring R, the canonical log. str. on Spec(R[P]) comes from a DF. log.
str. if and only if P = N’ for some r. Log. str.’s which do not come from
DF. log. str.’s appear, for example, by taking a product of schemes with
semi-stable reduction over a dvr., or by a ramified extension of the base
dvr. of a scheme with semi-stable reduction.

Complement 2. The crystalline cohomology theory in this note is ap-
plied to the semi-stable reduction situation (3.7)(2) as follows. Let X —
Spec(A) be as in (3.7)(2), let k be the residue field of A, and let Y be the
special fiber X ® 4, k of X. Endow Y (resp. Spec(k)) with the inverse image
M (resp. N) of the log. str. M on X (resp. N on Spec(A)) in (3.7)(2). As-
sume k is perfect and char(k) = p > 0, and let W, (k) be the ring of Witt
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vectors of length n, and endow Spec(W, (k)) with the log. str. N, associ-
ated to N = W, (k); 1 — 0. By fixing a prime element 7w of A, we have
morphisms

(Y, M) - (Spec(k), N) = (Spec(W,(k)), N,)

where the second arrow is induced from N — A4; 1 + =. (Then, N, — Nis
an isomorphism.) Consider the crystalline cohomology of (Y, M) over the
base (Spec(W,(k)), N,) with the usual PD str. on the ideal pW (k). Then
this crystalline cohomology is very important, and serves as the mixed
characteristic analogue of the limit Hodge str. [S]. For the details and the
relation with the de Rham-Witt complex in [H;], cf. [HK] and [K"].
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