§0. Introduction

Throughout, R will denote a complete DVR with field of fractions K and residue field k. We will assume that k is perfect.

Our aim will be to prove:

Theorem 1: There is a short exact sequence:

$$0 \to \text{Br}(k) \to \text{Br}(K) \to \text{Hom}_{\text{cont}}(\text{Gal}(\bar{K}/k), \mathbb{Q}/\mathbb{Z}) \to 0$$

The proof of this will be based on two propositions.

Proposition 1: Every element of $\text{Br}(K)$ splits over an unramified finite Galois extension of K.

Proposition 2: For every finite Galois extension E/F, we have

$$\text{Br}(F/E) \cong H^2(\text{Gal}(F/E), F^\times)$$

We proved both of these earlier in the lecture series.
§1. Useful Computation

Let \(L \) be a finite unramified Galois extension of \(K \). We are going to compute \(H^2(\text{Gal}(L/K), L^\times) \).

Let \(R_L \) denote the integral closure of \(R \) in \(L \), so \(R_L \) is a complete DVR. Write \(G = \text{Gal}(L/K) \) and let \(\mathfrak{r}_L \) be the residue field of \(R_L \). Then \(R_L \) is \(G \)-stable, so we get an induced action on \(\mathfrak{r}_L \), and because \(L/K \) is unramified, this gives an isomorphism \(G \cong \text{Gal}(\mathfrak{r}_L/k) \).

We are now ready to start computing. We have an exact sequence of \(G \)-modules:

\[
1 \rightarrow R_L^\times \rightarrow L^\times \xrightarrow{\text{val}} \mathbb{Z} \rightarrow 1
\]

(1)

Note that this sequence splits (non-canonically, of course) by choosing a uniformizer \(\pi \in R \) (in \(R \), not in \(R_L \), because we need it to be \(G \)-invariant). This implies that the long exact cohomology sequence associated to (1) breaks up into split short exact sequences:

\[
0 \rightarrow H^0(G, R_L^\times) \rightarrow H^0(G, L^\times) \rightarrow H^0(G, \mathbb{Z}) \rightarrow 0
\]

(2)

In particular, this is true where \(q = 2 \).

We next compute \(H^2(G, \mathbb{Z}) \).
Consider the exact sequence of trivial G-modules:
\[0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q}/\mathbb{Z} \rightarrow 0 \quad (3) \]
Since $|G|$ acts invertibly on \mathbb{Q}, we have $H^j(G, \mathbb{Q}) = 0$ for all $j \geqslant 1$, so we obtain $H^1(G, \mathbb{Q}/\mathbb{Z}) \cong H^2(G, \mathbb{Z})$. On the other hand, since G acts trivially on \mathbb{Q}/\mathbb{Z}, we have $H^1(G, \mathbb{Q}/\mathbb{Z}) \cong \text{Hom}(G, \mathbb{Q}/\mathbb{Z})$.

Next, we compute $H^2(G, R^*_L)$. Note that R^*_L has a natural filtration $R^*_L \supset 1 + M_L \supset 1 + M_L^2 \supset \ldots$, where M_L of course denotes the maximal ideal of R_L. We have natural isomorphisms compatible with the G-action:
\[R^*_L/(1 + M_L) \cong \mathbb{R}^*_L \quad \text{and} \quad (1 + M_L^k)/(1 + M_L^{k+1}) \cong \mathbb{R}_L \quad (4) \]

Let us assume for now the additive part of Hilbert's Theorem 90:
\[\text{Theorem 2 (Hilbert)}: \quad H^q(G, R_L) = 0 \quad \forall q \geqslant 1. \]
We will explain the proof of this later.
Claim: $H^q(G, 1 + M_L) = 0 \quad \forall q \geqslant 1$.

To prove this claim, we will use the description of cohomology in terms of the standard complex and the fact that HM_2 is complete w.r.t. the filtration \mathfrak{F}^iHM_2.

Consider

$$C^2(G, \mathbb{H}M_2) \xrightarrow{d} C^1(G, \mathbb{H}M_2) \xrightarrow{d} C^0(G, \mathbb{H}M_2).$$

Let $\phi \in C^0(G, \mathbb{H}M_2)$ with $d\phi = 0$. The image of ϕ in $C^0(G, \mathbb{H}M_2)$ is a coboundary by Theorem 2 and (4).

Hence, $\exists \psi \in C^1(G, \mathbb{H}M_2)$ such that $\phi - \text{d}\psi$ takes values in $\mathbb{H}M_2^\perp$. Applying the same argument to $C^1(G, \mathbb{H}M_2^\perp)$ and so on, we construct ψ_j such that $\phi - \sum_{j=1}^{\infty} \text{d}\psi_j$ takes values in $\mathbb{H}M_2^\perp$, for $\psi_j \in C^0(G, \mathbb{H}M_2^\perp)$. By completeness, we may put $\psi = \sum_{j=1}^{\infty} \psi_j$, so $d(\psi) = 0$. This proves the claim.

Now, we have a short exact sequence of G-modules:

$$1 \rightarrow \mathbb{H}M_2 \rightarrow R_2^* \rightarrow R_2^* \rightarrow 1$$

And by the previous claim we have $H^2(G, R_2^*) \cong H^2(G, \mathbb{H}M_2^\perp)$.

In the language of Brauer groups, the results of this section combined with (2) prove:

Proposition 3: For any unramified finite Galois extension L/K, there is a short exact sequence:

$$0 \rightarrow \text{Br}(L/K) \rightarrow \text{Br}(L/K) \rightarrow \text{Hom}(\text{Gal}(L/K), \mathbb{Q}/\mathbb{Z}) \rightarrow 0$$

Moreover, any choice of uniformizer in K gives a splitting of this SES.
§2. Main Theorem

Proof of Theorem 1: Choose a maximal unramified extension K'' of K. The residue field of K'' is \overline{k}, the algebraic closure of k. There is a natural (continuous) isomorphism

$$\text{Gal}(K''/K) \cong \text{Gal}(\overline{k}/k)$$

In particular, there is a canonical order-preserving bijection between $I := \{\text{finite Galois extensions of } K \text{ in } K'' \}$ and the set $\{\text{finite Galois extensions of } k \text{ in } \overline{k} \}$. Clearly I is a directed set as ordered by inclusion.

We have already shown that the natural maps:

$$\lim_{I \in \text{I}} \text{Br}(L/K) \to \text{Br}(K)$$

are isomorphisms. Moreover, by definition,

$$\lim_{I \in \text{I}} \text{Hom}(\text{Gal}(L/k), \mathbb{Q}/\mathbb{Z}) \to \text{Hom}_{\text{cont}}(\text{Gal}(\overline{k}/k), \mathbb{Q}/\mathbb{Z})$$

Thus, taking limits in Proposition 3 yields the theorem.

Example: Suppose K is locally compact, i.e., k is finite. Then $\text{Br}(k) = 0$ and $\text{Gal}(\overline{k}/k)$ has a canonical topological generator $x \mapsto x^q$ for $q := q(k)$. Hence, $\text{Hom}_{\text{cont}}(\overline{k}/k, \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Q}/\mathbb{Z}$ canonically.
Thus, we get a canonical isomorphism $\text{inv}_K : \text{Br}(K) \to \mathbb{Q}/\mathbb{Z}$.

Definition: If $a \in \text{Br}(K)$, then $\text{inv}_K(a)$ is the **Hasse invariant** of a.

§3. Proof of Hilbert's Theorem 90 (additive version)

The aim of this section is to (finally, finally) prove Theorem 2. How will we do this?

First, consider G, any group. We have the forgetful functor from $\mathbf{ZG-mod} \to \mathbf{Z-mod}$.

Lemma 1: F has a right adjoint, called the coinduction functor.

Proof: For any abelian group N, consider $(\mathcal{C}(N)) := \{ \text{functions } G \to N \}$ under pointwise addition and with G-action given by $(g \cdot p)(h) = p(hg)$. Clearly this gives a functor $C: \mathbf{Z-mod} \to \mathbf{ZG-mod}$. Let's check that C is right adjoint to F, i.e., $\text{Hom}_{\mathbf{ZG-mod}}(F(M), N) \cong \text{Hom}_{\mathbf{Z-mod}}(M, C(N))$ functionally with respect to $M \in \mathbf{ZG-mod}$.

Indeed, take $\alpha \in \text{Hom}_{\mathbf{ZG-mod}}(F(M), N)$. We get a homomorphism $\tilde{\alpha} : M \to C(N)$ defined by $\tilde{\alpha}(m)(g) = \alpha(g \cdot m)$, as one trivially checks is well defined.

It's easy to check that this map $\alpha \mapsto \tilde{\alpha}$ is a
bijection, so we have proved the lemma.

Proposition 4: In the notation of Lemma 1, for any \(N \in \text{Z-mod} \), we have \(H^q_\mathfrak{G}(G, (CN)) = 0 \) for \(q \geq 1 \).

Proof: Choose any injective resolution of \(N \) in \(\text{Z-mod} \)

\[
0 \to N \to I^0 \to I^1 \to \ldots
\]

The functor \(C \) is exact by construction, so we get an exact sequence of \(\text{ZG-modules} \)

\[
0 \to (CN) \to (CI^0) \to (CI^1) \to \ldots
\] \((6) \)

Using the fact that \(C \) has an exact left adjoint, we check easily that \(C \) takes injective objects to injective objects. Hence, we can use \((6) \) to compute

\[
H^q_\mathfrak{G}(G, (CN)) := \text{Ext}^q_\mathfrak{G}(\mathbb{Z}, (CN)),
\]

and using our resolution we get

\[
\text{Ext}^q_\mathfrak{G}(\mathbb{Z}, (CN)) = H^q(\text{Hom}_\mathfrak{G}(\mathbb{Z}, (CI^1))) = H^q(\text{Hom}_\mathfrak{G}(\mathbb{Z}, CI^1)) \cong \text{Ext}^q_\mathbb{Z}(\mathbb{Z}, N),
\]

This is zero for \(q \geq 1 \) because \(\mathbb{Z} \) is a projective \(\mathbb{Z} \)-module.

We are now in a sufficiently nice place to offer:

Proof of Theorem 2: By the normal basis theorem, \(L \cong K[G] \) as \(K[G] \)-modules. This means \(L \) is comodulated by \(K \), i.e., \(L \cong \text{C}(K) \). Now apply the previous proposition.

\(\square \)

Fin!