Throughout, \(N\) denotes the set \(\{1, 2, 3, \ldots\}\) of positive integers. The notation \(a \mid b\) is to be read “\(a\) divides \(b\).” By “prime number,” we always mean “positive prime number.”

Exercise 1

Prove by induction that for all \(n \in N\), we have \(6 \mid n(n+1)(n+2)\).

Lazy proof. This is the \(d = 3\) case of Exercise 2. \(\square\)

Redundant proof. The base case \(n = 1\) holds because \(6 = 1 \cdot 2 \cdot 3\). To do the inductive step, suppose that \(6\) divides \(n(n+1)(n+2)\) for some fixed \(n\). We must show that \(6\) divides the expression

\[
(n+1)((n+1)+1)((n+1)+2) = (n+1)(n+2)(n+3)
= n(n+1)(n+2) + 3(n+1)(n+2).
\]

By the inductive hypothesis, it remains to show the claim: \(6 \mid 3(n+1)(n+2)\). Indeed, \(2\) divides \((n+1)(n+2)\) because one of \(n+1, n+2\) must be even, so the claim follows from scaling by \(3\) on both sides. This completes the induction. \(\square\)

Exercise 2

Prove by induction that for all \(n, d \in N\), we have \(d! \mid n(n+1) \cdots (n + d - 1)\).

First Proof. For all \(N \in N\), let \(P(N)\) denote the following claim: “If \(n + d = N\), then \(d!\) divides \(n(n+1) \cdots (n + d - 1)\).” It suffices to show \(P(N)\) for all \(N\), which we do by induction on \(N\).

The base case \(N = 1\) is vacuously true, as there do not exist \(n, d \geq 1\) such that \(n + d = 1\). To do the inductive step, suppose that \(P(N)\) holds. Consider arbitrary \(n, d \in N\) such that \(n + d = N + 1\). Then \((n - 1) + d = n + (d - 1) = N\), so by the inductive hypothesis,

\[
\begin{align*}
(2) & \quad d! \mid (n-1)((n-1)+1) \cdots ((n-1)+d-1), \\
(3) & \quad (d-1)! \mid n(n+1) \cdots (n+(d-1)-1).
\end{align*}
\]

Above (2) and (3) respectively entail

\[
\begin{align*}
(4) & \quad d! \mid n(n+1) \cdots (n + d - 2)(n-1), \\
(5) & \quad d! \mid n(n+1) \cdots (n + d - 2)d.
\end{align*}
\]

So \(d\) divides \(n(n+1) \cdots (n + d - 2)((n-1) + d)\). Therefore, \(P(N + 1)\) holds, completing our induction. \(\square\)

Remark 1. The following proof is very similar to the first proof. I am including it here so that you can see the commonality between them.
Second proof. For \(n, d \in \mathbb{N} \), let \(Q(n, d) \) be the claim that \(d! \mid n(n+1) \cdots (n+d-1) \). Let \(R(d) \) be the claim, “\(Q(n, d) \) holds for all \(n \).” It suffices to show \(R(d) \) for all \(d \), which we do by induction on \(d \).

The base case \(d = 1 \) holds because \(1! = 1 \) divides \(n \) for all \(n \in \mathbb{N} \). Suppose \(R(d-1) \) holds. To show \(R(d) \), we will show \(Q(n, d) \) for all \(n \), which we do by induction on \(n \). The base case \(n = 1 \) holds because \(d! \) divides \(1(2) \cdots (1 + d - 1) = d! \). Now, suppose there exists \(n > 1 \) such that \(Q(n-1, d) \) holds, meaning

\[
d! \mid (n-1)((n-1)+1) \cdots ((n-1)+d-1).
\]

Since \(R(d-1) \) also holds, we also know \(Q(n, d-1) \), meaning

\[
(d-1)! \mid n(n+1) \cdots (n+(d-1)-1).
\]

Simplifying (6) and multiplying (7) by \(d \) on both sides, we respectively get

\[
d! \mid (n-1)(n+1) \cdots (n+d-2),
\]

\[
d! \mid dn(n+1) \cdots (n+d-2).
\]

As in the first proof, we deduce \(d! \mid n(n+1) \cdots (n+d-1) \), meaning \(Q(n, d) \) holds. As this completes the induction on \(n \), we know \(R(d) \) holds, which completes the induction on \(d \). \(\square \)

Exercise 3

Prove that for all \(n, d \in \mathbb{N} \), one and only one of \(n, n+1, \ldots, n+d-1 \) is a multiple of \(d \).

Proof by induction. Let \(P(n) \) be the claim: “For all \(d \in \mathbb{N} \), exactly one of \(n, n+1, \ldots, n+d-1 \) is a multiple of \(d \).” We will show \(P(n) \) holds for all \(n \) by inducting on \(n \).

The base case \(n = 1 \) is equivalent to, “For any \(d \in \mathbb{N} \), exactly one of \(1, \ldots, d \) is a multiple of \(d \),” which is true. Suppose \(P(n) \) holds. We must prove that, for any given \(d \), exactly one of \(n+1, \ldots, n+d \) is a multiple of \(d \). By the inductive hypothesis, one of the following possibilities, but not both, is true:

1. \(n \) is a multiple of \(d \).
2. Exactly one element of \(S = \{n+1, \ldots, n+d-1\} \) is a multiple of \(d \).

In case (1), we deduce that \(n + d \) is a multiple of \(d \) but no element of \(S \) is a multiple of \(d \). In case (2), exactly one element of \(S \) is a multiple of \(d \), but \(n \) is not a multiple of \(d \), which means \(n + d \) cannot be a multiple of \(d \). In both cases, we get our desired result, so \(P(n+1) \) holds and the induction is complete. \(\square \)

Proof without induction. Fix \(n, d \in \mathbb{N} \). Let \(X_d = \{0, \ldots, d-1\} \) and \(Y_{n,d} = \{n, \ldots, n+d-1\} \). Each element \(k \in Y_{n,d} \) has some remainder \(r_k \in X_d \) upon long division by \(d \). It is sufficient to show that the map \(k \mapsto r_k \) is a bijection \(Y_{n,d} \rightarrow X_d \), as this will imply \(0 \) has exactly one preimage in \(Y_{n,d} \), which will be the desired multiple of \(d \).

An injective map between finite sets of the same cardinality is bijective, so it remains to show injectivity. We want to show that if \(a, b \in Y_{n,d} \) such that \(r_a = r_b \), then \(a = b \). Without loss of generality, take \(a < b \). The division algorithm says we can write \(a = dq_a + r_a \) and \(b = dq_b + r_b \) for some \(q_a, q_b \in \mathbb{N} \). Then \(b - a = d(q_b - q_a) + (r_b - r_a) = d(q_b - q_a) \), whence \(d \) divides \(b - a \). But \(n \leq a, b \leq n + d - 1 \), so \(0 \leq b - a \leq d - 1 \). Therefore, \(b - a = 0 \), completing the proof. \(\square \)

Exercise 4

Prove by contradiction that there are infinitely many primes of the form \(4n + 3 \) (where \(n \) is an integer).
Proof. The idea is to modify Euclid’s proof. Let \(\mathcal{P}_3 \) be the set of primes of the form \(4n + 3 \). Suppose \(\mathcal{P}_3 \) is finite.

Let \(N = 1 + 2 \prod_{p \in \mathcal{P}_3} p \). Reducing modulo 4, we see that a product of odd primes is always congruent to either 1 or 3 (mod 4). In either case, \(N \equiv 1 + 2 \equiv 3 \pmod{4} \). If the only primes in the factorization of \(N \) were congruent to either 1 or 2 (mod 4), then \(N \) would be one of 0, 1, or 2 (mod 4), a contradiction, so \(N \) must be divisible by some prime of the form \(4n + 3 \). But this implies \(1 = N - 2 \prod_{p \in \mathcal{P}_3} p \) is also divisible by that prime, a contradiction. \(\square \)

Remark 2. You can check for yourself that if we tweak certain numbers in the above proof, then we get a proof that there are infinitely many primes of the form \(6n + 5 \).

Remark 3. We probably won’t get to it in this course, but: Dirichlet’s theorem on arithmetic progressions is a much deeper result, asserting that whenever \(a, b \in \mathbb{N} \) are relatively prime, then there are infinitely many primes of the form \(an + b \).