
Variation and Share-Weighted Variation Swaps

on Time-Changed Lévy Processes
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Abstract

For a family of functions G, we define the G-variation, which generalizes power variation;

G-variation swaps, which pay the G-variation of the returns on an underlying share price F ;

and share-weighted G-variation swaps, which pay the integral of F with respect to G-variation.

For instance, the case G(x) = x2 reduces these notions to, respectively, quadratic variation,

variance swaps, and gamma swaps.

We prove that a multiple of a log contract prices a G-variation swap, and a multiple of an

F logF contract prices a share-weighted G-variation swap, under arbitrary exponential Lévy

dynamics, stochastically time-changed by an arbitrary continuous clock having arbitrary corre-

lation with the Lévy driver, under integrability conditions.

We solve for the multipliers, which depend only on the Lévy process, not on the clock.

In the case of quadratic G and continuity of the underlying paths, each valuation multiplier

is 2, recovering the standard no-jump variance and gamma swap pricing results. In the presence

of jump risk, however, we show that the valuation multiplier differs from 2, in a way that relates

(positively or negatively, depending on the specified G) to the Lévy measure’s skewness.

In three directions this work extends Carr-Lee-Wu, which priced only variance swaps. First,

we generalize from quadratic variation to G-variation; second, we solve for not only unweighted

but also share-weighted payoffs; and third, we apply these tools to analyze and minimize the

risk in a family of hedging strategies for G-variation.

1 Introduction

Assuming continuous underlying price paths, the standard theory (Neuberger [16], Dupire [10],

Carr-Madan [5], Derman et al [8]) finds that a variance swap has the same value as two log

contracts on the underlying F , and implies ([5],[15]) that a gamma swap has the same value as two

F logF contracts. The former valuation result has become a standard reference point for volatility

traders, and underpins the well-known volatility indicators VIX, VXN, and VSTOXX. However,
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empirical studies of equity markets reject the continuity assumption. Carr-Geman-Madan-Yor [3]

and Broadie-Jain [1] do allow jump risk, but instead of using the information in log contracts,

they take the “parametric” approach of imposing fully specified models (including CGMY in [3],

Merton, Heston, Bates in [1]), and pricing variance contracts in terms of the model parameters.

Returning to the log contract approach, Carr-Lee-Wu [4] generalized Neuberger and Dupire by

incorporating jump risk, in the form of “arbitrary time-changed exponential Lévy processes (under

integrability conditions), where the background Lévy process may have jumps of arbitrary distri-

bution, and where the stochastic time-change, an arbitrary continuous clock, may have arbitrary

dependence or correlation with the Lévy process. This allows stochastic volatility, stochastic jump

intensity, volatility clustering, and leverage effects.” They found that a variance swap still admits

pricing in terms of a log contract times a multiplier (not necessarily 2) which depends on the driving

Lévy process but not on the arbitrary stochastic clock. This “semi-parametric” approach is thereby

robust to misspecification or miscalibration of stochastic volatility or jump intensity.

In the same general semi-parametric framework of time-changed Lévy dynamics, with the same

robustness feature, we extend Carr-Lee-Wu [4] in three directions. First, we generalize to G-

variation (including but not limited to pth-power variation); second, we allow the G-variation to

be share-weighted; and third, we consider hedging in the general setting. The first extension, to

G-variation, allows us to price a family of variability statistics relevant in financial derivatives and

portfolio management, such as one-sided variance, capped-jump variance, and total variation; the

latter two are of particular relevance in the aftermath of market events of 2008-09, as sellers of

volatility have sought contracts with less tail-risk exposure than the variance swap’s quadratic

exposure. The second extension, to share-weighting, allows us to price G-variation contracts which

have gamma-swap-like features, such as directional exposure to the underlying level, and dampening

of downside variability. The third extension analyzes and minimizes the risk in approximately

hedging G-variation by a strategies which exactly attain H-variation for some H 6= G.

This paper is organized as follows. Section 2 defines G-variation and share-weighted G-variation.

In the time-changed Lévy setting, section 3 prices the G-variation swap, in terms of a log contract

times a multiplier that depends only on G and the Lévy driver X. Then section 4 gives financial

examples of G-variation. Section 5 prices the share-weighted G-variation swap, in terms of an

F logF contract times a dual multiplier that again has no dependence on the stochastic clock; and

section 6 gives financial examples. Section 7 finds explicit multiplier and dual-multiplier formulas

for some examples of X: a two-jump-size process (for which, moreover, we find perfect hedges of

unweighted and share-weighted G-variation swaps), and the extended CGMY process, including

Variance Gamma. For general X, section 7.4 shows that the multiplier differs from 2, in a way that

relates (positively or negatively, depending on the contract) to the Lévy measure’s skewness. Section

7.5 computes numerical multipliers for three distinct G functions, with three distinct weighting

schemes, under three distinct time-changed Lévy processes, using parameters empirically calibrated

in [2]. Section 8 analyzes the risk in hedges of G-variation, and exhibits numerical examples
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of optimal hedges, within a three-parameter family of trading strategies, under two distinct risk

measurement criteria, for hedging three distinct G contracts. Section 9 concludes.

2 G-variation

Let us define the G-variation of a semimartingale Y , for G which belong to the following family.

Definition 2.1 (The family V). Let Y be a semimartingale with respect to a probability measure

P. Let Y c denote its continuous local martingale part, and let νY denote its jump compensator. Let

IY := {p ≥ 0 :

∫
(0,t]×R

(|x|p ∧ 1)dνY <∞ for all t > 0}. (2.1)

In the case 1 ∈ IY , let

Y d
t := Yt − Y0 − Y c

t −
∑

0<s≤t
(∆Ys). (2.2)

In any case, let us say that G : R→ R satisfies

G ∈ V(Y,P) (2.3)

(or simply G ∈ V(Y ) when the measure is understood), if

G(x) = αG|x|+ βGx+ γGx
2 + ΛG(x) (2.4)

for some constants αG and βG and γG such that

αG = 0, or Y has finite variation a.s. (2.5)

and some

ΛG ∈ J(Y ) := {Locally bounded functions Λ : R→ R which are ν(ω;R+ × dx)-a.e.

continuous for P-almost all ω and satisfy at least one of (2.7-2.10)}.
(2.6)

The conditions referenced in the definition of J(Y ) are

Λ(x) = o(x2), (2.7)

Λ(x) = O(|x|p) and p ∈ IY ∩ (1, 2] and Y c = 0 (2.8)

Λ(x) = o(|x|) and 1 ∈ IY and Y c = 0 (2.9)

Λ(x) = O(|x|p) and p ∈ IY ∩ (0, 1] and Y d = Y c = 0. (2.10)

Each O or o here (and everywhere in this paper) denotes an x→ 0 relation.

We have written ∆Ys := Ys − Ys− (which is nonzero for countably many s, by right-continuity

and left-limits of Y ). Let brackets [·] denote quadratic variation, and let TV(·) denote the total

variation of a finite variation process.

Note that Y −Y c (“the jumps”) will have finite variation if and only if 1 ∈ IY ; moreover Y will

have finite variation if and only if 1 ∈ IY and Y c = 0.
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Definition 2.2 (G-variation). For G ∈ V(Y ), define the G-variation of Y to be

V Y,G
t := αG TV(Y d)t + βG(Yt − Y0) + γG[Y c]t +

∑
0<s≤t

(G(∆Ys)− βG∆Ys), (2.11)

where we define αG TV(Y d) := 0 in the case that αG = 0. (This convention simplifies notation, by

avoiding a separate definition for the infinite-variation jump case).

If the jumps have finite variation, then (2.11) may be rewritten as

V Y,G
t := αG TV(Y d)t + βG(Y c

t + Y d
t ) + γG[Y c]t +

∑
0<s≤t

G(∆Ys), (2.12)

which separates the continuous part (first three terms) and jump part (last term) of V Y,G
t . Our

definition (2.11), more broadly, makes sense even if the jumps have infinite variation.

The following convergence result, a direct corollary of Jacod ([13] Theorem 2.2, which guided the

formulations of our Definitions 2.1 and 2.2) serves two purposes for us. First, it gives the rationale

for why we chose to define G-variation by (2.11): namely, that G-variation is the continuous-

sampling limit of “discrete G-variation,” meaning the sum of G applied to the sampled increments

of Y . Second, it shows that, even if the decomposition of G into the form (2.4) is not unique, the

definition (2.11) is invariant to the decomposition, and depends only on G and Y .

Proposition 2.3. For any G ∈ V(Y ), and any sequence ∆n → 0, let

V Y,G(n)t :=

bt/∆nc∑
j=1

G(Yj∆n − Y(j−1)∆n
) (2.13)

For any decomposition of the form (2.4), the V Y,G defined by (2.11) satisfies

V Y,G(n) −→ V Y,G (2.14)

in probability in the Skorokhod sense, as n→∞.

As a corollary, V Y,G does not depend on the decomposition of G.

Proof. Let G0(x) := αG|x| and G1(x) := βGx and G2(x) := γGx
2. Let

At := αG TV(Y d)t +
∑

0<s≤t
G0(∆Ys) (2.15)

Bt := βG(Yt − Y0) (2.16)

Ct := γG[Y c]t +
∑

0<s≤t
G2(∆Ys) (2.17)

Dt :=
∑

0<s≤t
ΛG(∆Ys) (2.18)
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As n→∞, we have the Skorohod limits in probability

V Y,G0(n) −→ A (2.19)

V Y,G2(n) −→ C (2.20)

V Y,ΛG(n) −→ D (2.21)

by parts (c), (b), and (a) respectively, of Jacod [13] Theorem 2.2, whose proof of (b) is indeed valid

for the case r = 2 ∈ IY .

Moreover V Y,G1(n)t = βG(Y∆nbt/∆nc − Y0) implies that we have the pathwise Skorokhod limit

V Y,G1(n) −→ B. (2.22)

Summing (2.19) to (2.22) produces (2.14). Finally the decomposition of G does not affect the

left-hand side of (2.14), hence it does not affect the right-hand side.

With a view toward the hedging applications of Section 8, we need a “tower” property, that the

G2-variation of the G1-variation of Y is the (G2 ◦G1)-variation of Y , where ◦ denotes composition.

Proposition 2.4 (Tower property). Let G1 ∈ V(Y ) and G2 ∈ V(V Y,G1). Then

V V Y,G1 ,G2 = V Y,G2◦G1 . (2.23)

Proof. Let αG1 , βG1 , γG1 ,ΛG1 be an arbitrary decomposition consistent with Definition 2.1. Then

V Y,G1
t = αG1 TV(Y d)t + βG1(Yt − Y0) + γG1 [Y c]t +

∑
0<s≤t

(G1(∆Ys)− βG1∆Ys). (2.24)

It suffices to prove (2.23) for four cases: G2 = x, G2 = |x|, G2 = x2, and G2 ∈ J(V Y,G1). The result

for general G2 ∈ V(V Y,G1) follows by linearity.

If G2(x) = x, then

V V Y,G1 ,G2
t = V Y,G1

t = V Y,G2◦G1
t . (2.25)

If G2 ∈ J(V Y,G1), then

V V Y,G1 ,G2
t =

∑
0<s≤t

G2(G1(∆Ys)) = V Y,G2◦G1
t . (2.26)

If G2(x) = x2, then either Y has finite variation, which implies by (2.12) that

V V Y,G1 ,G2
t =

∑
0<s≤t

(G1(∆Ys))
2 = V

Y,G2
1

t , (2.27)

or else αG1 = 0, which implies

V V Y,G1 ,G2
t = [V Y,G1 ]t (2.28)

= β2
G1

[Y ]t +
∑

0<s≤t
(G1(∆Ys)− βG1∆Ys)

2 + 2
∑

0<s≤t
βG1∆Ys(G1(∆Ys)− βG1∆Ys) (2.29)

= β2
G1

[Y c]t +
∑

0<s≤t
(G1(∆Ys))

2 (2.30)

= V Y,G2◦G1
t , (2.31)

5



where (2.29) is because [A+B] = [A] + [B] + 2[A,B] for any semimartingales A,B.

If G2(x) = |x| then either αG1 = βG1 = 0 or Y has finite variation. In the former subcase,

V V Y,G1 ,G2
t = TV(γG1 [Y c])t +

∑
0<s≤t

|G1(∆Ys)| = V Y,G2◦G1
t , (2.32)

as claimed; here the last step is because |G1(x)| − |γG1 ||x| = O(G1(x) − γG1 |x|) implies that

|G1(x)| = |γG1x|+O(ΛG1(x)). Otherwise, in the finite variation subcase, let

α|G1| := (|αG1 + βG1 |+ |αG1 − βG1 |)/2 (2.33)

β|G1| := (|αG1 + βG1 | − |αG1 − βG1 |)/2. (2.34)

Because J(Y ) contains ΛG1(x) = G1(x) − (αG1 |x| + βG1x) − γG1x
2 and all O(x2) functions, it

therefore contains also

Λ|G1|(x) := |G1(x)| − |αG1 |x|+ βG1x| − γG1x
2 = |G1(x)| − α|G1||x|+ β|G1|x− γG1x

2. (2.35)

Thus |G1| has the following decomposition, consistent with Definition 2.1:

|G1(x)| = α|G1||x|+ β|G1|x+ γG1x
2 + Λ|G1|(x). (2.36)

Now take the Jordan decomposition of TV(Y d) into increasing processes NV(Y d) and PV(Y d) such

that TV(Y d) = PV(Y d)−NV(Y d) and Y d = PV(Y d) + NV(Y d). Then

V V Y,G1 ,G2
t = TV

(
αG1 TV(Y d) + βG1Y

d
)
t
+
∑

0<s≤t
|G1(∆Ys)| (2.37)

= TV
(

(αG1 + βG1) PV(Y d) + (αG1 − βG1) NV(Y d)
)
t
+
∑

0<s≤t
|G1(∆Ys)| (2.38)

= |αG1 + βG1 |PV(Y d)t + |αG1 − βG1 |NV(Y d)t +
∑

0<s≤t
|G1(∆Ys)| (2.39)

= α|G1|TV(Y d)t + β|G1|Y
d
t +

∑
0<s≤t

|G1(∆Ys)| (2.40)

= V
Y,|G1|
t , (2.41)

where the last step uses (2.12), (2.36), and Y c = 0. This completes the G2(x) = |x| case.

Finally, with a view toward applications where Y is a log-returns process, we define dual or

share-weighted G-variation as follows.

Definition 2.5 (Dual G-variation and Ṽ). If Y has finite variation, let Ṽ(Y ) := V(Y ) . Otherwise,

let Ṽ(Y ) := {G ∈ V(Y ) : G has a Definition-2.1 decomposition such that αG = βG = 0}.
In any case, for G ∈ Ṽ(Y ), define the dual G-variation or share-weighted G-variation of Y by

Ṽ Y,G
t :=

∫ t

0
eYsdV Y,G

s (2.42)

where the integral is defined pathwise in the Riemann-Stieltjes sense.

The Riemann-Stieltjes integral exists pathwise because the integrator is of finite variation and

the integrand is right-continuous with left limits.
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3 Variation swaps on time-changed Lévy processes

In this section we price contracts paying the G-variation of time-changed Lévy processes, in terms

of log contracts and the G-multiplier, which depends only on the driving Lévy process.

3.1 The G-multiplier

For a Lévy process X satisfying integrability conditions, let us define a family W(X) of functions

G. Whereas the family V comprised G for which G-variation is finite, the family W comprises G

for which the G-variation is moreover integrable.

Definition 3.1 (The family W). Let X be a nondeterministic Lévy process with P-Lévy measure

ν, such that
∫
|x|>1 e

xdν(x) <∞ and
∫
|x|>1 |x|dν(x) <∞. Let

W(X,P) = {G ∈ V(X,P) :

∫
|G(x)− βGx|dν(x) <∞}. (3.1)

In the case 1 ∈ IX (jumps have finite variation), condition (3.1) is equivalent to

W(X,P) = {G ∈ V(X,P) :

∫
|G(x)|dν(x) <∞}. (3.2)

We may write simply G ∈W(X) when the measure is understood.

For any given (X,G), note that whether G ∈ W(X) does not depend on the choice of βG;

either a unique βG is consistent with Definition 2.1, so there is no choice; or else 1 ∈ IX , hence∫
|x|dν(x) <∞, hence condition (3.1) reduces to condition (3.2) on G alone

For X such that EeX1 <∞, define the drift-adjusted process

X ′u := Xu − u logEeX1 . (3.3)

Proposition 3.2 (G-multiplier). For G ∈W(X,P), define the G-multiplier by

QX,G := QX,G,P :=
EV X′,G

1

−EX ′1
=

EV X′,G
1

logEeX1 − EX1
(3.4)

where E denotes P-expectation. Then, for any αG, βG, γG consistent with Definition 2.1, we have

QX,G =
αG

∣∣∣σ2/2 +
∫

(ex − 1)dν(x)
∣∣∣+ γGσ

2 +
∫

(G(x)− βGx)dν(x)

σ2/2 +
∫

(ex − 1− x)dν(x)
− βG, (3.5)

where (A, σ2, ν) denotes the generating P-triplet of X.

Proof. Sato [18] Theorem 25.17 and Example 25.12 imply that

logEeX1 − EX1 = σ2/2 +

∫
(ex − 1− x1|x|≤1)dν(x) +A− (A+

∫
|x|≥1

xdν(x)) (3.6)
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(and that the integrals are finite). This gives the denominator of (3.5), which is positive by convexity

of exp and nonconstancy of X1.

From Definition 2.2, the numerator is the sum of four terms. The first term is because either

αG = 0 or X ′d1 = σ2/2 +
∫

(ex− 1)dν(x). The second term is because Xc
1 = σ2. To obtain the third

term, apply Sato [18], Propositions 19.2 and 19.5, to the restriction of ν to {x : 1/m < |x| < m} for

each m > 0, together with dominated convergence as m → ∞. The fourth term is βGEX ′1, which

is divided by −EX ′1 to obtain −βG.

3.2 Time changed Lévy processes

We build upon the time-changed Lévy framework in [4], so this subsection’s assumptions are quoted

from there, and are in force throughout the remainder of this paper.

We begin with a filtered probability space (Ω,F , {Fu}u≥0,P) satisfying the usual conditions.

Fix a time horizon T > 0.

Let the interest rate be a deterministic right-continuous left-limits process r with
∫ T

0 |rs|ds <∞.

Let

r̄t :=

∫ t

0
rsds. (3.7)

Let F denote a positive underlying T -expiry forward or futures price process, and let

Yt := log(Ft/F0) (3.8)

denote the log return on F . Let

F ∗t := Fte
r̄t−r̄T . (3.9)

denote the associated underlying spot price, and

Y ∗t := log(F ∗t /F
∗
0 ) = Yt + r̄t (3.10)

denote the log return on F ∗. Assume that

Yt = X ′τt (3.11)

where X is a Lévy process such that EeX1 <∞, and where the time change

{τt : t ∈ [0, T ]} (3.12)

is a continuous increasing family of finite stopping times. We do not assume independence of X

and τ .

Financially, we regard X, indexed by “business” time, as a “driving” or “background” Lévy

process, which induces the drift-adjusted process X ′ such that eX
′

is a martingale. We regard τ as

an unspecified stochastic clock that maps calendar time t to business time τt. The resulting {Fτt}-
adapted process Y can exhibit stochastic volatility, stochastic jump-intensity, volatility clustering,

and “leverage” effects, the latter via skewed jump distributions, or via correlation of X and τ .
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3.3 Pricing variation swaps in terms of log contracts

Define the T -expiry log contract to pay at time T

−YT , (3.13)

where the sign convention was chosen to make log contracts have nonnegative value. Log contract

values are, in principle, observable given T -expiry call and put prices of all strikes.

For G ∈ V(Y ), define a (zero-fixed-leg) G-variation swap on F to pay at time T

V Y,G
T . (3.14)

Assume that P is a martingale measure for log contracts and G-variation swaps; thus the T -

expiry log contract andG-variation swap have respective time-0 values e−r̄TE(−YT ) and e−r̄TEV Y,G
T ,

if finite.

Proposition 3.3 (G-variation swap valuation). If G ∈W(X,P) and EτT <∞ then

EV Y,G
T = QX,GE(−YT ), (3.15)

where E denotes P-expectation. The multiplier QX,G does not depend on the time-change.

Proof. The definition of QX,G implies that the Lévy process

V X′,G
u +QX,GX ′u (3.16)

is a martingale. Because EτT <∞, we have, by Wald’s first equation in continuous time [11],

E
(
V X′,G
τT

+QX,GX ′τT
)

= 0. (3.17)

Moreover EV X′,G
τT <∞, again by Wald’s first equation, so

EV X′,G
τT

= QX,GE(−X ′τT ). (3.18)

It remains to show that V Y,G
T = V X′,G

τT . By linearity, we need only prove this for four cases of G.

Case 1: If G(x) = x, then clearly YT = X ′τT . Case 2: If G(x) = x2, then Jacod [12] Theorem 10.17

implies [Y ]T = [X ′]τT , by continuity of τ . Case 3: If G(x) = |x|, then pathwise

TV(Y )T = sup{
∑
|Yti+1 − Yti | : {ti} is a partition of [0, T ]}

= sup{
∑
|X ′ui+1

−X ′ii | : {ui} is a partition of [0, τT ]} = TV(X ′)τT ,
(3.19)

where the equality of the suprema holds because each partition of [0, T ] induces (via t 7→ τt) a

partition of [0, τT ] having the same sum, and vice versa (via the right-continuous inverse τ−1,

which exists by continuity of τ). Case 4: If G ∈ J(X), then
∑

0<t≤T G(∆Yt) =
∑

0<u≤τT G(∆Xu)

because ∆Yt = ∆Xτt by continuity of τ .
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Thus theG-variation swap value e−r̄TEV Y,G
T equalsQX,G times the log contract value e−r̄TE(−YT ).

Equivalently, restated in terms of forward-settled payments, the G-variation swap’s fair forward

price EV Y,G
T equals QX,G times the log contract’s forward price E(−YT ).

The multiplier QX,G depends only on G and the characteristics of the background Lévy process

X. It does not depend on the time-change.

Likewise, for the spot underlying, the G-variation swap on F ∗ can be defined to pay V Y ∗,G
T .

However, if G has a Definition-2.1-compliant decomposition in which αG = βG = 0, then no

distinction exists between G-variation swaps on futures and spot, because Y ∗ − Y = r̄ has finite

variation and no jumps, which implies V Y,G = V Y ∗,G. We have established the following.

Corollary 3.4 (G-variation swaps, on spot underlying). If G ∈W(X,P) and αG = βG = 0 then

EV Y ∗,G
T = QX,GE(−YT ), (3.20)

provided that EτT <∞.

4 Financial examples of G-variation swaps

We list some financial examples of G-variation swaps. Each of these variation contracts admits

pricing in terms of log contracts, subject to the conditions of Proposition 3.3.

Logarithmic variance swap: G(x) := x2. (4.1)

Simple-return variance swap: G(x) := (ex − 1)2. (4.2)

Logarithmic pth moment swap: G(x) := xp. (4.3)

Logarithmic absolute pth moment swap: G(x) := |x|p. (4.4)

Simple-return and absolute simple-return moment swaps are defined by replacing x with ex − 1 in

(4.3) and (4.4) respectively. A capped-jump version of a G-variation contract replaces G with

Ḡ(x) := G(min(max(x, a), b)), (4.5)

for some −∞ ≤ a < b ≤ ∞. A capped-G version of a G-variation contract replaces G with

Ḡ(x) := min(G(x),M) (4.6)

for some constant M .

Remark 4.1. Choosing G(x) := |x| gives a “total variation” swap, and G(x) := min(x2,M) gives a

“capped-quadratic” variation swap. These specifications, with sub-quadratic tails, are particularly

relevant in the wake of market events of 2008-09, as traders have sought contracts which allow some

form of volatility to be sold, without admitting quadratic exposure to the risk of sharp movements.
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Examples (4.1), (4.3), (4.4), and some cases of (4.5), belong to the (logarithmic) semi-moment

family, defined by

G(x) := |x|p(1x>0U + 1x<0D), (4.7)

where U and D can be chosen in {−1, 0, 1}, in accordance with the desired payoff.

In particular, U = D = 1 gives the absolute pth moment swap, (U,D) = (1, (−1)p) for integer

p gives the pth moment swap, and with p = 2, the choices (U,D) = (0, 1) and (U,D) = (1, 0) give

down semivariance and up semivariance respectively. Unlike corridor variance, the semivariance

applies an up/down filter to each fluctuation, not to the cumulative return.

5 Dual G-variation

In addition to G-variation contracts, we shall moreover price contracts paying dual G-variation,

also described as share-weighted G-variation, in the sense of Definition 2.5:

Ṽ Y,G
t =

∫ t

0

Fs
F0

dV Y,G
s =

∫ t

0

Fs
F0

dUs +
∑

0<s≤t

Fs
F0
G(∆Ys), (5.1)

where

U := αG TV(Y d) + βGY
d + γG[Y c], (5.2)

with our notational convention that the first term and/or second term is 0 if αG = 0 or βG = 0

respectively. The Ṽ Y,G
t may be regarded as a payment of G-variation “in shares”.

Specifically, for time-changed Lévy processes, we price the dual G-variation contract in terms

of “F logF” contracts, which by definition pay

YT e
YT =

FT
F0

log
FT
F0
, (5.3)

and which have prices observable, in principle, given prices of T -expiry calls and puts at all strikes.

According to Propositions 5.1 and 5.2, the dual G-variation contract is worth a multiple of the

F logF contract, where the multiplier depends only on G and the driving Lévy process, not on the

time change. The assumptions of subsection 3.2 remain in effect.

Proposition 5.1 (Dual G-multiplier). Define measure P̃ by

dP̃u
dPu

= expX ′u (5.4)

where P̃u and Pu denote the restrictions of P̃ and P to Fu. Let X̃ := −X and G̃(x) := G(−x).

For G ∈ W̃(X,P) := {G ∈ Ṽ(X,P) : G̃ ∈W(X̃, P̃)}, define the dual G-multiplier of X by

Q̃X,G,P := QX̃,G̃,P̃. (5.5)

11



Then, for any choice of αG, βG, γG consistent with Definition 2.1,

Q̃X,G,P =
αG

∣∣∣σ2/2 +
∫

(1− ex)dν(x)
∣∣∣+ γGσ

2 +
∫
ex(G(x)− βGx)dν(x)

σ2/2 +
∫

(1− ex + xex)dν(x)
+ βG, (5.6)

where (A, σ2, ν) denotes the generating P-triplet of X.

Proof. By Sato [18], X has generating P̃-triplet (Ã, σ2, ν̃), where dν̃(x)/dν(x) = ex.

By Proposition 3.2 we have

QX̃,G̃,P̃ =
αG

∣∣∣σ2/2 +
∫

(e−x − 1)dν̃(x)
∣∣∣+ γGσ

2 +
∫
G̃(−x)− (−βG)(−x)dν̃(x)

σ2/2 +
∫

(e−x − 1 + x)dν̃(x)
− (−βG) (5.7)

which simplifies to (5.6).

Proposition 5.2 (Dual G-variation swap valuation). If G ∈ W̃(X,P) and EF 2
T <∞ and Eτ2

T <∞
and ẼτT <∞, then

EṼ Y,G
T = Q̃X,GE(eYT YT ). (5.8)

The multiplier Q̃X,G does not depend on the time-change.

Proof. Let Ẽ denote P̃-expectation. We have

X̃ ′u := X̃u − u log ẼeX̃1 = −Xu − u(− logEeX1) = −X ′u (5.9)

hence

Ỹt := X̃ ′τt = −X ′τt = −Yt. (5.10)

Moreover, for all s < T we have
dP̃τs
dPτs

= expX ′τs =
Fs
F0

(5.11)

by the P-a.s. and P̃-a.s. finiteness of τT (see, for instance, [14] Appendix B).

Let Γ denote either |G| or G, and let Γ̃(x) := Γ(−x). Then

E
∑

0<s≤T

Fs
F0

Γ(∆Ys) =
∑

0<s≤T
E
Fs
F0

Γ(∆Ys) =
∑

0<s≤T
ẼΓ(∆Ys) = Ẽ

∑
0<s≤T

Γ̃(∆Ỹs). (5.12)

For Γ := |G|, the Fubini step is justified by Γ ≥ 0; moreover, the right-hand-side of (5.12) is finite

because G̃ ∈W(X̃, P̃). This in turn justifies usage of Fubini for Γ := G.

Recall the U definition (5.2). For any sequence of partitions 0 = tn,0 < tn,1 < . . . < tn,n = T

such that maxk{tn,k − tn,k−1} → 0 as n→∞, we have

E
∫ T

0

Ft
F0

dUt = E lim
n→∞

n∑
k=1

Ftn,k

F0
(Utn,k

− Utn,k−1
) (5.13)

= lim
n→∞

n∑
k=1

E
Ftn,k

F0
(Utn,k

− Utn,k−1
) (5.14)

= lim
n→∞

n∑
k=1

Ẽ(Utn,k
− Utn,k−1

) = ẼUT , (5.15)
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where (5.13) is by continuity of the finite variation integrator and right-continuity-left-limits of the

integrand, and the interchange in (5.14) is by dominated convergence: for each n the Riemann sum

is bounded by |UT | supt≤T Ft/F0, which is L1 because each factor is L2: the first because Eτ2
T <∞,

and the second by Doob’s inequality.

By summing (5.15) and (5.12) with Γ := G, then applying Proposition 3.3, then (5.10), we have

EṼ Y,G
T = ẼV Ỹ ,G̃

T = Q̃X,GẼ(−ỸT ) = Q̃X,GE(YT e
YT ) (5.16)

as claimed.

6 Financial examples of dual G-variation swaps

We give some financial examples of dual G-variation swaps. Each of these variation contracts

admits pricing in terms of F logF contracts, subject to the conditions of Proposition 5.2.

Example 6.1. The canonical example of a dual G-variation swap is the gamma swap, which takes

G(x) = x2 and therefore pays ∫ T

0

Fs
F0

d[Y ]s, (6.1)

according to (5.1). Gamma swaps allow investors to acquire variance exposures proportional to the

underlying level, which may be of practical importance for several reasons. First, the investor may

be bullish on Y . Second, the investor may have the view that the market’s downward volatility

skew is too steep, making down-variance expensive relative to up-variance. Third, the investor may

be seeking to hedge vega exposure that grows as Y increases, such as what arises in dispersion

trading of a basket’s volatility against its components’ volatilities. Fourth, the investor may wish

to trade single-stock variance without the caps often embedded in variance swaps to protect the

seller from crash risk; in a gamma swap, the weighting inherently dampens the downside variance,

without imposing a cap.

The standard theory of gamma swaps assumes continuous paths and finds that a gamma swap

has the value of two F logF contracts. Proposition 5.2 extends the standard theory in two ways:

first, by allowing time-changed Lévy processes with jumps; and second, by pricing share-weighted

G-variation for not just quadratic but general G, motivated by investment objectives analogous to

the gamma swap motivations outlined in Example 6.1.

Example 6.2 (Share-weighted moment swaps). Generalizing the gamma swap, a share-weighted

moment swap pays ∫ T

0

Fs
F0

dV Y,G
s , (6.2)

where G(x) = xp or G(x) = |x|p or G(x) = (ex − 1)p or G(x) = |ex − 1|p, producing pth-moment

swaps on logarithmic, absolute logarithmic, simple, and absolute simple returns respectively.
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Example 6.3 (Pre-jump share-weighted G-variation swaps). Let us modify the share-weighted G-

variation payoff, by applying pre-jump share weights to define the payoff∫ T

0

Fs−
F0

dV Y,G
s , (6.3)

which is tractable within our framework, because∫ T

0

Fs−
F0

dV Y,G
s =

∫ T

0

Fs−
F0

dUs +
∑

0<s≤t

Fs−
F0

G(∆Ys) (6.4)

=

∫ T

0

Fs
F0

dUs +
∑

0<s≤t

Fs
F0
e−∆YsG(∆Ys), (6.5)

where the integrals are pathwise Riemann-Stieltjes.

The pre-jump share-weighted G-variation, therefore, still admits pricing in terms of F logF

contracts, via the Q̃ multiplier, but with respect to the function e−xG(x) instead of G(x).

7 Multiplier calculations

In the following examples of driving Lévy processes X, we will not need to specify the “drift”

component of X, because passing to X ′ via (3.3) resets the drift anyway, to make eX
′

a martingale.

Each example’s scope includes a family of log return processes Yt = X ′τt , because the time

change τ is general and unspecified. Without modeling the stochastic clock τ , Proposition 3.3

prices the G-variation swap payoff V Y,G
T in terms of log contracts, and Proposition 5.2 prices the

share-weighted G-variation swap payoff Ṽ Y,G
T in terms of F logF contracts, via the multiplier or

dual-multiplier that depends only on X and G, not on the clock dynamics.

We shall solve for the G-multipliers and dual G-multipliers of the following examples of Lévy

processes: Brownian motion, a two-possible-jump-size process, and the (extended) CGMY, includ-

ing Variance Gamma.

7.1 Example: Brownian motion

Let X be Brownian motion, and let G(x) = x2 + o(x2). This includes G(x) = (ex − 1)2 and

G(x) = x2. By Propositions 3.2 and 5.1,

QX,G = 2 (7.1)

Q̃X,G = 2. (7.2)

For both simple and logarithmic returns, then, a log contract multiplier of 2 prices variance swaps,

and an F logF multiplier of 2 prices gamma swaps – on all positive continuous local martingales,

because their log return dynamics are all induced by time changes of drift-adjusted Brownian

motion, by the following corollary to Dambis/Dubins-Schwarz [7, 9].
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Proposition 7.1. Let S be a positive continuous local martingale relative to a filtration {Gt}t≥0.

If E[logS]T < ∞ and [logS]∞ = ∞, then there exist a filtration F := {Fu}u≥0, an F-Brownian

motion W , and a continuous F-time change τ with EτT <∞, such that log(St/S0) = Wτt − τt/2.

Proof. See [4].

Including and extending the known valuations of variance and gamma swaps on continuous

underliers, Propositions 3.3 and 5.2 allow general time-changes of general Lévy processes X with

jumps, and allow general specifications of G-variation, not necessarily quadratic.

7.2 Example: Two jump sizes

Let X have Brownian component zero, and Lévy measure

λ1δc1 + λ2δc2 , (7.3)

where δc denotes a point mass at c, and c2 < 0 < c1; thus up-jumps have magnitude c1 and

down-jumps have magnitude |c2|. By Propositions 3.2 and 5.1, for arbitrary G,

QX,G =
αG|µ|+ βGµ+ λ1G(c1) + λ2G(c2)

λ1(ec1 − 1− c1) + λ2(ec2 − 1− c2)
(7.4)

Q̃X,G =
αG|µ|+ βGµ+ λ1e

c1G(c1) + λ2e
c2G(c2)

λ1(1− ec1 + c1ec1) + λ2(1− ec2 + c2ec2)
(7.5)

where

µ := λ1(1− ec1) + λ2(1− ec2).

This prices G-variation and dual G-variation swaps via Propositions 3.3 and 5.2.

Moreover, in the case of piecewise constant paths µ = 0, our valuations are enforceable by

perfect replication strategies. Let

qX,G :=
c2G(c1)− c1G(c2)

c1(1− ec2) + c2(ec1 − 1)
(7.6)

q̃X,G :=
c1G(c2)− c2G(c1)

c1(e−c2 − 1) + c2(1− e−c1)
. (7.7)

Proposition 7.2 shows that holding QX,G log contracts statically, together with qX,GZt/Ft− futures

dynamically, replicates the G-variation payoff V Y,G
T ; and that holding Q̃X,G log contracts statically,

together with (q̃X,G + Yt−)Zt/F0 futures dynamically, replicates the share-weighted G-variation

payoff Ṽ Y,G
T , where Zt := er̄t−r̄T .

Proposition 7.2 (Replication). Let X have zero Brownian part, µ = 0, and Lévy measure (7.3).

Then

V Y,G
T = QX,G log(F0/FT ) +

∫ T

0

qX,G

Ft−
dFt (7.8)
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and

Ṽ Y,G
T = Q̃X,G

FT
F0

log
FT
F0

+

∫ T

0

q̃X,G + Yt−
F0

dFt. (7.9)

Proof. We have

X ′u = c1N
1
u + c2N

2
u , (7.10)

where N1 and N2 are independent Poisson processes. Reindexing by calendar time,

Yt = c1Ñ
1
t + c2Ñ

2
t , (7.11)

where Ñ j
t := N j

τt for j = 1, 2. By Itô’s rule, the futures price Ft = F0 exp(Yt) satisfies

dFt = (ec1 − 1)Ft−dÑ1
t + (ec2 − 1)Ft−dÑ2

t (7.12)

and

d(Yte
Yt) = (c1e

c1 + Yt−(ec1 − 1))(Ft−/F0)dÑ1
t + (c2e

c2 + Yt−(ec2 − 1))(Ft−/F0)dÑ2
t , (7.13)

Combining (7.11) and (7.12),

−QX,Gd logFt +
qX,G

Ft−
dFt =

∑
j=1,2

(qX,Gecj − qX,G −QX,Gcj)dÑ j
t = G(c1)dÑ1

t +G(c2)dÑ2
t . (7.14)

which implies (7.8). Combining (7.12) and (7.13),

Q̃X,Gd(Yte
Yt)− q̃X,G + Yt−

F0
dFt =

∑
j=1,2

(q̃X,G(1− ecj ) + Q̃X,Gcje
cj )
Ft−
F0

dÑ j
t (7.15)

= G(c1)
Ft
F0

dÑ1
t +G(c2)

Ft
F0

dÑ2
t . (7.16)

which implies (7.9).

7.3 Example: Generalized CGMY

Let X have no Brownian component. Let X have the generalized CGMY Lévy density

ν(x) =
Cd

|x|1+Yd
e−Md|x|1x<0 +

Cu

|x|1+Yu
e−Mu|x|1x>0, (7.17)

where Cu, Cd > 0, and Md > 0, Mu > 1, and Yu, Yd < 2. In (7.18) and (7.19), the top line in each

bracket is for the case {Yu, Yd} ∩ {0, 1} = ∅, while the bottom line is for the case Yu = Yd = 0,

which includes the Variance Gamma (VG) model.

According to Proposition 3.2, the QX,G has denominator

Denom(Cd, Cu,Md,Mu, Yd, Yu) := (7.18)
CdΓ(−Yd)[(Md + 1)Yd −MYd

d − YdM
Yd−1
d ] + CuΓ(−Yu)[(Mu − 1)Yu −MYu

u + YuM
Yu−1
u ],

or

Cd(1/Md − log(1 + 1/Md))− Cu(1/Mu + log(1− 1/Mu))
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In the case that G is simple-return variance, for Mu > 2, the QX,G has numerator

NumerG(Cd, Cu,Md,Mu, Yd, Yu) := (7.19)
CdΓ(−Yd)(MYd

d − 2(Md + 1)Yd + (Md + 2)Yd) + CuΓ(−Yu)((Mu − 2)Yu − 2(Mu − 1)Yu +MYu
u )

or

−Cd(logMd − 2 log(Md + 1) + log(Md + 2))− Cu(log(Mu − 2)− 2 log(Mu − 1) + logMu)

In the case that G belongs to the semi-moment family (4.7), if p > max(1, Yu, Yd) (which can be

relaxed if U = 0 or D = 0), then the QX,G has numerator

NumerG(Cd, Cu,Md,Mu, Yd, Yu) := CuΓ(p− Yu)MYu−pU + CdΓ(p− Yd)GYd−pD. (7.20)

In any case, the multiplier equals NumerG /Denom, and the dual multiplier can be expressed by

evaluating the NumerG and Denom functions at adjusted arguments. Explicitly,

QX,G =
NumerG(Cd, Cu,Md,Mu, Yd, Yu)

Denom(Cd, Cu,Md,Mu, Yd, Yu)
, Q̃X,G =

NumerG(Cd, Cu,Md + 1,Mu − 1, Yd, Yu)

Denom(Cu, Cd,Mu − 1,Md + 1, Yu, Yd)
(7.21)

by Propositions 3.2 and 5.1.

7.4 Skewness effects on valuations of quadratic-type payoffs

By (7.1,7.2), for G-variation contracts on continuous processes, where G(x) = x2 + o(x2), the

multiplier and the dual multiplier both equal 2. Introducing jumps may make the multiplier larger

or smaller than 2, depending on the jump distribution and on G.

Proposition 7.3. Let G(x) = x2 + o(x2).

Under the Proposition 3.3 hypotheses, let JPG,ν :=
∫

(G(x) + 2x+ 2− 2ex)dν(x). Then

EV Y,G
T − 2E(−YT ) = (EτT ) JPG,ν (7.22)

sgn(QX,G − 2) = sgn(JPG,ν) (7.23)

Under the Proposition 5.2 hypotheses, let J̃P
G,ν

:=
∫

(exG(x)− 2xex + 2ex − 2)dν(x). Then

EṼ Y,G
T − 2E(eYT YT ) = (ẼτT ) J̃P

G,ν
(7.24)

sgn(Q̃X,G − 2) = sgn(J̃P
G,ν

). (7.25)

Proof. The numerator in (3.5), minus twice the denominator, equals JPG,ν . This justifies (7.23)

and also the last step in

EV Y,G
T − 2E(−YT ) = (QX,G − 2)E(−YT ) = (QX,G − 2)EτTE(−X̃ ′1) = (EτT ) JPG,ν ,

where the middle step is by Wald’s identity. Likewise, the numerator in (5.6), minus twice the

denominator, equals J̃P
G,ν

. This justifies (7.25) and also the last step in

EṼ Y,G
T − 2E(eYT YT ) = (Q̃X,G − 2)E(eYT YT ) = (Q̃X,G − 2)ẼτT Ẽ(−X ′1) = (ẼτT ) J̃P

G,ν
,

where the middle step is by Wald’s identity.
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Table 1: Jump premia for various contracts G and, in the case of pre-jump weights, G∗ := e−xG

G F -weighted? Jump Premium . . . in terms of skewness

x2 No JPG,ν=
∫

(−ex + x2/2 + x+ 1)dν(x) = −1
3 SK1(ν)

=
∫

(−x3/3− x4/12 +O(x5))dν(x)

x2 Yes, post J̃P
G,ν

=
∫

(exx2/2− xex + ex − 1)dν(x) = +1
3 SK2(ν)

=
∫

(x3/3 + x4/4 +O(x5))dν(x)

x2 Yes, pre J̃P
G∗,ν

=
∫

(x2/2− xex + ex − 1)dν(x) = −2
3 SK3(ν)

=
∫

(−2x3/3− x4/4 +O(x5))dν(x)

(ex − 1)2 No JPG,ν=
∫

(−ex + (ex − 1)2/2 + x+ 1)dν(x) = +2
3 SK4(ν)

=
∫

(2x3/3 + x4/2 +O(x5))dν(x)

(ex − 1)2 Yes, post J̃P
G,ν

=
∫

(ex(ex − 1)2/2− xex + ex − 1)dν(x) = +4
3 SK5(ν)

=
∫

(4x3/3 + 11x4/6 +O(x5))dν(x)

(ex − 1)2 Yes, pre J̃P
G∗,ν

=
∫

((ex − 1)2/2− xex + ex − 1)dν(x) = +1
3 SK6(ν)

=
∫

(x3/3 + x4/3 +O(x5))dν(x)

The left-hand side of (7.22) is the G-variation contract’s value, minus its value in the absence

of jump risk. The equality (7.22), therefore, explains why we describe JP as the jump premium.

Likewise, (7.24) explains why we regard J̃P as the share-weighted jump premium. By (7.23,7.25),

a positive (negative) jump premium is equivalent to a multiplier greater (smaller) than 2.

For quadratic-type G, the jump premium is a constant multiple of the Lévy measure’s skewness.

Definition 7.4. Let SK be a real-valued function defined on a set of Lévy measures. We say that

SK is a (noncentral) generalized skewness if there exists a Borel function ψ(x) = x3 +O(x4) such

that, for all Lévy measures ν with
∫
|ψ|dν <∞, the function SK is defined and SK(ν) =

∫
ψdν.

Proposition 7.5. Under the Proposition 7.3 hypotheses, if G(x) = x2 + cGx
3 + O(x4) for some

constant cG, then there exists a generalized skewness SK and a generalized skewness S̃K such that

JPG,ν = (cG − 1/3) SK(ν) and J̃P
G,ν

= (cG + 1/3)S̃K(ν).

Proof. Apply Taylor’s theorem to each ex in the integrands in Proposition 7.3

Table 1 illustrates Proposition 7.3 by expressing jump premia for various G contracts in terms of

the Lévy measure’s skewness. The subscripts on SK emphasize that each SK is a distinct member of

the generalized skewness family in Definition 7.4. With logarithmic returns, the variance swap and

pre-jump gamma swap are “short” skewness, while the post-jump gamma swap is “long” skewness.

With simple returns, the variance swap and both gamma swaps are all long skewness.
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7.5 Multipliers of empirically calibrated processes

Carr-Geman-Madan-Yor [2] calibrate various time-changed Lévy processes to four cross-sections of

S&P 500 options data from March, June, September, and December 2000, producing the parameter

estimates in Table 2. In Table 3, we compute the multipliers and dual multipliers associated with

those parameter estimates.

The driving Lévy process X has CGMY, VG, or NIG dynamics. In each case, the time-change

is by a CIR stochastic clock. We do not report the estimated parameters of the CIR clock, because

the multiplier depends only on X.

In the “Variance”, “Simple variance”, and “Third moment” columns, we have respectively

G(x) = x2, G(x) = (ex−1)2, and G(x) = x3. For each G we compute, via Propositions 3.2 and 5.1,

the unweighted, post-F -weighted, and pre-F -weighted multipliers, by which we mean, respectively,

QX,G, Q̃X,G, and Q̃X,G
∗
, where G∗(x) := e−xG(x) includes the pre-jump weighting adjustment.

The results are consistent with negatively skewed jumps: The third-moment multipliers are

negative; and (as expected in light of Table 1), the variance and post-F -weighted variance multipli-

ers are greater than 2, while the pre-F -weighted variance and all simple-return variance multipliers

are smaller than 2.

For most of the models in Table 3, using the no-jump multiplier 2.00 in the presence of jumps

would underprice variance swaps by 5-10%, and overprice gamma swaps by 5-10%, and underprice

simple-return variance swaps by 8-20%.

Table 2: Calibration of time-changed Lévy processes, by Carr-Geman-Madan-Yor [2], using four

cross-sections of S&P 500 options data.

Lévy driver Data Lévy parameters

CGMY Mar Cd/Cu = 0.2883,Md = 0.697,Mu = 22.0, Yd = 1.45, Yu = −3.65

CGMY Jun Cd/Cu = 0.0526,Md = 0.423,Mu = 24.6, Yd = 1.67, Yu = −4.51

CGMY Sep Cd/Cu = 0.0676,Md = 1.64,Mu = 16.9, Yd = 1.54, Yu = −2.90

CGMY Dec Cd/Cu = 0.0855,Md = 3.68,Mu = 52.9, Yd = 1.22, Yu = −2.12

VG Mar Md = 7.33,Mu = 32.4

VG Jun Md = 11.0,Mu = 30.1

VG Sep Md = 12.4,Mu = 33.6

VG Dec Md = 11.7,Mu = 42.7

NIG Mar α = 96.4, β = −92.0

NIG Jun α = 69.7, β = −62.1

NIG Sep α = 99.8, β = −91.1

NIG Dec α = 274.8, β = −265.4
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Table 3: Multipliers QX,G and Q̃X,G computed from the calibrated Lévy parameters in Table 2

Variance Simple variance Third moment

F -weighted F -weighted F -weighted

Lévy driver Post Pre Post Pre Post Pre

CGMY Mar 2.43 1.75 2.85 1.53 1.37 1.80 -1.92 -0.57 -2.25

CGMY Jun 2.37 1.81 2.70 1.62 1.53 1.85 -1.85 -0.42 -2.11

CGMY Sep 2.17 1.87 2.33 1.76 1.62 1.89 -0.61 -0.33 -0.65

CGMY Dec 2.13 1.88 2.27 1.78 1.63 1.89 -0.45 -0.31 -0.48

VG Mar 2.17 1.85 2.35 1.72 1.52 1.86 -0.56 -0.41 -0.60

VG Jun 2.10 1.91 2.20 1.83 1.69 1.92 -0.32 -0.25 -0.34

VG Sep 2.09 1.92 2.18 1.84 1.72 1.92 -0.28 -0.23 -0.30

VG Dec 2.10 1.91 2.21 1.82 1.67 1.91 -0.33 -0.27 -0.34

NIG Mar 2.21 1.82 2.45 1.66 1.43 1.84 -0.73 -0.49 -0.81

NIG Jun 2.12 1.89 2.25 1.79 1.63 1.90 -0.39 -0.31 -0.42

NIG Sep 2.11 1.90 2.22 1.81 1.66 1.91 -0.35 -0.28 -0.36

NIG Dec 2.10 1.90 2.21 1.82 1.67 1.91 -0.33 -0.27 -0.35

Table 4: Hedges minimizing expected %-variation of tracking error Π (H-variation less G-variation)

Optimal coefficients of H0, H1, H2

Risk measured by %(x) = (x ∧ 0)2 Risk measured by %(x) = x2

Contract G â0 â1 â2 â0 â1 â2

1
100 |x| Mar 0.58 0.58 -0.18 0.24 0.25 -0.09
1

100 |x| Jun 1.18 1.18 -0.43 0.68 0.69 -0.28
1

100 |x| Sep 1.43 1.43 -0.54 0.84 0.84 -0.35
1

100 |x| Dec 1.30 1.30 -0.48 0.66 0.66 -0.27

(x ∧ 0)2 Mar -1.47 -1.46 1.62 -0.93 -0.91 1.34

(x ∧ 0)2 Jun -4.97 -4.96 3.24 -3.20 -3.16 2.31

(x ∧ 0)2 Sep -5.47 -5.45 3.49 -3.51 -3.48 2.47

(x ∧ 0)2 Dec -2.95 -2.94 2.33 -1.97 -1.96 1.81

x3 Mar 6.70 6.71 -3.35 7.79 7.80 -3.85

x3 Jun 6.43 6.43 -3.22 7.12 7.12 -3.54

x3 Sep 6.38 6.38 -3.19 7.00 7.00 -3.49

x3 Dec 6.43 6.43 -3.21 7.10 7.10 -3.53
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8 Hedging G-variation using H-variation

Suppose that we hedge a G-variation payoff, by using an H-variation payoff, assuming that the

latter payoff is exactly available.

Example 8.1. Consider the following cases of H-variation: H = H0, H = H1, and H = H2, where

H0(x) := ex − 1 (8.1)

H1(x) := −x (8.2)

H2(x) := x2. (8.3)

The H0-variation payoff is exactly attainable, by collecting the profit/loss from dynamically

holding 1/Ft− futures. This follows from applying Itô’s rule:∫ T

0

1

Ft−
dFt =

1

2
[Y c]T + log(FT /F0) +

∑
0<t≤T

(
e∆Yt − 1−∆Y

)
(8.4)

which equals V Y,H0

T because decomposing ex − 1 = x+ x2/2 + (ex − 1− x− x2/2) satisfies Def 2.1.

The H1-variation payoff is exactly available, by statically holding 1 log contract.

The H2-variation payoff is exactly available, if a static holding of 1 variance swap is available.

In that case, linear combinations H ∈ span{H0, H1, H2} := {a0H0 + a1H1 + a2H2 : a0, a1, a2 ∈ R}
are then also exactly attainable.

In markets where other types of variation swaps are liquid (or exactly synthesizable), they

become available as hedging instruments, and expand the set of exactly attainable H.

Let us hedge a short position in G-variation by going long H-variation. The resulting profit/loss

process (in the realized sense, not a mark-to-market sense), or “hedging error” or “tracking error”

is defined by

Πt := V Y,H
t − V Y,G

t . (8.5)

We will apply to Π some measures of hedge risk: variance and %-variation, to be defined below.

Two possible modifications of the hedging error definition (8.5) do not add any complication.

First, one could modify the definition by adding to it an initial profit/loss, such as the difference

between the time-0 prices of the H-variation and G-variation contracts; this modification would

not affect our analysis, because all of our hedge risk measures will be invariant to translation of Π

by a constant. Second, one could consider hedging a long position in G-variation by going short

H-variation; if % is asymmetric, then this modification would affect the measurement of risk by

ρ-variation, but in a way that falls within the scope of our results, which can simply be applied to

−G and −H.

In parallel to our conclusions about valuation, some of our conclusions about hedging (8.8,8.20)

will express each hedge risk measure as a multiplier times the log contract value, where the multiplier

does not depend on the time change. This allows us to solve, at least numerically, for hedges H

which minimize the risk measure.
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8.1 Hedge risk, measured by terminal variance

First consider measuring the risk of the tracking error Π by using terminal variance Var(ΠT ).

Lemma 8.1. For k = 1, 2, let Gk ∈ V(X) and let βGk
be the coefficient of x in an arbitrary

decomposition of Gk(x) consistent with Definition 2.1. Then G1G2 has decomposition

G1G2(x) = βG1βG2x
2 + Λ(x)

for some Λ ∈ J(X).

Moreover, G1G2 ∈W(X) if and only if
∫
|G1G2|dν <∞, where ν is the Lévy measure of X.

Proof. If X has infinite variation, then Gk(x) = βGk
x+ o(x) for k = 1, 2, by Definition 2.1. So

G1(x)G2(x)− βG1βG2x
2 = o(x2) ∈ J(X). (8.6)

If X has finite variation, then J(X) contains the functions G1(x) and x2, so

G1(x)G2(x)− βG1βG2x
2 = O(G1(x) + x2) ∈ J(X). (8.7)

as claimed. The “if and only if” conclusion follows, because (8.6) reduces (3.1) into (3.2).

Proposition 8.2 (Hedging G-variation using H-variation. Risk measured by terminal variance).

Let G,H ∈W(X). Let R := H −G. Assume that R2 ∈W(X) and EτT <∞.

(a) If the hedge is initially cost-neutral (also known as “dollar-neutral” to traders of USD-

denominated assets), meaning that EV Y,G
T = EV Y,H

T or equivalently QX,G = QX,H , then

Var(ΠT ) = QX,R
2
E(−YT ). (8.8)

So the hedging error’s variance is again a multiple of the log contract value, where the multi-

plier, given by (8.10), depends only on H −G and the Lévy driver, not the time change.

(b) If X and the clock τ are independent, then (without assuming cost-neutrality),

Var(ΠT ) = QX,R
2
E(−YT ) + (QX,R)2(EY 2

T − (EYT )2 −QX,sqE(−YT )). (8.9)

So the hedging error’s variance is a function of the log contract value −EYT , the log-squared

contract value EY 2
T , and H −G, and the Lévy driver X – regardless of the time change.

In both cases we have

QX,R
2

=
β2
Rσ

2 +
∫
R2(x)dν(x)

σ2/2 +
∫

(ex − 1− x)dν(x)
. (8.10)

In (8.9), sq denotes the function x 7→ x2; thus QX,sq = (σ2+
∫
x2dν(x))/(σ2/2+

∫
(ex−1−x)dν(x)).
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Proof. Definitions 2.2 and 3.1 imply that R ∈W(X) and Π := V Y,H − V Y,G = V Y,R.

Let m = EV X′,R
1 . By the Lévy, strong Markov, and martingale properties of V X′,R−mt, along

with finiteness of EτT and Wald’s first identity, we have that V Y,R
t −mτt is a martingale.

Moreover, by the same argument as (2.30), the quadratic variation [V X′,R]1 equals a constant

plus
∑

0<s≤1R(∆Xs)
2. Therefore E[V X′,R]1 < ∞, by R2 ∈ W(X) and Lemma 8.1. Equivalently,

VarV X′,R
1 <∞ by ([4] Proposition 2.1). Hence E(V Y,R

t −mτt)2 <∞ by ([11] Theorem 3i). Indeed

E(V Y,R
T −mτT )2 = E[V Y,R −mτ·]T = E[V Y,R]T (8.11)

= EV Y,R2

T (8.12)

= QX,R
2
E(−YT ) (8.13)

where (8.11) is by, for instance, Protter [17] Corollary II.27.3 together with the continuity and finite

variation of τ·; (8.12) is by the tower property (Proposition 2.4); and (8.13) is by Proposition 3.3.

In the case (a), m = 0, so we are done. In the case (b),

E(V Y,R
T )2 = E(V Y,R

T −mτT )2 + 2mE(τTV
Y,R
T )−m2Eτ2

T (8.14)

= E(V Y,R
T −mτT )2 +m2Eτ2

T (8.15)

= E(V Y,R
T −mτT )2 + (QX,R)2(EY 2

T −QX,sqE(−YT )) (8.16)

where (8.15) is by conditioning on τ and using the independence of X and τ ; and (8.16) is true,

again using independence, because

QX,sqE(−YT ) = E[Y ]T = E(YT − τTEX ′1)2 (8.17)

= EY 2
T − E(τTEX ′1)2 = EY 2

T −m2Eτ2
T /(Q

X,R)2. (8.18)

Subtracting (EV Y,R
T )2 = (QX,REYT )2 from (8.16) gives

Var(V Y,R
T ) = QX,R

2
E(−YT ) + (QX,R)2(EY 2

T − (EYT )2 −QX,sqE(−YT )), (8.19)

which verifies (8.9). Finally, (8.10) comes from Proposition 3.2 and Lemma 8.1.

8.2 Hedge risk, measured by expected %-variation

Whereas Proposition 8.2 measured hedge risk by the variance of the random variable ΠT , this

section measures hedge risk by EV Π,%
T , the expected %-variation of the process Π, where % is chosen

in accordance with some notion of risk.

Example 8.2. The choice %(x) = x2 measures risk according to the quadratic variation of the hedged

portfolio – a path dependent quantity, in contrast to the previous section’s terminal variance, which

depended only on ΠT .

Depending on the choice of %, this %-variation measure of hedge risk has the flexibility to treat

losses asymmetrically from gains – a feature desirable from a risk-management standpoint.
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Example 8.3. The “realized semivariance” %(x) = (x ∧ 0)2 penalizes losses quadratically without

penalizing gains.

Here we assume neither the cost-neutrality nor the independence condition of Proposition 8.2.

Proposition 8.3 (Hedging G-variation using H-variation. Risk measured by expected %-variation).

Let R := H −G. If % ∈W(V X′,R) then

EV Π,%
T = QX,%◦RE(−YT ). (8.20)

So the hedging error’s expected %-variation is again a multiple of the log contract value, where the

multiplier depends only on % and H −G and the Lévy driver, not the time change.

Proof. Combine our “tower” proposition for G-variation and our log-contract conclusion, to obtain

EV Π,%
T = EV V Y,R,%

T = EV Y,%◦R
T = QX,%◦RE(−YT ) (8.21)

by Propositions 2.4 and 3.3.

In Propositions 8.2 and 8.3, our setting is, in two directions, more general than Crosby’s [6],

because we hedge contracts on G-variation, not just quadratic variation, and we measure risk

by expected %-variation (including asymmetric %), not just variance. (In a different direction, our

setting is less general because our Lévy driver is one-dimensional, but this gives us explicit formulas

(8.8,8.9,8.20) expressing the risk metrics directly in terms of log contract values.)

8.3 Optimal hedges of G-variation using H-variation: quadratic ρ

Given a family of exactly attainable H-variation payoffs, if we can find H which minimizes QX,%◦R,

then it minimizes EV Π,%
T . Such minimal H then hedges G-variation optimally, with respect to

%-variation of the tracking error Π.

Solving for H is tractable, and in some cases straightforward, because QX,%◦R = QX,%◦(H−G)

depends on H in a way that is easily computable and in some cases expressible explicitly.

Indeed, for the quadratic case %(x) = x2, Proposition 8.5 will show that H is optimized by

solving an explicit linear system of equations that does not depend on the time change.

Proposition 8.4. Let W2(X) := {G ∈ V(X) : G2 ∈W(X)}. The operation

〈G1|G2〉 := QX,G1G2 , (8.22)

is a well-defined mapping W2(X) ×W2(X) → R. Under this operation W2(X) is a real inner

product space.

Proof. If G1, G2 ∈ W2(X), then
∫
G2
kdν < ∞ for k = 1, 2 by Lemma 8.1, so

∫
|G1G2|dν < ∞

by Cauchy-Schwarz, hence G1G2 ∈ W(X), again by Lemma 8.1. The operation is therefore well-

defined. The remaining inner product properties are easily verified.
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Proposition 8.5. Let G ∈W2(X), and let H1, . . . ,HM ∈W2(X).

Let H := span{H1, . . . ,HM} := {a1H1 + · · ·+ aMHM : am ∈ R}. If â1, . . . , âM solve the linear

system
M∑
m=1

âmQ
X,HmHn = QX,GHn , n = 1, . . . ,M, (8.23)

then the expected quadratic variation of the hedging error Π := V Y,H − V Y,G is minimized, among

all H ∈ H, by H = â1H1 + · · ·+ âMHM .

Proof. By standard results on best approximation in subspaces of inner product spaces, any solution

of the normal equations (8.23) minimizes QX,(H−G)2 .

8.4 Optimal hedges: numerical examples including asymmetric %

Although quadratic variation of the tracking error is easily minimized via Proposition 8.5, the

quadratic criterion has a drawback, in that %(x) = x2 penalizes gains and losses symmetrically.

In this section we allow general %, and hence a wider range of ways to measure the variability

of the tracking error. For general %, without Proposition 8.5, the optimization will be numerical.

The problem, of finding H ∈ span{H1, . . . ,HM} to minimize EV Π,%, takes the equivalent form

min{QX,%◦(a1H1+···+aMHM−G) : (a1, . . . , aM ) ∈ RM}, (8.24)

For a one-sided risk measure such as semivariance, the unconstrained optimization problem (8.24)

will not be well-posed, because Q can always be improved, for instance, by increasing the coefficient

of the x2 component of H (or equivalently, by adding variance swaps to the hedge portfolio). It is

therefore appropriate to introduce a budget constraint, such as EV Y,H
T ≤ EV Y,G

T , or equivalently

M∑
m=1

amQ
X,Hm ≤ QX,G, (8.25)

an explicit linear constraint that again does not depend on the time-change.

In Table 4 we solve numerically the minimization problem (8.24) subject to constraint (8.25).

We take time-changed VG processes (with the same parameters as in Table 2), which have finite

variation, so that total variation contracts are well-defined. We examine three different contracts:

total variation G(x) = |x| (times notional 1/100, chosen for rough comparability with variance

contracts), semivariance G(x) = (x ∧ 0)2, and third moment G(x) = x3. For hedging purposes, we

assume the availability of H-variation payoffs, where H ∈ {H0, H1, H2} as defined above. For the

risk criterion, we take two cases: semivariance %(x) = (x ∧ 0)2 and quadratic variation %(x) = x2.

The Table 4 results have the following intuitive interpretation. Both optimization criteria

found hedges that turn out to be nearly “delta-neutral” in the sense that a0 − a1 nearly vanishes.

The two criteria disagree, however, on the sizes of the positions; in hedging the total variation

and semivariance contracts, where G ≥ 0 everywhere (which makes plausible the heuristic that
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optimally H ≥ 0 also), optimizing for semi-quadratic % results in larger absolute hedge position

sizes than optimizing for quadratic %. Intuitively, scaling up a positive H may possibly worsen a

two-sided risk measure, whereas it improves a one-sided measure that does not penalize profits.

This same phenomenon occurs in hedging the G(x) = x3 contract, which has mixed sign, but the

x < 0 region is more influential, because we have a left-skewed jump distribution; within this region,

we have G ≤ 0 (which makes plausible the heuristic that in this region, optimally H ≤ 0 also),

therefore scaling down the absolute size of H improves the one-sided risk measure.

9 Conclusion

Under arbitrary exponential Lévy dynamics, stochastically time-changed by an arbitrary continuous

clock having arbitrary correlation with the Lévy driver X, we prove that a multiple Q of the log

contract prices the G-variation swap, and that a multiple Q̃ of the F logF contract prices the share-

weighted G-variation swap, under integrability conditions. The multiplier Q and dual multiplier

Q̃ depend only on G and the characteristics of X, not on the time change. Hence our results

allow stochastic volatility and jump arrival rates, while avoiding the model risk of misspecifying or

miscalibrating those rates.

We calculate explicitly the multipliers for various examples of Lévy drivers. We recover the

standard no-jump valuation formula as a special case, because all positive continuous martingales

are time-changes of driftless geometric Brownian motion, which has multiplier 2 for quadratic-type

G. We then find the multipliers for general G under jump dynamics, including time-changes of

CGMY, VG, and two-jump-size processes; in the latter case, our valuations admit enforcement via

hedging strategies which perfectly replicate G-variation (or share-weighted G-variation) by holding

log contracts (or F logF contracts) statically and trading the underlier dynamically.

We show that the direction in which the multiplier differs from 2 is determined (positively or

negatively, depending on G) by the Lévy measure’s skewness. Given some examples of empirically-

calibrated Lévy parameters, our computations of the associated multipliers show jump premia of

signs consistent with negatively-skewed jump risk. In most of the examples at hand, using the

no-jump multiplier 2.00 in the presence of jumps would underprice variance swaps by 5-10%, and

overprice gamma swaps by 5-10%, and underprice simple-return variance swaps by 8-20%.

We hedge G-variation, for general X, using a family of strategies indexed by functions H. The

riskiness of each strategy’s hedging error can be measured by a family of risk statistics, indexed by

functions %. The resulting risk measurement, we prove, equals the % ◦ (H −G)-variation. Some key

statistics of hedging errors, therefore, have expected values again given by explicit multiples of the

log contract value. We then solve for strategies to minimize various measures of hedge risk.
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This paper extends the existing literature in several directions. Extending the known gamma

swap solution for continuous underlying paths, we introduce empirically relevant jumps, together

with an arbitrary time-change, which can generate stochastic jump intensity and can reproduce

options-implied volatility skews at both long and short expiries. Extending the analysis of un-

weighted variance in [4], we solve for valuations of share-weighted variance, motivated by the pop-

ular features of gamma swaps. Extending both the gamma swap and Carr-Lee-Wu [4] analyses,

which were based on quadratic variation, we price the (unweighted and share-weighted) G-variation,

which includes not just quadratic variation, but also other variability measures relevant in finance;

for instance, contracts on total variance and capped-jump variance allow traders (wary of extreme

event risk in the aftermath of recent financial crises) to sell volatility while avoiding tail risk expo-

sure that blows up quadratically. Finally, extending the applications of our tools from pricing to

hedging, we show that finding a risk-minimizing hedge of G-variation reduces to a tractable matter

of minimizing an explicit multiplier.
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