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ON THE VOLUME OF TUBES.*

By HErMANN WEYL.

1. The problem. In a lecture before the Mathematics Club at Princeton
last year Professor Hotelling stated the following geometric problem* as one
of primary importance for certain statistical investigations:

Let there be gwen in the n-dimensional Euclidean space By or spherical
space Sy a closed v-dimensional manifold Cv. The solid spheres of given radius
a around all the points of Cv cover a certain part Cv(a) of the embedding space
By, or S, the volume V(a) of which is to be determined. We call Ov(a) an
(n,v)-tube (of radius a around Cv).

For small values of a one will have in the first approximation
V(a) = Qua™ * ko,
where Qua™ is the volume of the solid m-dimensional sphere
(1) om(a): P4 i’ =a

(m =n-—v), and k, the area of the “surface” Cy». Professor Hotelling
showed that this formula is exact in B, and a similar formula prevails in
Sn, for v=1. I shall here treat the problem for higher dimensionalities v.
The result in E, is a formula consisting of 14 [4v] terms, of the following

type (§3):
(?) V(a) =Qm:

am+e

2T m i mte

(e even, 0 =e¢=v),

where ko is a certain integral invariant of the surface Cv determined by the
intrinsic metric nature of C» only, and thus independent of its embedding in
E,. 1 shall express these invariants (§4) in terms of the Riemannian tensor
of Cy. An analogous result is obtained for S,.

2. The fundamental formulas for the volume of tubes. If an
n-dimensional manifold M, consisting of points u and locally referred to

* Received October 14, 1938.
1 See his paper “ Tubes and spheres in n-spaces, and a class of statistical problems ”
which precedes this article in this Journal, pp. 440-460.
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462 HERMANN WEYL.

parameters w',- - -, u" is mapped upon the Euclidean space K, with the
coordinates (&1, * ", %n) =171,
(3) r=r(u) =r(ut- - -, u"),

then the volume V of the image of M, in E» may be computed by means of
the formula

(4) V=f[r1- Cra]dut - - dun,
where [ty * - tyn] designates the determinant of the n columns r;, each con-
sisting of the components of the vector

T, = 01:/01,&"'.

This formula takes account of the = orientation and multiplicity with which
the mapping w—>t covers the several parts of E.. The covering will be
locally a one-to-one mapping without folds and ramifications wherever
[ty - -1a] > 0. But even if this condition is satisfied everywhere, multiple
covering might occur. This question is essentially one of topological rather
than differential geometric nature. It is with this reservation in mind that
in the following we apply formula (4).

When dealing with the spherical space S» we employ homogeneous
codrdinates (%o, @1, * *,%n) =T, the set px; meaning the same point as @i,
whatever the factor p 5 0. Sometimes we use the normalization

= a4 a?=1.

Sy then appears as the unit sphere in the Euclidean En.i. (4) must be replaced
by the formula

re N Tn
(5) V= f [(rlz (n+1)/2] du' - - - dut

as one easily verifies by observing the following facts: (1) the integrand is
orthogonally invariant; (2) it is not affected by the gauge factor p = p(w)
because

g
(pr)i=p'ri+%’%'r;

(3) at the point r= (1,0, - -, 0) the integrand reduces to the “ Euclidean ”
value

0, . 0zn

ot

our’ ? Qum
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After these preliminary remarks I now turn to our problem in E,. Let
a piece of the y-dimensional manifold C'v be given in the Gaussian representation

(6) r=r(ut - - w).

At each point we can determine m = n — v normal vectors n =mn(1), -+, n(m)
satisfying the equations
te-n=20 (a=1,-+-,v)

which are mutually normalized by
n(p) - n(g) = 8 (pg=1,"+,m).

tq is the derivative dr/0u® In using the radius vector (6) and these normals,
the part Cv(a) of the space covered by the spheres of radius a around the
points of C» allows the representation

(M r=rdtn) et tan(n), (Bt TS ),

in terms of the parameters u',* - -, w” ¢, - *,¢m. Hence its volume V(a)
is the integral

(8) f [t s onn(l), - n(m)]db- - - diwdud- - - du.

Following Gauss we describe the surface Cv embedded in E» by its metric

ground form

(dr)?2 = 2,3 Japdudub, (gap = ta " t8)
a,

together with the linear pencil of the second fundamental forms

m

— 3 {tp 3 Gap(p) duduf},

p=1 a8

which is the scalar product of
d*r = 3 repduduf
afB

with an arbitrary normal n =+¢n(1) + - - - 4 twn(m).

Gap(p) = Gpa(p) =—tap 1(p) =t np(p).

A Greek subscript o attached to the vectors r, n and ¢ always denotes
differentiation by u®.
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Each vector at the point # of Cy is a linear combination of the basic
vectors tq, n(p). On applying this remark to n.(p) we set

W(P)=§Ga5(;ﬂ)'rﬂ+' T

where . . . indicates a linear combination of the normal vectors n(p). By
scalar multiplication with rg one finds

Gap(p) = % Jar G (p).

From (7) one infers that

re=3 (0 ‘I‘z%?prap(P)}rﬂ‘l" .

Therefore the integrand in (8)
=det {85 + X 4GP (p) }+ [t2- - - von(1) - - - n(m)].
?

Because of the general identity

[a:- - - an]? =det (aiax),

[ty rwm(1) - n(m)]2 = gas |,

and considering that
ds = | gap |Edu* - - - du’

is the area element of €y, one arrives at the fundamental formula
V((l)=f % f tee f |3a5+2th.aB(P)|dt1' ©cditm ;ds
Cr 12+ oo o +HEm2=a?) ?

in the Euclidean case. The integrand is independent of the choice of the
parameters 4 on Cy.

In the spherical case, let the manifold Cv be given by the parametric
representation (6) with the normalization r?=1. Therefore r-1,=0. The
mutually orthogonal normal vectors n=mn(1), -, n(m) satisfy the equations

r-n=0, te n=0.
From both equations there follows

T ng=0.
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The part Cv(«) of the space S, covered by the m = (n — v)-dimensional
solid spheres of sphérical radius « is represented by

r=rt+tn(l) 4 - - 4 twnt(m),

where the argument « in v, (1), + -, n(m) ranges over the whole Cv, while
the parameters ¢;,- - -, tm are bound by
bttt =l (@ ==tan a).

According to equation (5) the volume V(a) of Ov(a) is given by the
integral of

[e2:- - ~wn(l) - - -n(m)] du'- - - dwdty- - - dim

(9) (x?) 72
extended with respect to ', - ~,’u” over the whole of Cv, with respect to
ty,* * *,tm over the sphere om(a). Application of the same procedure as

before results in the formula

@) v@=f {f [ 18+ Zu0e0)]
g (7 +tm?'§a3) ? ot Py
L dim
X (1+ t12+' . __l_ t‘mz)(nu)/z }ds'
3. Evaluation. For any function ¢(¢) = ¢(ts," * *, tm), let < (2)D,
designate its mean value over the sphere

(11) B2 b= 1

The mean value <#,%- + - typ°»>, of a monomial is obviously zero unless all
exponents e, are even. In the latter case one has the well-known formula

€1. o «f EmN — 61)' : ‘&m)
(12) <t b >‘—m(m—|—2) s (m+e—2)
(61; even, 3=el+‘ ' ‘+6m),
where
0)=1, ¢)=1-3---(e—1) [for e=2,4,- - -].

[(12) is most easily proved by multiplying the monomial by

e—tf’ e e-tm"’ — e—(t12+ e+ tm?)

and then integrating over

— << ® (p=1,- -, m).
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One thus obtains
[s 0] +00
f tle1 . e tme”‘dmt . f oripetm-1p, H (f e—tgtepdt) s
0 P -0
(e=e+- - +em)
with f -+ - do; indicating the “solid angle” integration over the sphere
(11), and hence

(552) r(52)
_1_ t“’l"'te"'dw= 2 2
Pl ! et (m + e) ’
T ——
2
In particular, for the surface wm — fdo: of the sphere,

(13) %wm — [r(%)]m/ r(%-)

Division results in the desired equation
1 o&aY. . . pfl_oem mye
r(§+2) P(2+2) /F(2+2)
1 1 m
()G 1 G)

)+ em)

Tm(m 42y - (mte—2)°

The volume of the solid sphere om(a) amounts to
a
wmf iy = “—)rf~am;
0 m

hence Q, = wom/m. Specialization of (13) for m =2 yields [T'(§)]>=m.
The numbers wm, Qn are best defined by the recursive formulas readily derived
from (13):

(o o by, =

wm+2=7n-'wm (m;l); (w1=2, w2=27r).
Qe =—T Q0 (m=0); (@ =1, 2, =2).]
m+2 m—[—2 = > 0 >

We expand the determinant

¢(t1‘ * "tm)=lauﬁ+§thaﬂ(p)l=¢o+¢l+. . +‘l/"

according to degrees in the variables ¢;,* « *, tm:

l,’/e(t1' : 'tm) =2¢el...emt1el' < I (61—|—' . ’+&m=6)
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is homogeneous of degree e. yo,=—1. This decomposition is conveniently
described by introducing an artificial parameter A:

18a5+'\§t@Gaﬁ(p)l=1+N/’1+)\2‘P2+‘ Co

We set
H,
<',[/e(251' . tm)>¢=m(m+2) ... (m—|—-6—2) °

By its definition, H, is a point invariant of Cv. H, is zero for odd e, while
for even e one derives from (12) the explicit expression

Ho=2Xe)" " en) de...om (ep even, e; + - - c+em=—c¢e).
The integral over the solid sphere om(a),
...f¢e(t1.. tm)dtldtm

om (@)

then will turn out to be

ontle ¢ gtm-1Jp .
m(m—|—2)"'(m—l—e——2)_ﬂr dr = onHe m(m—++2R) - (m-+4e)’

Thus we find in the Euclidean case

am+e

am+e

(14) VO = 2 e G e 8t o)

(e even, 0 =e¢=v),
with the coefficients
(15) ke = . H.ds.
In the spherical case one gets ’

o : dty - - - dim
f f ‘Pe( ) (1—|—t12—l—‘ . .+t‘m2)(n+1/)2

am (@) 1
’-O»mH e @ rerm-ldy

“m(mE2)(mte—2)Jo (T )

On putting r = tan p the integral at the right side becomes
a
" (sin gy et (cos ) -edp
0

and instead of (14) one obtains

(16) V(a) = om: 2 keJe(a), (e even, 0 = ¢ =v),
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where
a

17y m(m42)- - - (m4e—2)Je(a) = f (sin p)™+et(cos p) " °dp.
]

One may notice the recurrent equation

(sin @) €™ (cos &)t

m(m+2) - (m+e)

THEOREM. The volumes of (n,v)-tubes in Euclidean and in spherical
space are gwen by the formulas (14), (16) respectively, Jo(«) being defined
by (17). ke, (15), are certain integral invariants of Cv, in particular ko is
its surface.

=dJe(a) — (v—e—1)Je2(a).

4. Intrinsic nature of the invariants k,. So far we have hardly done
more than what could have been accomplished by any student in a course of
calculus. However, some less obvious argument is needed for ascertaining that
more explicit form of the point invariant H, which enables one to replace the
curvature Gof(p) by the Riemannian tensor RMig of Cv. I repeat the
definition of this tensor in terms of the metric ground tensor:

Ogax | 99px __ 0gap
A o ak y 79Pk  "JaB
% golles =3 (0u5 e du*
[definition of the affine connection T'ug],

0Ty, orT*
Rfrgp == (”"m—aﬂ — 811}“) + % (T%pq TPrg — Tpp IP2a) -

After raising the index A according to
Biap=2 gubBfh
"
R is not only skew-symmetric in 8, but also in «A. As a part of the

integrability conditions expressing the FEuclidean nature of the embedding
space Ey, one has the relations ?

(18) R =§1 {Ga"(p) G (p) — Gg"(p) G (p) }-

In the spherical case we look upon Cy as a surface in E,.. To the set of m
normals 1n(p), (p =1, - -, m) one has simply to add n(0) =1r. Since

2 See H. Weyl, Mathematische Zeitschrift, vol. 12 (1922), p. 154.
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Na(0) =1, or GoP(0) =85,
(18) changes into the equation
(19) Bgh— (3,586 — 3°8.}) = ,,% {Ga"(p) @6 (p) — G"(p) G (p) }-

[It is a pity that the inadequate name “ curvature,” which ought to be
reserved for Gof(p), has been attached to the Riemann tensor. In the paper
just quoted I proposed the more descriptive term “ vector vortex.” The left
side of (19), and also of (18), is the excess of the vortex of Cv over that of
the embedding space. In this form the relation would hold with an arbitrary
embedding Riemann space.]

We must try then to express the spherical average

Kdet (Sa‘s + A 2 1pGP (P))>.

in terms of the quantities

(20) 1) =2 65 (0) 6 () — 2 6 (0) G5 (1),

In this investigation the

Gof = (Gaﬁ(l):‘ . "Gaﬂ(m)):
just as
t=(t1}‘ ' ':tm),

may be looked upon as arbitrary vectors in an m-dimensional Euclidean space

Eyn. Using for a moment the abbreviation

2P = (1 Gof) = 3 1,GP (p),
?

one has
,zalwl’ P 5 zalae
Yo = 2
B <O Zac™y " 5 Bag™
Hence we try to determine
<det (t ' Gaﬂ)>u

where G.f, (¢, =1, - -,e) are any e* given vectors in En.
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LeEMMA.
(21) et (- Gaf),
(a,B=1, ..., e)
—_ 1 B Bl.ﬁz). . (Be—lﬂe).
—sorr s &) 7)) (i
@1t "% Bivc *Be are the numbers 1,- - -,¢ wn any two arrangements,

8(5 )=—_'—1 according as the permulation carrying the a- into the B-

arrangement is even or odd. The sum extends over all couplings of pairs

(oa®z) | (@ses)

(B1B2) | (BsBs)

By a “pair?” («,@;) we mean here two distinct numbers a;, @», trrespective

(22)

of their order. Indeed the term T(f ) under the sum azﬁ on the right side
1281

of (1) does not change under reversal of an @-pair, (@;%,) — (%), or of a
B-pair. Nor does it change under permutation of its e¢/2 factors H ; therefore
only the coupling of the a-pairs with the 8-pairs, but not the order of the ¢/2
blocks of the scheme (22) matters. Of the 2¢- (3e) ! equal terms arising from

T(f ) by inverting any of the e pairs of indices and by permuting the e/R

factors H, only one is retained in the sum.
Taking the lemma for granted, we find at once

(28) 1 =35() m(88). . m(5),

[a:8] \% Q1 Qg Qg_1e

where the sum now extends to all couplings of pairs (22) from the larger
range 1,2, - -, v for which the B-sequence consists of the same e distinct
figures as the a-sequence. The invariant nature of the sum to the right is
evidenced when we first write it as

1 Qqr Qg Ugr Ogr)
26(6/2) ! dys - ~2., ae 17, 2 s e’j: H( ) H( ) ? (6/2 faCtOTS),

@ Gy Qg Oy
the inner sum alternatingly running over the permutations 1’,- - -, ¢’ of
1,- - +,e. The limitation of distinctness imposed upon @i, * *, @ can be

canceled, as the inner sum vanishes if two of the ¢’s coincide. Hence

1 Uy Aoy Ogr Gar )
(24:) He— 26(6/2) !1', 2 x4 % iay 2, aaH(al 0!2) H(o‘3 0!4> % .
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The inner sum in which each « runs independently from 1 to v is a scalar.
We have thus arrived at the decisive

THEOREM. The scalar He on Oy is determined by the formulas (23),

(24) where H (2;) is the Riemann tensor or vortex Rz-; in the Buclidean

case, and the vortex excess (19) in the spherical case.

These metric scalars H, deserve attention on their own merits: they are
probably the simplest and most fundamental scalars built up by the Riemann
tensor.

As a very special case of our theorem we find that the one term formulas

V(a) = Qma™ - ko, V(a) = omdo(@) - ko

prevasl if Cv is applicable on By or Sy respectively. ko, denotes the surface of
Cv. Professor Hotelling’s result concerning the tubes around a curve, v =1,
is fully contained in this special case.

The lemma is proved by an invariant-theoretic argument as follows. We
consider the e? vectors G\,f as independent variables.

D = (det (¢- GoP)>,

is an orthogonal invariant of these variables and therefore, according to the
theory of orthogonal vector invariants,® expressible as a polynomial in terms
of the scalar products (G.-Gg*). Observing that @ is linear and homo-
geneous in the components of the vectors of each row and each column of the

scheme
G11, Cy, Gle

Gel’ SR Gee
we realize that it must be a linear combination of terms
(G Gaf) - - - (ng: *Gad®),

where the o and S are any two arrangements of 1,- - -, ¢. Moreover @ is
skew-symmetric with respect to the columns. Hence, by summing alternatingly
over the e! permutations of the superscripts 8 we find that ® is a linear
combination of the following functions

3 E. Study, Ber. Sichs. Akad. Wissensch. 1897, p. 442. H. Weyl, Mathematische Zeit-
sehrift, vol. 20 (1924), p. 136.



472 HERMANN WEYL.

/3) (/3) (,31,32) (53/34)

S G?alﬁl - @G 232 Gaaﬁs . G‘mm e e — S H -
% (a ( ) ( ) %1 a) B\ o0, Ut

The first sum runs over all ¢! permutations 8,- - + B¢ of 1, * -, ¢, the second

over all their ¢!/2¢/? arrangements in “ pairs ”

(,31/32); (ﬁ834)>' e

By applying the same argument to the subscripts @ one concludes that ® is a
constant multiple ¢ of H,, (23).
The constant ¢ is determined by the specialization

Ga'3= (.Saﬁ’ 0,- - ;O)
for which
e)
nm ) (mFe—2)

¢ = <tle>t =
and

H(/o\cl,l;) — 8 Mgk — 8.488", Ho=—e!/2%%(3e) I =ce).
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