Available online at www.sciencedirect.com

Topology
SCIENCE DIRECT?®
7 @ and its

£ Applications
ELSEVIER Topology and its Applications 140 (2004) 245-266 _

www.elsevier.com/locate/topol

Instabilities of robot motionA

Michael Farber

School of Mathematical Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
Received 26 August 2002; accepted 31 July 2003

Abstract

Instabilities of bbot motion are caused by topological reasons. In this paper we find a relation
between the topological properties of a configuration space (the structure of its cohnomology algebra)
and the character of instabilities, which are unavoidable in any motion planning algorithm. More
specifically, letX denote the space of all admissible configurations of a mechanical systaotign
planneris given by a splittingX x X = F1 U Fo U---U F}, (whereFy, ..., F; are pairwise disjoint
ENRs, see below) and by continuous mapsF; — PX, suchthattE os; = 1p;. HerePX denotes
the space of all continuous paths Xh(admissible motions of the system) aAid PX — X x X
denotes the map which assigns to a path the pair of its initial—end points. Any motion planner
determines an algorithm of motion planning for the system. In this paper we apply methods of
algebraic topology to study the minimal number of sgfsin any motion planner inX. We also
introduce a new notion obrder of instability of a motion planner; it describes the number of
essentially distinct motions which may occur as a result of small perturbations of the input data.
We find the minimal order of instability, which may have motion planners on a given configuration
spaceX. We study a number of specific problems: motion of a rigid bod?ifna robot arm, motion
in R3 in the presence of obstacles, and others.

0 2003 Elsevier B.V. All rights reserved.

1. Motion planning problem

In this article we will consider the problem of constructing a motion planning program
for a large mechanical system. Such a program must function as follows: it should take as
input pairs(A, B) of admissible configurations of the system and must produce as output,
a description of a continuous motion of the system which starts at configur&temd
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ends at configuratio®. Thus, after a motion planning program has been specified, the
movement of the system becomes a function of the input informatioB).

A recent survey of algorithmic motion planning may be found in [8]; see also textbook
[6].

The goal of this paper is to study the character of discontinuities of the map

(A, B) — continuous movement of the system determinedAyB), (1.2)

which functionally emerge as instabilitie$ the robot motion. We show that (1.1) may

be continuous only in very siple situations and hencestabilities of therobot motion

are inevitable in most practically interesting cases. We will apply methods of algebraic
topology (the cohomolgy theory) to calculate theature of the instabilities and to
construct motion planning algorithms with a minimal order of instability or simply to show
their existence.

Let X be a metric space. We will regard points &f as representing different
configurations of a mechanical system. Usually, pointX afan be described by several
parameters, which are subject to certain constraints (in the form of equations and
inequalities). We will refer toX as being ouconfiguration space

We will always assume th& is path connected, i.e., any pair of poidsB € X may
be joined by a continuous pathin X. This means that it is possible to bring our system,
by a continuous movement, from any given configuratioto any given configuration
B. This assumption does not represent a restriction since in practical situations when the
natural configuration space of a given system has several connected components, we may
simply restrict our attention to one of them.

We will denote byd(x, y) the metric (i.e., the distance function) . The metricd
itself will play no significant role below, but the topology éh determined by this metric,
will be important to us.

A continuous curver : [0, 1] — X in X describes a movementr), 0 < ¢ < 1, of the
system starting at the initial positioh= y (0) and ending at the final positioh = y (1).

We will denote byP X the space of all continuous paths [0, 1] — X. The path space
PX is a metric space (and hence, a topotadispace) with respect to the metric

p(y1, v2) = tg?%d(yl(t), y2(1)), (1.2)

wherey, y2 € PX are paths irX.
We will denote by

E.:PX—>XxX (1.3)

the map which assigns to a pathe PX the pair(y(0), ¥ (1)) € X x X of initialfinal
configurationsE is a continuous magle endpoint map Given a pair of configurations
(A, B) € X x X, the preimageZ (A, B) consists of all continuous patise P X, which

start atA and end aB. Therefore, the task of finding a continuous movement of the system
from a configurationA to a configurationB is equivalent to choosing an element of the
setE~1(A, B). Since we assume thitis path-connected, the st 1(A, B) is nonempty

and so such a choice is always possible.
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A motion planning program is a rule specifying a continuous movement of the system
once the initial and the final configurations are given. Mathematically, this means that any
motion planning program is a mapping

s:XxX—>PX (1.4)

from the space of all pairs of admissible configurations< X, to the space of all
continuous movements of the systeR¥, such that

EOS=1XXx. (1.5)

Here Iy« x : X x X — X x X denotes the identity map and (1.5) means precisely that the
paths(A, B) assigned to a paiiA, B) € X x X, starts at the configuratiof and ends at
the configuratiorB.

The first question to ask is the following:

Question. Does there exist a continuous motion planningdig

In other words, we askhether it is possible to find a continuous m@p4), satisfying
(1.5).

Using the language of the algebraic topology we may rephrase the above question as
follows: the end-point map (1.3) is a fibration (in the sense of Serre, see [9]); any motion
planning (1.4) has to be a section Bf and we ask if the fibratio® admits a continuous
section.

Continuity of a motion planning strategy means that for any small perturbation
(A’, B") of the initial—final pair of configurationéA, B), the resulting movements of the
systems(A’, B'), s(A, B) € PX are close to each other, with respect to the metrisee
(1.2). Continuity of the motion planning progranwill guarantee that any small error in
the description of the present positidrand the target positioB of the system will cause
a small modification of the movement of the system, produced by the motion planner.

Example1.1. Suppose that we have to teach a robot, living on an island, how to move from
any given positiorA to any given positiom3. Let us suppose first that the island has the
shape of a convex planar domainc R2. Then we may prescribe the movemeM, B)

from A to B in X to be implemented along the straight line segment with a constant
velocity. This rule clearly defines a continuous motion planiing x X — PX.

Example 1.2. Suppose now that there is a lake in the middle of our island, and since our
robot is not capable of swimming, it has to find its way over dry land. It is easy to see that
in this case there is no continuous motion planning strated§) x X — P X satisfying
(1.5). Indeed, suppose that such a continuous strategyysts. Fix two pointsA and B

and consider the path = s(A, B). Now, suppose that poimt remains fixed but poinB

starts moving and makes a cirdig, where 0< t < 1 around the lake, returning back to
the initial positionBg = B = B;. Under this movement of poir® our motion planning
program will produce a continuous curvé, B;) € PX in the path spac® X. We arrive

at a contradiction since, on one hand, the final pdth, B1) must be equal to the initial
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paths(A, B), but on the other hand, it is homotopic (with endpoints fixed) to the product
of the initial paths(A, Bg) and the track of the poim®, surrounding the lake.

Hence we see that in Example 1.2, for any motion planning prograxnx X — PX,
there always exists a pafA, B) € X x X of initial-final configurations, such thatis
not continuous atA, B); this means that some arbitrarily close approximatigéh B’) of
(A, B) will cause a completely different movemerid’, B’) of the system.

We will finish this section by citing the following result from [3]:

Theorem 1.3. A globally defined continuous motion planningX x X — PX, Eos =
1x«x, exists if and only if the configuration spakeis contractible.

This explains why a continuous motion planning exists in Example 1.1 and does not
existin Example 1.2.

2. Motion planners

In the following definition we describe the notion ofreotion planner in configuration
spaceX, which we will use in the rest of this paper.

Definition 2.1. Let X be a path-connected topologl space. A motion planner iX is
given by finitely many subsets, ..., Fy C X x X and by continuous maps: F; — PX,
wherei =1, ..., k, such that the following conditions are satisfied:

(a) the setd, ..., Fy are pairwise disjoinF; N F; =¢, i # j, and coveX x X, i.e.,
XX X=FLUFU---UFy; (2.1)

(b) Eos; =1f foranyi =1,...,k;
(c) each sef; is an ENR (see below).

We will refer to the subsets; as tolocal domainsof the motion planner. The maps
will be calledlocal rulesof the motion planner.

Condition (a) means that the seffs, ..., F; partition the total space of all possible
pairsX x X. Condition (b) requires that for any pair of configuratigas B) € F; the path
si(A, B)(¢t) is continuous as a function of the parameter[0, 1], ands; (A, B)(0) = A,
si(A, B)(1) = B; moreover, the pathy (A, B)(¢) is a continuous function of the paia, B)
of initial—final configurations as long as the péir, B) remains in the local domaih;.

By condition (c) we try to avoid pathological spaces. Recall, a topological sgace
is called aEuclidean Neighbourhood RetraENR if it is homeomorphic to a subset
of a Euclidean spacé&’ c R", such thatX’ is a retract of some open neighborhood
X' c U c R"; in other words, U C R" is open and there exists a continuous map
r:U — X'suchthar(x) = x forall x € X’. Such a continuous mags called aetraction

The class of ENRSs represents a reasonable class of topological spaces which (i) really
appear as practically interesting configioa spaces of mechasdl systems, and (i)
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possess important topological properties which allow considerable simplification of the
theory.

Any motion planner determines a motion planning algorithm, as explained below.
Given a pair(A, B) of initial-final configurationsgn inpu), we determine the index
i €{1,2,...,k}, such that local domaitk; contains(A, B) (this index is unique); then
we apply the local rule; and produce the paifi(A, B) as an output.

In practical situations we are interested in constructing motion planners with the
smallest possible number of local rules. The configuration s@gadepends on the nature
of the mechanical system, which we intkto control, and hence for us the spacshould
be considered as given. Our decision consists of finding a motion planning strategy, i.e., in
constructing a motion planner in a given topological sp¥ce

Hence we arrive at the following topological problems:

Problem 1. Given a topological spac#, find (or estimatg the minimal number of local
rules for a motion planner irX.

Problem 2. Find practical ways of constructing a motion planner with the lowest possible
number of local rules.

3. Example: Motion plannerson polyhedra

We will give here an explicit construction of a motion planneXirassuming thakX is
a connected finite-dimensional polyhedron.

Let X* denote thek-dimensional skeleton oX, i.e., the union of all simplices ok
of dimension< k. The setS; = X* — X*~1 is the union of interiors of alk-dimensional
simplices. Her& =0, 1, ..., n, wheren = dim X denotes the dimension &f. Denote

F; = U Sy xSecXxX, wherei=0,1,...,2n.
k+e=i
Each setF; is an ENR (since it is homeomorphic to a disjoint union of balls)and F;
are disjoint fori # j, and the uniorFg U F1 U --- U Fp, equalsX x X.

We will describe a continuous local rule: F; — PX foreachi =0, 1, ..., 2n. The set
F; is the union of disjoint sets; x S, k + £ =i, which are both closed and open .
Hence it is enough to construct a continuous magy x Sy — PX, wherei =k + ¢ and
E o S; = 1.

Fix a point in the interior of each simplex of; we will refer to this point as to the
centerof the simplex. For any ordered pair of simplices fix a continuous path connecting
the centers of the simplices. Now, given a pair of poifis B) € Sy x S¢, we will set
si (A, B) as the path inX which first goes along the straight line segment connecting
with the center of the simplex containing, then along the precomputed path from the
center of the simplex containing to the center of the simplex containi®y and finally
going to B along the straight line segment.

Corollary 3.1. If X is ann-dimensional polyhedron then it admits a motion planner with
2n + 1local rules. In particular, any graph admits a motion planner with three local rules.
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4. Order of instability of amotion planner

Besides the total number of local rules, the motion planners could be characterized by
their orders of instability:

Definition 4.1. The order of instability of a motion planner (see Definition 2.1) at a pair of
initial—final configurationgA, B) € X x X is defined as the largest numbzesuch that any
neighborhood of A, B) has a nontrivial intersection withdistinct local domains among
Fi, ..., Fy.

In other words, the order of instability of a motion planner at a pairB) € X x X is
defined as the largest such that A, B) belongs to intersection

F,NF,N---NF,, wherel<ii<iz<---<i, <k.

If (A’,B’) € X x X is a small perturbation ofA, B), it may lie in one of the local
domainsF;,, Fi,, ..., F;, .
Definition 4.2. The order of instability of a motion planner is defined as the maximum of
the orders of instability at all possible paifd, B) € X x X. Equivalently, the order of
instability of a motion planner is the largessuch that the closures of som@among the
local domaingFy, ..., Fx have a nonempty intersection:

FyNF,N---NF, #0, wherel<ii<ip<---<i, <k.

Clearly, the order of instability of a motion planner does not exceed the total number of
local rules, i.e.,

1<r <k (4.1)

Another remark: the order of instability equals one; 1, ifand only ifk = 1, i.e., the local
rules produce a continuous globally defined motion planmingx X — P X; as we know
from Theorem 1.3, this may happen only when the configuration sgaseontractible.

(A2, By)

Fy

Fig. 1. Motion planner with local domaing,, F», F3, F4. The order of instability at any pai{@;, B;) equalsi,
wherei =1, 2, 4.
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The order of instability represents a very important functional characteristic of a
motion planner. If the order of instability equatsthen there exists a pair of initial—
final configurations(A, B) € F; such that arbitrarily close t@A, B) there arer — 1
pairs of configuration$A1, B1), (A2, B2), ..., (A,—1, B,—1) (which are different small
perturbations of A, B)), belonging to distinct setg;, wherei # j. This means that small
perturbations of the input data, B) may lead to- essentially distinct motions suggested
by the motion planning algorithm.

On the other hand, if the order of instability equalshere are no input dat@, B)
such that their small perturbations may have more thassentially distinct motions. In
practical situations we are interested in motion planners with a degree of instability as low
as possible.

Problem 3. Given a path-connected topological spakefind (or estimatg the minimal
order of instability that mg have a motion planner iX. Find (describg motion planners
in X with the minimal order of instability.

Clearly, there may exist motion planners with a low order of instability and a large
number of local rules. However, as we shall see below, the order of instability coincides
with the number of local rules, assuming that the number of local kuigsninimal.

5. Invariant TC(X)

In paper [3] we introduced invariaftC (X ), which measures the topological complex-
ity of the motion planning problem iX . InvariantT C(X) allows us to answer Problems 1
and 3 raised above. For convenience of the reader we will give here the definition and will
briefly review the basic properties ®1C(X).

Definition 5.1 (See[3]). Given a path-connected topological spacethe topological
complexity of motion planning irX is defined as the minimal numb&C(X) = k, such
that the Cartesian produ&t x X can be covered by open subsets

XxX=U1UUxU---UUy, (5.1)

where foranyi =1, 2, ..., k there exists a continuous map
si:Ui— PX with Eos; =1y,. (5.2)

If no suchk exists, we will sefTC(X) = oo.

In [3] we proved thall C(X) is a homotopy invariant ok, i.e., TC(X) depends only
on the homotopy type of.

For exampleTC(X) = TC(Y) whereX = Stis acircle, and” = C—{0} is a punctured
plane.

In paper [3] we gave an estimate foC(X) from below in terms of the cohomology
algebra ofX. The lower bound provides topological restrictions on the number of open sets
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U; in any open cover (5.1). For example, in the case wkida the 2-dimensional sphere
§2, any cover (5.1) must have at least three open sets.

Also, according to [3],TC(X) has an upper bound in terms of the dimensiorXof
namely

TC(X) < 2dim(X) + 1. (5.3)

The meaning of the upper bound, compared with the lower bound, is completely
different: there always existan open cover (5.1) with 2diiX¥) + 1 open setd/; and
continuous motion planning programs U; — PX.

Now we will give an improvement of (5.3).

Recall that a topological spacéis calledr-connected if for any < r any continuous
map S’ — X of a sphere of dimensiohinto X can be extended to a continuous map of
a ball DI+ — X. Examples: a path-connected spi&@-connected, a simply-connected
space is 1-connected.

Theorem 5.2. Let X be anr-connected polyhedron. Then

2dim(X)+1

Proof. Theorem 5.2 follows directly from Theorem 5 of paper of Schwarz [7], where the
notion of a genus of a fiber space was introduced. The topological complexit}{) can

be viewed as the genus of the path space fibrélioR X — X x X, which has the base of
dimension dingX x X) = 2dimX. The fiber is homotopy equivalent to the spae& of
based loops irX. If X is r-connected the2 X is (r — 1)-connected, i.e., it is aspherical

in dimensions< r. Inequality (5.4) now follows applying Theorem 5 from [7]O

Corollary 5.3. Let X be a simply connected polyhedron. Then

TC(X) <dimX + 1. (5.5)
Proof. Theorem 5.2 applies with = 1 and givesTC(X) < dim(X) + 1+ % which is
equivalent to our statement
6. Order of instability and TC(X)

The next result gives a partial answer to Problems 1 and 3, see above.

Theorem 6.1. Let X be a connected *°-smooth manifold. Therf1) the minimal integer
k, such thatX admits a motion plannefin the sense of DefinitioR.1) with £ local rules,
equalsTC(X). Moreover,(2) the minimal integer > 0, such thatX admits a motion

planner with order of instability, equalsTC(X).

We may restate this theorem as follows:
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Theorem 6.2. Let X be a connected smooth manifold. Then for any motion planner in
X, the number of local rule¢ and the order of instability are at leastTC(X), i.e.,

k> TC(X), r > TC(X). Moreover, there exists a motion plannerihwith k = TC(X)
local rules and with order of instability = TC(X).

In this section we will prove the following statement which is the main ingredient in the
proof of Theorem 6.1

Theorem 6.3. Suppose thaX is a connected smooth manifold. Let
XX X=FUFU---UF, $1,...,8¢. F; —> PX,

be a motion planner irX with the minimal number of local ruleg,= TC(X). Then the
intersection of the closures of the local domains

FINFN---NF#0 (6.1)
is not empty and thus the order of instability of this motion planner equialsx).

Remark 6.4. In Theorems 6.1, 6.2 and 6.3 we assume that the configuration Xpca
smooth manifold. We use this assumption in the proof since we apply smooth partitions of
unity and Sard’s Theorem. A different piedse linear technique could be used instead.
One may show that Theorems 6.1, 6.2 and 6.3 hold assuming onl tises polyhedron.

Proof of statement (1) of Theorem 6.1. Suppose tha¥ admits a motion planner in
the sense of Definition 2.1 witlh local domainsFy, ..., Fx C X x X and with the
corresponding local rules : F; — PX, wherei =1,...,k. Let us show that theh >
TC(X). This claim would follow once we know thaine may enlarge the local domains
F; to open setd/; such that over eacly; there exists a continuous motion planning map
(5.2).

We will use the next well-known property of the ENRSF c X and both spaceg and
X are ENRs then there is an open neighborh@ébd X of F and a retractionv:U — F
such that the inclusiorj: U — X is homotopic tai o r, wherei: F — X denotes the
inclusion.See [1, Chapter 4, 88], for a proof.

Using the fact that bothF; and X x X are ENRs, we find that there exists an open
neighborhood’; ¢ X x X of the setF; and a continuous homotomlr'r U — X x X,
wheret € [0, 1], such tha'hg: U; — X x X is the inclusion andzil is a retraction otU;
onto F;. We will describe now a continuous maja U; — PX with E o s/ = 1y,. Given a
pair (A, B) € U;, the pathh’ (A, B) in X x X is a pair of pathsy, ), wherey is a path in
X starting at the poing (0) = A and ending at a point(1), and$ is a path inX starting
at B =§(0) and ending a&(1). Note that the paity (1), 5(1)) belongs toF;; therefore the
motion plannes; : F; — P X defines a path

£=s5i(y(1),8(1) € PX

connecting the pointg(1) ands(1). Now we sets; (A, B) to be the concatenation ¢f, £,
ands—1 (the reverse path @¥:

sI(A,B)=y-&-87L1.
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Formally,s/(A, B) is given by the formula
y (3t) for0<r <1/3,
si(A,B) 1) =1{ &Rt —1) forl/3<t<2/3,
3(3—3t) forz2/3<r< 1.
Continuity ofs/(A, B)(¢) as a function ofd, B,  is clear. This proves the italicized claim.

Now we want to show thakX always admits a motion planner (in the sense of Defini-
tion 2.1) with the number of local domains equakte- TC(X). Let

<
<

UpUUoU---UUr =X x X, wherek = TC(X), (6.2)

be an open cover such that for amy 1, . . ., k there exists a continuous motion planning
map s; :U; — PX with E o s; = 1y,. Find a smooth partition of unity f1, ..., fi}
subordinate to the cover (6.2). Hefe X x X — [0, 1] are smooth functiong,=1, ..., k,
with the support off; being a subset of/;, and such that for any pajid, B) € X x X, it
holds that

Jf1(A,B) + f2(A,B) +--- + fi(A, B) =1

Recall that the support supf) of a continuous functiorf : X x X — R is defined as the
closure of the seft(A, B) € X x X; f(A, B) #0}.

Choose numbersQc¢; <1,wherei =1,...,k, withc1 +---+ ¢ =1, such that each
¢; is a regular value of the functiofj. Such numbers exist by the Sard’s Theorem. Let a
subsetV; C X x X, wherei =1, ..., k, be defined by the following system of inequalities

{fj(A, B) <c; forall j <i,
fi(A, B) > c;.

One easily checks that:

(a) eachV; is a manifold with boundary and hence an ENR;

(b) V; is contained inU;; therefore, the local rule; : U; — PX restricts ontoV; and
defines a local rule ovér;;

(c) the setd/; are pairwise disjointy; N V; =@ fori # j,

(d) ViuVoU-- UV, =X x X.

Hence we see that the submanifoldsand the local rules; |y, define a motion planner in
the sense of Definition 2.1 withC(X) local domains.
This completes the proof of statement (1) of Theorem 601.

The proof of statement (2) of Theorem 6.1 uses the following lemma.

Lemma 6.5. Let X be a path-connected metric space. Consider an open cover
XxX=U1UUxU---UU

suchthatforany =1,..., k there exists a continuous maa U; — PX with Eos; = 1y,.
Suppose that for some integeany intersection

UyNU;,N---NU;, =0
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is empty, wherd < iy <i» <--- <i,. ThenTC(X) < r, i.e., there exists an open cover
XxX=W1UWoU---UW,_1,

consisting of- — 1 open setd¥;, and continuous mapg : W; — PX, wherei =1, ...,
r —1, such thatt o s} = 1y,.

Proof. Let f; : X x X — [0, 1], wherei =1, ..., k, be a partition of unity subordinate to
the cover{Us, ..., Ug}. This means that eacky is a continuous function, the support /f
is contained in the sdt;, and

fi(A,B)+---+ fi(A,B) =1

forany A, B € X. Here we use the fact that x X is a metric space and hence for any of
its open covers there exists a subordinate partition of unity, see [5].
For any nonempty subsstc {1, ..., k} let

W(S)C X x X

denote the set of all paifgl, B) € X x X, such that for any € § it holds thatf; (A, B) > 0O,
and for anyi’ ¢ S,

fi(A, B) > fi (A, B).
One easily checks that:

(a) each setV (S) C X x X is open

(b) W(S) andW (S") are disjoint if neitherS c S’ nor §’ C S;

(c) if i € S, thenW(S) is contained inU;; therefore there exists a continuous motion
planning over eacl (S);

(d) the setsw (S) with all possible nonempty such that S| < r, form a cover ofX x X.

To prove (d), suppose that, B) € X x X. Let S be the set of all indicese {1, ..., k},
such thatf; (A, B) equals the maximum of; (A, B), wherej =1,2,..., k. Then clearly
the pair(A, B) belongs toW (S). The pair(A, B) lies in the intersection of the set$;
with j in S. Since we assume that the intersection of asgtsUs, Us, ..., Ui is empty,
we conclude thatS| < r.

Let W; C X x X denote the union of all set¥(S), where|S| = j. Here j =
1,2,...,r — 1. The setsWy, ..., W,_1 form an open cover ok x X. If |S| = |5'|, then
the corresponding set® (S) and W (S’) either coincide (ifS = S’), or are disjoint. Hence
we see (using (c)) that there exists a continuous motion planning over each opign set

This completes the proof.O

Proof of statement (2) of Theorem 6.1. Any motion planner witil C(X) local rules will
have degree of instability < TC(X), see (4.1). Hence to prove statement (2) it is enough
to show that the degree of instability of any motion planneXirsatisfiesr > TC(X).
Suppose thatFy, ..., Fy C X x X, s;: F; — PX is a motion planner with degree of
instability ». Then any intersection of the form

FyN---NF,,, =9, (6.3)
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is empty, where X iy <iz> <--- <i,+1 < k.Foranyindex =1,...,k fix a continuous
function f; : X x X — [0, 1], such thatf; (A, B) =1 if and only if pair(A, B) belongs to
F; and such that the support sugp retracts ontd;. Let¢ : X x X — R be the maximum
of (finitely many) functions of the fornf;, + fi, +--- + f;,., for all increasing sequences
1<ii<iz <+ <iy41 < koflengthr + 1. We have:

¢(A,B) <k
for any pair(A, B) € X x X, as follows from (6.3).
LetU; C X x X denote the set of all4, B) such that
k- fi(A, B) > ¢(A, B).
ThenU; is open and containg;, and hence the sets, ..., U, form an open cover of
X x X. On the other hand, any intersection
uy,nuU,N---NU; , =0
is empty.
As in the proof of statement (1), we may assume Uigt. .., U, are small enough so
that over eacly; there exists a continuous motion planning (here we use the assumption

that eachF; is an ENR). Applying Lemma 6.5 we conclude thBC(X) < r. This
completes the proof. O

r+1

Corollary 6.6. Let X be ann-dimensional smooth manifold. Then there exists a motion
planner F1, ..., Fy C X x X, s;:F; - PX, wherej =1,...,k, with the following
properties

() k=TCX); _
(if) Each closureF; is ann-dimensional manifold with corners
(iif) Moreover, any nonempty intersection

F,NF,N---NF,, whereij<iz<---<iy,
has dimensiornn — r + 1) and is a manifold with corners.

The proof repeats the arguments given in the last part of the proof of statement (1) of
Theorem 6.1.

7. A cohomological lower bound for TC(X)

We will briefly recall a result from [3] giving a lower bound drC(X). Itis quite useful
since it allows an effective computation ®C(X) in many examples.

Let k be a field; one may always assume tkat R is the field of real numbers. The
singular cohomology *(X; k) is a graded-algebra with the multiplication

U H*(X; K) ® H*(X; K) = H*(X; K) (7.1)

given by the cup-product, see [2,9]. The tensor prodditiX; k) @ H*(X; k) is also a
gradedk-algebra with the multiplication
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(1 ® v1) - (2 @ v2) = (=122l g5 @ Vv, (7.2)

Here|v1| and|uz| denote the degrees of cohomology classeandu, correspondingly.
The cup-product (7.1) is an algebra homomorphism.

Definition 7.1. The kernel of homomorphism (7.1) is calldget ideal of the zero-divisorsf
H*(X; k). Thezero-divisors-cup-lengtbf H*(X; k) is the length of the longest nontrivial
product in the ideal of the zero-divisors 8f*(X; k).

Theorem 7.2. The numberTC(X) is greater than the zero-divisors-cup-length of
H*(X; k).

See [3] for a proof.
We will illustrate Theorem 7.2 by calculatingC(X), whenX is a graph.

Theorem 7.3. Let X be a connected graph. Then
1, if b1(X) =0,
TC(X)=1 2, ifb1(X)=1, (7.3)
3, ifb1(X) =2
Hereb1(X) denotes the first Betti number &f

Proof. To prove (7.3) we first note thdtC(X) < 3 by Corollary 3.1. Also, we know that
TC(X) > 0if X is not contractible, i.e., ib1(X) > 0.

Let us show (using Theorem 7.2) thBE€(X) > 3 for b1(X) > 2. Indeed, takingk = R
we find that there are two linearly independent clasges, € H1(X; R) and in the tensor
product algebra *(X; R) ® H*(X; R) the product

AQui1—u1®1) - AQuo—u2®1)=u2Qu1 —u1Qua#0

is nontrivial. Hence by Theorem 7.2, we fific€C(X) > 3 and hence we obtainC(X) = 3.

We are left with the casé1(X) = 1. ThenX is homotopy equivalent to the circle
and therefore, using homotopy invarianceTa®(X), we haveTC(X) = TC(S1). One
may easily construct a motion planner on the ciréfe with two local rules; hence
TC(X)=2. O

8. Rigid body motion in R3

Let SE3) denote the group of all orientation-preserving isometric transformations
R3 — R3. Points ofSE?3) describe movements of a rigid body in the 3-dimensional space
R3. The dimension 08E?3) equals 6. Any orientation-preserving isometric transformation
R3® — R3 can be written in the form — Ax + b, whereb € R3 and A € SQ@3) is an
orthogonal matrix.

Theorem 8.1. The topological complexity of $8 equals4. Therefore, any motion
planner having SB3) as the configuration spagdor example, any motion planner moving
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arigid body inR?), will have points with order of instability: 4. Moreover, there exists a
motion planner on S@), having order of instability, i.e., having no points of instability
of order greater thant.

Proof of Theorem 8.1 will use the following lemma, suggested by S. Weinberger:

Lemma 8.2. Let G be a connected Lie group. Then

TC(G) = catG). (8.1)

Here we use the following notation: ¢at) denotes the Lusternik—Schnirelman category
of a topological spac#, which is defined as the minimal integersuch thatX admits an
open covel/1 U Us U --- U U, = X, such that each inclusioti; — X is homotopic to a
constant map. We refer to [4] for more information.

In general, there is the following relation between the topological compléxagX)
and the Lusternik—Schnirelman category(&gt see [3], formula (4):

cal(X) < TC(X) < caX x X). (8.2)

Lemma 8.2 claims that left inequality in (8.2) is an equalit)Xit= G is a connected Lie
group. It is not true that left inequality in (8.2) is an equality for all topological spaces
X; for example, we know that for the spheke= S" with n even, TC(S") = 3 while
cat(s") =2, see [3].

Proof of Lemma 8.2. Assume that c&G) < k, i.e., we may find an open coveér =
U1 U U2 U---UUy such that each inclusioti; — G is null-homotopic. Foi =1, ...,k
we denote

W;={(g.h)eGxG; g-h teU;}.

Itis clearthatW,U---UW isan opencoveradf x G. Leth; :U; x I — G be a continuous
homotopy, wherd = [0, 1], such that:; (x, 0) = x andh; (x, 1) = e for all x € U;, where
e € G denotes the unit off. Then we may defing : W; — PG by the formula

si(A, BYt)=hi(A-B™%1)-B€G, (A,B)eW,. (8.3)

It is a continuous motion planning ové&;. This proves thal C(G) < cat(G) and hence
(8.1) follows from (8.2). O

Proof of Theorem 8.1. We have to show that C(SK?3)) = 4, the statement will then
follow from Theorem 6.1.
By Lemma 8.2,

TC(SK?3)) = ca{SK3)).

Hence, it is enough to show that the Lusternik—Schnirelman categ@#8j equals 4.
SHK?3) is homotopy equivalent t8 0(3) ¢ SK3) (the subgroup of rotations). Since the

topological complexityl C(X) is homotopy invariant oX (see Theorem 3 of [3]), we find

cat(SE?3)) = catSQ(3)). On the other hand, it is well known that the special orthogonal
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groupSQ3) is diffeomorphic to the 3-dimensional projective sp&fe® (the variety of
all lines through the origin ifR*). The Lusternik—Schnirelman category of any projective
spaceRP" equals: + 1, see [2]. This completes the proofc

9. Robot arm

Consider a robot arm iR3 (see Fig. 2) consisting of barsLy, ..., L,, such thatL;
andL;,1 are connected by a flexible joint. We assume that the initial poiftaé fixed.

The configuration space of a robot arm in the 3-dimensional sRade the Cartesian
product ofn copies of the 2-dimensional sphef&

X=8x8%x - x§%= (53"

(n factors), where the factardescribes the orientation in the 3-dimensional space of the
barL;.

Theorem 9.1. The topological complexity of the motion planning problem ofnalmar
robot arm inR3 equals2n + 1, i.e.,

TC((8?)")=2n+1.

Hence, any motion planner controlling a robot arm withbars, will have degree of
instability at least2n + 1. There exists a motion planner for a robot arm withbars,
having degree of instability precise®y: + 1.

It is not difficult to explicitly construct motion planners for the robot arms, which have
the minimal possible topological complexity.

Theorem 9.1 follows from Theorem 6.1 above and from Theorem 12 of [3].

Note that for the planar robot arm withbars the configuration space is the product of
n circles

T" =St x st x ... x S,
the n-dimensional torusT” is a Lie group and hence Lemma 8.2 applies and gives

TC(T™) =catT"). Itis well known that the Lusternik—Schnirelman category of the torus
T" equals: + 1. Hence, we find that

TC(T”) =n+1

Fig. 2. Robot arm irR3.
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This shows that for the planar robot arm witlbars the minimal order of instability equals
n+1.

10. Avoiding obstaclesin R®

In this section we will consider the following motion planning problem. Dat ...,

D, c R2 be a set of mutually disjoint bodies having a piecewise smooth boundary, such
that eachD; is homeomorphic to the closed 3-dimensional Halle R3; (x|l < 1.

A particle, being initially in a positiom € R3 — U?:l D; in the complement of the union

of the bodiesD;, has to be moved to a final positidhe R® — =1 Dj, such that the
movement avoids the bodié3, ..., D,, which represent the obstacles.

Let us emphasize that we assume that each obstgaietopologically trivial (i.e., itis
homeomorphic to the ball) although we impose no assumptions on the geometrical shape
of the obstacles and on their mutual position in the space.

The situation when the obstacles are noncompact or have a nontrivial topology will be
considered later in a separate section; we will see that the conclusions then will be slightly
different.

The configuration space for this motion planning problem is the complement of the
union of the bodies

n
3
X=R —UDj.
j=1

Theorem 10.1. For any motion planner in the complement of the obstadles R3 —
U;le D; there exists a pair of configuratiorig, B) € X x X having order of instability
> 3. Moreover, one may construct a motion plannexirhaving no pairs of initial-final

configurationg A, B) € X x X with order of instability greater thag.

Proof. We may apply Theorem 6.1 and hence our task is to showlGak ) = 3. From
Lemma 10.5 below it follows that has homotopy type of a bouquet:ofwo-dimensional
sphereX ~ Y,,, where

Yo=82vS§?v...v 82 (10.1)

n times

denotes the bouquet of spheress?. Recall that a bouquet of two path-connected
topological spaces is obtaindcbm a disjoint union of these spaces by identifying a
single point in one of them with a single point in the other. We may find a large ball
B = {x € R%, |x|| < R} with large radiusk which contains all the obstacld3, ..., D,
in its interior. The complemer®® — (J!_, D; is homotopy equivalent t& — | J_; D;
since one may construct a (radial) deformation retraction of the complement of the ball
R2 — B onto the boundary B. Now we may apply Lemma 10.5 several times to obtain a
homotopy equivalenc® ~ Y,,.

Using homotopy invariance of the topological complexXit(X) (see Theorem 3
in [3]), we getTC(X) = TC(Y,,).
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Finally, we apply Lemma 10.2 below to conclude th&(Y,) =3. O

Lemma 10.2. Let Z denote the bouquet afspheress™,

Z=S"vS"v...v8§".

n times
Then
2 ifrn=1andm is odd
TC(Z) = . . (10.2)
3 ifeithern > 1, ormiseven

Proof. The bouquetZ is m-dimensional andm — 1)-connected. Therefore applying
Theorem 5.2 we find

2m+1 1

TC(Z) < +1=3+—.
m

We obtain from thisTC(Z) < 3.

We want to apply Theorem 7.2 to obtain a lower boundT@(Z). The cohomology
algebraH*(Z; R) hasn generatoras, ua, ..., u, € H™(Z; R) which satisfy the following
relations:

uju; =0 foranyi, j.
Denote
i =1Qui—u; ®1ec H*(Z;R)@ H*(Z; R).

Theni; is a zero-divisor (see [3, Section 4]). We find that the product of two such zero-
divisors equals

I/_tiﬁj = (—1)m+1uj Qui —u;i Quj.

We see that this product is nonzero, assuming that eitkeyj, ori = j andm is even.
Hence, assuming that either> 1 orn = 1 andm is even, we obtain from Theorem 7 of
[3] the following lower boundr C(Z) > 3.

The lower and upper bounds coincide, and therefore we concludd @&&t) = 3 if
eithern > 1 orn =1 andm is even.

The remaining case (when= 1 andm is odd) reduces to a single odd-dimensional
sphereS™; our claim now follows from Theorem 8 of [3]. O

Theorem 10.1 gives:

Corollary 10.3. The topological complexity of the motion planning problem in 3ke
dimensional Euclidean spade?® in the presence of a number of topologically trivial
obstaclesDs, ..., D, ¢ R3, wheren > 1, does not depend on the number of obstacles
and on their geometry.

Example 10.4. Here we will describe an explicit motion planner with three local rules for
the problem of moving a point iR? avoiding the obstacles which we will represent as
pointsp1, p2, ..., p,. Thus our configuration space is

X=R3—{P1,P2,apn}
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Fig. 3. Motion planning strategy avoiding obstacles.

This situation may be considered as a degated version of the previous discussion,
although topologically it is equivalent to it.

We will define explicitly three subset®;, F», F3 C X x X such that they are ENRs
and form a partition o x X. Moreover, we will specify continuous maps: F; — PX,
wherej =1,2,3,suchthatf os; = 1.

For F1 we will take the set of all pairgA, B) € X x X, such that the Euclidean segment
connectingA and B does not intersect the set of obstadles, po, ..., p,}. We will define
s1(A, B) as the path which goes along the straight line segment connettamgl B, i.e.,
s1(A,B)(1)=(1—t)A+1B,t €0, 1].

For F> we will take the set of all paireA, B) € X x X such that the straight line segment
[A, B] contains some points;, , pi,. - .., pi, but this segment is not parallel to theaxis.
Our motion planning strategy (A, B)(z) will be to follow the path shown in Fig. 3, i.e.,
we move along the straight line segméat B] until the distance to one of the obstacles
pi, becomeg, then we move along the upper semicircle of radius 0 with the center
at p; , lying in the 2-dimensional plang. The planeP contains the pointgl, B and is
parallel to thez-axis. Heres > 0 is a fixed small constant such thgt; — p;|l > ¢ for
i#]J.

The setF3 will consist of all (A, B) € X x X such that the segmef, B] is parallel
to thez-axis and contains some points from the set of obstdgles . ., px}. The motion
planning strategys will be similar to s, (see above) but for the plane we will take the
plane containingd, B and parallel to ther-axis. We pick the semicircles in the direction
of thex-axis.

Lemma 10.5. Let M be a connectedi-dimensional smooth manifold having a non-
empty boundary M. Let D C M be a subset homeomorphic to ardimensional ball
{x € R"; |x| <1}, lying in the interior ofM and such that the boundagD is piecewise
smooth. Then the complemeit— D is homotopy equivalent to the bouquiéty §”—1.
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Fig. 4. Obstacle homeomorphic to a disk.

Proof. We may find a smooth patp connecting a smooth point éfD with a point of
dM (see Fig. 4(a)). Thickening we obtain a tub& connectingg D with oM, andDU T
homeomorphic to a disk (see Fig. 4(b)). We see Mat int(D U T') is homeomorphic to
M, since it is obtained fronM by a collapse from the boundary.

ThereforeM — intD is homeomorphic to the result of glueing the tube= D? x [0, 1]
to the manifoldM alongs?! x [0, 1]. We claim that the identification mag: ST x [0, 1] —
M is homotopically trivial. To prove this it is enough to show that the small léop
aroundy (which is the core of the image(S? x [0, 1])) bounds a 2-dimensional disk
in M —int(D U T); such a disk¥ is shown in Fig. 4(c).

We obtain thatM — int D is homotopy equivalent to the result of glueingAb a 2-
dimensional cellD? along a homotopically trivial mapD? — M. HenceM — D, which
is homotopy equivalent t&f — int D, has homotopy type of/ v §2. O

11. Obstacleswith nontrivial topology

The results of the previous section become false if the obstacles are noncompact or if
they have a nontrivial topology. However the topological compleki( X) cannot be too
large:

Theorem 11.1. Let A c R® be a closed polyhedral subsghe obstaclgsand let X =
RS2 — A be the complement. Then there always exists a motion plangémiith degree of
instability at mosb, i.e., TC(X) < 5.

Proof. X is a smooth manifold and so Theorem 6.1 applies. We have to show that
TC(X) < 5. We observe thaX is 3-dimensional but it is an open manifold (noncompact
with no boundary) and thu¥ has homotopy type of a polyhedrdnof dimension 2. We
know that the topological complexity is homotopy invariah€(X) = TC(Y). Now we

may apply (5.3) to obtaifC(X) =TC(Y) <5. O

Consider the following example. The set of obstacles R? is the union of two infinite
tubes and a solid torus, see Fig. 5. The compler¥eatR3 — A serves as a configuration
space for the motion planning problem. It is easy to see Xh& homotopy equivalent
to a compact orientable surfacg of genus 3. Using homotopy invariance we obtain
TC(X) =TC(X). By Theorem 9 of [3] we findTC(X) = 5. Therefore in this example
TC(X) =5. This shows that the upper bound 5 in Theorem 11.1 cannot be improved.
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2

Fig. 5. Topologically nontrivial obstacles R3 (left). The complement is homotopy equivalent to surfatef
genus 3 (right).

12. Simultaneous control of several systems

Suppose that we have two different mechanical systems, which are completely
independent, and our problem consists ohstructing a simultaneous motion planning
program for them. This means that we are going to control both systems at the same time
trying to bring them to a pair of desired states, starting from a pair of initial states.

Let X denote the configuration space of the first system anH ket the configuration
space of the second system. Then the configanapace, which describes the problem of
simultaneous control, i¥ x Y, the Cartesian product &f andY .

Our problem is to construct a motion planneriinx Y. It is clear that we may do so
as follows. LetX x X = F1fU F, U ---U Fy, s;: F; — PX be a motion planner ik
and letY x Y =G1UG2U---UGy, 0;:G; — PY be a motion planner ity. Then the
setsF; x G; give a splitting of(X x ¥) x (X x ¥) and the maps; x o; determine the
continuous motion planning strategies. This shows that there exists a motion planner with
k - ¢ local rules.

This straightforward approach is not optimal as the following theorem shows:

Theorem 12.1. For any path-connected metric spacésandY,

TC(X x ¥) < TC(X) + TC(Y). (12.1)

In other words, the topological complexity of the motion planning problem of simultaneous
control of two systems is less than the surthefr individual topological complexities.

Thus, in the situation when we have to simultaneously control several systems, the
topological complexity is at most additiveend not multiplicative, as may be expected at
first glance.

A proof of Theorem 12.1 can be found in [3].

We will give here a simple explicit construction of a motion planneXink Y with
k + ¢ — 1 local rules, under an additional assuiap. This additional assumption is
such that it may really be achieved in most cases. For example, the motion planner (6.3)
constructed in the proof of Theorem 6.1 (when the configuration sjaisea manifold)
has this property.
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Assume that the motion plann&rx X = LU F,U---U Fg, sj . F; — PX, satisfies the
following condition: the closure of each sEf is contained in the uniof, U FoU---U F;.
In other words, we require that all sets of the foFinU F, U --- U F; be closed.

Similarly, we will assume that x Y = G1UG2U---UGy, 0;: G; — PY is a motion
planner inY such that all sets of the fordi, U G2 U --- U G; are closed.

Then we will set

W= |J FixGi. r=23...k+t (12.2)
Jjti=r

The sets are ENRs and form a partition(&fx X) x (¥ x Y)=(X x Y) x (X x Y). Our

assumptions guarantee that each prodyjck G; is closed inW,, wherer = j 4 i. Since

different products in the union (12.2) are disjoint, we see that the mapso;, where
j + i =r, determine a continuous motion planning strategy over eaci,set

Example 12.2. Let A c R3 be the set of obstacles shown in Fig. 5. Consider the problem
of simultaneous control of independent particles lying in the complemahi= R® — A.
The configuration space

Y=X"=XxXx---xX
is the Cartesian product afcopies ofX. We claim that
TCY)=TC(X")=4n+1,

and hence: (1any motion planner for the problem will have order of instabilityiln + 1
and at leastln + 1 local rules,and (2)there exists a motion planner with order of instability
4n + 1 having preciselyin + 1 local rules.

Since X is homotopy equivalent to the surfacE of genus 3, we obtain that
TC(X*") =TC(X*"). By Theorem 9 of [3]TC(X) = 5, and hence, applying inductively
Theorem 12.1 we obtain an inequaliiC (X *") < 4n + 1.

To find a lower bound folf C(X'*"*) we will apply Theorem 7.2. Let

a,b,c,de Hl(ZJ; R)

be a symplectic basis
a?=p>=c?>=d?=0, ab=A, cd=A,

whereA € H2(X; R) is a fundamental class. We may also assume that
ac=ad =bc=bd =0.

Fori=1,2,...,ndenote
a,-:lx~-~xlxaxlxmxleHl(ZX”;R).

Here the class appears in place We will define similarly the cohomology classes
bi,ci,di e H{(Z*R), i=1,...,n.

The class
agi=1®a; —a;®1e H*(X*";R) ® H*(X*"; R)
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belongs to the ideal of the zero-divisors. Similarly, we will define the classes
bi,¢i,di e H* (X"";R)®@ H*(2"";R), i=1...,n,
lying in the ideal of the zero-divisors.
We claim that the product
n B B
[ [(@ibicidi) #0 (12.3)
i=1
is nonzero. We compute
aibi=1® Aj+b;®a; —a;®b; — A; ®1,
whereA; =1x---x1x Ax1x---x1e H3(X*"; R); the cohomology class appears
in placei. Similarly we find
Gidi=1®Ai+di®ci —ci®di — A ®1,
and therefore
aiE,-E,-c?,- =-2A; R A;.
Hence, we see that product (12.3) equals
(=2"-U®U+#Q,
whereU = A x A x --- x A € H¥(X*"; R). Now, Theorem 7.2 applies and gives
TC(Z*") = 4n+1.

Indeed, product (12.3) contains factors which are all zero-divisors.

This proves that in this motion planning problem, when we have to simultaneously
controln independent particles iR® — A, the topological complexity equals:4+ 1; in
particular it is a linear function of the number of particles.
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