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SYSTOLIC FREEDOM OF ORIENTABLE MANIFOLDS*

BY IVAN BABENKO AND MIKHAIL KATZ

ABSTRACT. - In 1972, Marcel Berger defined a metric invariant that captures the 'size' of ^-dimensional
homology of a Riemannian manifold. This invariant came to be called the fc-dimensional systole. He asked if
the systoles can be constrained by the volume, in the spirit of the 1949 theorem of C. Loewner. We construct
metrics, inspired by M. Gromov's 1993 example, which give a negative answer for large classes of manifolds,
for the product of systoles in a pair of complementary dimensions (k^n — k). An obstruction (restriction on
k modulo 4) to constructing further examples by our methods seems to reside in the free part of real Bott
periodicity. The construction takes place in a split neighbourhood of a suitable fc-dimensional submanifold whose
connected components (rationally) generate the ^-dimensional homology group of the manifold. Bounded geometry
(combined with the coarea inequality) implies a lower bound for the fc-systole, while calibration with support
in this neighbourhood provides a lower bound for the systole of the complementary dimension. In dimension 4,
everything reduces to the case of S2 x S2. © Elsevier, Paris

RESUME. - En 1972, Marcel Berger a defini un invariant metrique qui exprime la « taille » d'une classe
d'homologie fc-ieme d'une variete riemannienne. Aujourd'hui cet invariant s'appelle la systole de dimension k. II a
demande si les systoles peuvent etre contraintes par Ie volume, dans 1'esprit du theoreme de C. Loewner de 1949.
Nous construisons des metriques, inspirees par 1'exemple de M. Gromov de 1993, qui donnent une reponse negative
pour une classe de varietes assez large, pour Ie produit des systoles d'une paire de dimensions complementaires
(A;, n - k). Une obstruction (restriction sur k modulo 4) a la construction d'exemples encore plus generaux par notre
methode semble resider dans la partie libre de la periodicite reelle de Bott. La construction a lieu dans un voisinage
scinde d'une sous-variete convenable a k dimensions, dont les composantes connexes engendrent (rationnellement)
Ie fc-ieme groupe d'homologie de la variete. La geometric bomee et 1'inegalite de la coaire entrainent une minoration
de la fc-systole, tandis que la calibration a support dans ce voisinage foumit une minoration de la systole de la
dimension complementaire. En dimension 4, tout se reduit au cas de S2 x S2. © Elsevier, Paris

0. Introduction

In 1972, Marcel Berger defined metric invariants that capture the 'size' of fc-dimensional
homology of a closed Riemannian manifold X. Given a nonzero integer homology class
a e Hfc(X,Z), let

(0.1) ||a||=^(vol,(M)),

where the infimum is taken over all cycles represented by maps of fc-dimensional manifolds
to X (this choice of cycles is explained in Lemma 4.1). Moreover given a nontorsion

* http://front.math.ucdavis.edu/math.DG/9707102 and Annales Scientifiques de I'E.N.S. (Paris), 1998 (to
appear). AMS classification: 53C23, 55R45
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788 I. BABENKO AND M. KATZ

class a, let

(0.2) |K= lim ̂ M
g—^oo q

be the stable norm. We define the k-dimensional systole sys^(X) of M. Berger by

(0.3) sys,(X)=mf||a||
a^O

as well as the stable systole, or mass, by

(0.4) mass kW = mf ||a|̂

where the infimum is taken over nontorsion classes. M. Berger asked if these invariants
can be constrained by the volume (see section 1 for a history of the problem). From our
vantage point, what could be the reasons for expecting such constraints? There are three
reasons: (1) Loewner's theorem, (2) stable systolic inequalities ofGromov and Hebda, and
(3) Gromov's theorem on the 1-systole. Let us describe these briefly.

1. By Loewner's theorem (cf. [34], p. 295-296 and [43], [6], [7]), every metric 2-torus
T2 satisfies

f05^ lengthy 2
(0<5) area(T2) ^ ̂
where C is its shortest noncontractible loop, so that length (C) = sySi(T2).

2. Every metric g on the complex projective space CP"^ satisfies

(0.6) mass 2 (gY < n\vol{g).

Similar results hold for products of spheres (S^ x Sn~k^g):

(0.7) massfc(^)massn-fc(^) < C^vol(^),

with a constant Cn depending only on the dimension (cf. [30], p. 60; or [35], sections 4.36-
38). Further generalisations are due to J. Hebda [36].

3. Let Trsysi(^) be the length of the shortest noncontractible loop for the metric g on
X. M. Gromov [31] studied the following inequality in 1983:

(0.8) Orsys^))71 < Constn vol(^).

He explained how one can characterize topologically the class of manifolds for which
such an inequality holds for a positive Constn > 0 independent of the metric. For such
manifolds, moreover, the constant depends only on n = dim(X). This class, called
essential, includes aspherical manifolds as well as real projective spaces. An oriented
manifold X is inessential if the inclusion ofX in the classifying space BTI-I == -R"(7ri(X), 1)
admits a retraction (fixing the 1-skeleton) to the (n— 1)-skeleton of .871-1. Then the 1-systole
is not constrained by the volume, as shown by the first author in [I], p. 34. We will apply
a similar technique which involves maps to complexes obtained from X by attaching cells
of dimension at most n — 1 (cf. section 6). That one cannot expect the inequality (0.8) to
be true for all manifolds is obvious from considering a simple expansion-contraction on
a product of a circle and an (n — l)-sphere: either stretch one factor or shrink the other.
Thinking about this counter-example might lead one to conjecture that it is the product
of the 1-systole and the (n — l)-systole which is bounded by the volume. M. Gromov
showed that this is also false (see section 1.3).

4s SERIE - TOME 31 - 1998 - N° 6



SYSTOLIC FREEDOM OF ORIENTABLE MANIFOLDS 789

In the context of the three results cited above, one may find surprising that the systoles
actually possess a lot of freedom relative to the volume of the manifold. Let us cite
two typical results in the following geometric form (more general statements are given
in section 1.6).

THEOREM A. - Let X be a manifold of even dimension n == 2m, and assume that its
middle dimensional homology group is free abelian. Then X admits metrics of arbitrarily
small volume such that every middle dimensional submanifold with m-volume less than
unity necessarily bounds, provided that m > 3.

THEOREM B. — Every compact orientable manifold X of dimension n >_ 3 admits metrics
g of arbitrarily small volume satisfying the inequality

(0.9) vol^_i(M) length (C) > 1

for every noncontractible closed curve C C X and every orientable non-separating
hypersurface M C X.

The result of Theorem B. is meaningful whenever the first Betti number of X is nonzero.
Theorem A is proved in a separate paper [2]. The present article will develop results along
the lines of Theorem B, and will present some results in the direction of the case of
dimension n = 4 missing from Theorem A (see section 6). Can Theorem B be generalized
to an arbitrary pair of complementary dimensions? Such a generalization seems to meet
a certain topological obstruction. Namely, an obstruction to constructing further examples
by our methods seems to reside in the free part of real Bott periodicity. It translates into
the modulo 4 condition on k of Theorem 3 in section 1.6 below (see Lemma 5.5). What
are the other interesting special cases? We discuss the projective spaces (Example 5.3 and
Remark 5.6), the 3-torus (Example 3.5), and products of spheres (Proposition 4.2). What
is the starting point for these constructions? It is an example described in 1993 by M.
Gromov (see section 1.3). The inspiration for generalizing this example derives from the
following theorem of R. Thorn which in our notation reads as follows.

THEOREM (R. Thorn, [46], p. 32, Theorem 11.4). - Let a e H^X^Z) be an integer
homology class of an orientable manifold X71, where k is odd or else 2k < n. Then there
exists a nonzero integer N depending only on n such that the multiple class N.a can be
represented by a submanifold whose bundle of normal vectors is trivial.

From the point of view of Thorn's theorem, the construction can be described as follows.
Following Gromov ([34], section 4.As), we use Thorn's theorem to choose a submanifold
below the middle dimension satisfying the following two properties:

(a) its normal bundle is trivial;
(b) its connected components generate H^(X,Q).

The construction takes place within a fixed trivialized tubular neighbourhood of the
submanifold. Gromov described an expansion-contraction procedure (cf. [33], section 2)
with the desired effect on the systole of the complementary dimension. Now, our idea is
to combine the expansion-contraction with a volume-saving twist. In more detail, Thorn's
theorem allows us to carry out the expansion-contraction procedure in a neighbourhood of
a suitable fc-dimensional submanifold described above. The resulting metrics fc-dimensional
submanifold. The resulting metrics have large {n — fc)-dimensional systole (compared to

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPERIEURE



790 I. BABENKO AND M. KATZ

the volume). Here the {k^ n — k) systolic inequality is not violated, as the volume is too
large. To decrease the volume, we introduce a nondiagonal coefficient in the matrix of
the Riemannian metric. This requires a splitting of both the fc-dimensional class and its
tubular neighbourhood. It is at this point that the modulo 4 condition on k is necessary (see
Theorem 1.3). The construction works whenever a suitable multiple of each fc-dimensional
homology class contains a representative A with the following two properties:

(a) the normal bundle of A is trivial;
(b) A splits off a circle factor in a Cartesian product.

It is sufficient to find a representative which is a sphere with trivial normal bundle. This
is done using Thorn's theorem (section 5.2) and Bott periodicity (see Lemma 5.5). See
section 1.7 for more details on the construction.

Acknowledgments. The second author is grateful to M. Berger for his warm encouragement
and interest in the progress of the systolic problem. Thanks are also due to Alex Suciu
for helpful comments regarding an earlier version of the manuscript, to G. Chariot for
catching a misleading statement in an earlier version, and to T. Hangan for a calculation
on the Heisenberg group.

1. Earlier work, statement of results

1.1 The origin of the problem. Following the pioneering work of C. Loewner and
P. Pu [43] (and, later, R. Accola, C. Blatter), M. Berger [6] defined the systolic invariants
in 1972 in the pages of the Annales Scientifiques de 1'Ecole Normale Superieure, and
asked if they can be constrained by the volume (see the excellent survey [8], as well
as [10], section TOP.1.E, page 123).

1.2 Is volume a constraint? As late as 1992, M. Gromov was optimistic about the existence
of inequalities for systoles similar to the stable systole case (see equation (0.7)). Thus at
the end of section 4.As of [32] one finds a discussion of the systolic (k, n-k) inequality,
and a program of study in terms of conditions on geometry and curvature. Section 4.As
of [32] contains the following statement: 'Tn general, we conjecture that all non-trivial
intersystolic inequalities for simply connected manifolds are associated to multiplicative
relations in the cohomology in the corresponding dimensions. This conjecture applies to
the mass as well as to the volume and moreover it should be refined in the case of mass
[...]" (the text goes on to propose such a refinement). The version of [32] published in 1996
modifies this sentence (see [34], p. 354) in the light of Gromov's subsequent developments.

1.3 The first counter-examples. It was given by M. Gromov in 1993 on X = S3 x S1

and described by M. Berger in [8], p. 301 (see also [35], section 4.45 and [38], section 1).
The same paper [8] states Gromov's results concerning the existence of further examples
on products of spheres. The second author wrote to M. Berger in February, 1994, asking
about the details of Gromov's construction. M. Berger immediately replied [9] that he
was awaiting a "new manuscript from Gromov, or now from you!" It is the warm
encouragement of M. Berger that initially stimulated the second author's interest in the
problem. With the emergence ofGromov's 1993 example, the situation changed drastically.
Most inequalities involving the higher systoles are now conjectured to fail (but see [49],
Remark 1.3 regarding coefficients modulo 2). The inequalities tend to be violated even
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SYSTOLIC FREEDOM OF ORIENTABLE MANIFOLDS 791

among homogeneous metrics, as the 1993 example shows. It would be interesting to explore
the Lie-theoretic origin of the S3 x S1 example and its generalizations. A homogeneous
example in middle dimension on a product of spheres appears in [5] and [48], Theorem D.3.
1.4 'Massive9 metrics and instability. To present a different point of view on Gromov's
construction, it is convenient to introduce the following terminology. A sequence gj of
metrics is called massive if each gj satisfies equality in the mass inequality (0.7) (for a
fixed constant Cn independent of j); it is called k-unstable if

(1.1) lim ^^ = oo .
j^oo massfc(^)

In this language, the 1993 metric is massive and 1-unstable (cf. Remark 3.2). Note that
massy,_i = sysn-i by [23], statement 5.10, p.394 (cf. [30], p. 59). Its 1-instability is due
to the fact that at the level of the universal cover, the step of the covering transformation
T of S3 x R is far larger than the displacement of the hypersurface S3 (i.e. the distance
between S3 and T(S3)), due to a rapid Hopf rotation. Gromov privately speculated that
the same could be achieved for X = S2 x S1 despite the absence of a free circle action,
by stretching in the neighbourhood of the fixed points. Such stretching was formalized
by L. Berard Bergery and the second author in [4] in terms of the nilmanifold N of
the Heisenberg group.
1.5 Semidirect products and Sol Geometry. Note also that the fundamental group of
N is a semidirect product. C. Pittet [42] clarified the role of semidirect products in the
construction of the example on S2 x S1, reformulating it in terms of Sol geometry (see
Remark 2.2). He generalized this example to manifolds of the form M x S1 satisfying
Hi(M) = 0 by localizing the construction of [4].
1.6 Statement of results. There are two rather different systolic problems: in middle
dimension, on the one hand, and in a pair of complementary dimensions, on the other.
The case of middle-dimensional freedom is treated in [2]. In the present paper we are
concerned with the case of a pair of distinct complementary dimensions, and also with the
special case n = 4 (see Theorem 4 below and Remark 3.6).

DEFINITION. - We say that X is systolically \k^ri — k)-free' if

(L2) inf———v01^ .^0,
() ^n-kW^k(9)

where the infimum is taken over all Riemannian metrics on X. If n = 2k, we say that
X is k-free.

We now state our main results. Most of the results in this area are due to M. Gromov.
As described above, the first results on freedom published with detailed proofs are by
L. Berard Bergery and M. Katz [4], M. Katz [38], and C. Pittet [42].

THEOREM 1. - Let X be a compact orientable n-manifold, n > 3. Then X is systolically
(l,n — l)-free.

THEOREM 2. - Let X be a compact n-manifold, n > 5, whose fundamental group is free
abelian. Then X is systolically (2,n — 2) -free.

THEOREM 3. - Let X be a compact orientable (k — 1) -connected n-manifold, where
k < |1. Then X is systolically (fc,n — k}-free if k is not divisible by 4. Ifk = 4, then X
is (4,n — 4) free provided that pi{X) = 0.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



792 I. BABENKO AND M. KATZ

The 2-freedom of a simply connected 4-manifold X can be characterized as follows: X
admits metrics of arbitrarily small volume such that every noncontractible surface inside
it has at least unit area.

THEOREM 4. - The following three assertions are equivalent: (i) the complex projective
plane CP2 is 2-free; (ii) S2 x S2 is 2-free; (iii) every simply connected ^-manifold is 2-free^.

1.7 The construction. To explain the idea with greater care, let A C X be a
fc-dimensional submanifold whose connected components (rationally) generate ~H.k{X).
Assume that the normal bundle of A is trivial, so that its tubular neighbourhood in X is
diffeomorphic to A x Bn~k (cf. [14]). Let R C B^^ be a codimension 2 submanifold
with trivial normal bundle (for example, an (n - k - 2)-sphere). Then the boundary of a
tubular neighbourhood of R C Bn~k is diffeomorphic to R x T1. Assume furthermore that
A splits off a circle, i.e. A == C x S where C is the circle. Let E C X be the hypersurface

S^AxJ ixT^T^L

where T2 = C x T1 is the 2-torus and L = S x R. A tubular neighbourhood of S C X
is a cylinder S x I = Y x L where Y = T2 x I is a cylinder on the 2-torus. We
construct direct sum metrics on S = Y x L which are fixed on L. Meanwhile, we will
describe a sequence of special metrics on Y in Lemma 2.1, which give rise to the free
metrics on X. Theorem 3 may be viewed as the most general result one can obtain by
generalizing the construction of free metrics on products of spheres (see Proposition 4.2).
One may ask if its modulo 4 hypothesis can be removed. While this may turn out to be
possible, the free metrics on products of spheres would probably still be the starting point.
Therefore, this paper may be viewed as an effort to understand the domain of applicability
of the construction described in the previous paragraph, starting with a codimension 2
submanifold in the fiber of the (trivial) normal bundle of a split submanifold in X whose
connected components (rationally) generate H^(X). Similar results for the spectrum of the
Laplacian may be found in [20], [17].

1.8 The geometry of the free metrics. We construct a sequence of metrics gj for which
the quotient (1.2) becomes smaller and smaller. The metric gj contains two regions: one
where the geometry is fixed (i.e. independent of j), and another (locally isometric to the
left-invariant metric on the Heisenberg group) where the geometry is 'periodic5 with j
periods. The bounded geometry implies a uniform lower bound for the fc-systole. Our key
technical tools here are the coarea inequality and the isoperimetric inequality of Federer
and Fleming. A suitable calibrating form with support in the 'periodic' region shows that
the {n — fc)-systole grows faster than the volume.

In section 2, we describe a local version of the construction of free metrics used in
[4]. We exploit it in section 3 to prove Theorem 1. We generalize the construction to
higher fc-systoles in section 4 for products of spheres and in section 5 in the general
case. Theorem 4 is proved in section 6, using Whitehead products and pullback arguments
(cf. [1]) for metrics.

* The 2-freedom of orientable 4-manifolds is established in [49].
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SYSTOLIC FREEDOM OF ORIENTABLE MANIFOLDS 793

2. Calibration, bounded geometry, and the Heisenberg group

We present a local version of the construction of [4] in Lemma 2.1 below. The
significance of the lemma is that the product of the 2-torus and the interval admits metrics
with enough room for cylinders of unexpectedly large area (but see (2.9)). To distinguish
two circles which play different roles in the construction, we denote them, respectively,
T1 and C. Consider the cylinder M = T1 x J, circle C, and the manifold

Y = C x M = T 2 x I .

We view M as a relative cycle in H^V, <9Y). The 2-mass of the class [M] is the infimum of
areas of rational cycles representing it, where area(S,(r^)) = S,|r^| area (a,), TI C Q.

LEMMA 2.1. - The manifold Y = T2 x I satisfies

vol (q)
inf ———, , y y ) ,,,^ = 0,g sySi(^)mass2([M])

where the infimum is taken over all metrics whose restriction to each component of the
boundary 9Y = T2 x 91 is the standard 'unit square' torus satisfying length (C) =
length (T1) = 1.

proof. - More precisely, we will show that there exists a sequence of metrics Yj == (Y, gj)
satisfying the following four conditions:

(i) the restriction of gj to the boundary T2 x 91 at each endpoint is the standard unit
square metric for which T1 and C have unit length; (ii) the 1-systole of gj is uniformly
bounded from below; (iii) the volume of gj grows at most linearly in j; (iv) the 2-mass
of [M] G 'H.^(Y,9Y) grows at least quadratically in j.

We present a shortcut to the explicit formula for the solution. A reader interested in the
method of arriving at such a formula geometrically can consult [4], p. 630. Consider the
following metric h{x) in the y , ;^-plane depending on a parameter x G R:

(2.0) h(x)(y, z) = {xdy - dz)2 + dy2

Let I = [0,2j]. For x G J, set x = j - \x - j\ = mm(x, 2j - x). Consider the fundamental
domain D = {0 < x < 2j, 0 <, y < 1, 0 < z < 1}. The metric

(2.1) gj = h(x}(y, z) + dx2, where {x, y , z ) € D

gives rise to a metric gj on T2 x J once we identify the opposite sides of the unit square in
the ^-plane. The circles T^C C T2 = R2/Z2 are parametrized, respectively, by the y-
and ^-axis. The circles T1 and C have lengths, respectively, Vx2 + 1 and 1 with respect
to the metric h(x) = (1 + x^dy2 + dz2 - 2xdydz on T2 x {x}. The length of T1 thus
stretches from 1 to ^/j2 + 1 and then shrinks back to 1, so as to satisfy (i). Our choice
of the metric such that the length of T1 C T2 x {x} is \/1 + x2 rather than simply x
results in local homogeneity (see below). The metric gj is symmetric with respect to the
midpoint x = j. The map

(2.2) '0 '• {x, y , z ) ̂  {x + l,y + z, z)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



794 I. BABENKO AND M. KATZ

defines an isometry from T2 x [i - 1, i] to T2 x [%, i + 1] for i = 1,... ,j - 1. Thus the
metric gj on T2 x [0,j] is 1-periodic (c/ (2.6)), proving (ii). The rr-axis projection Y —» J
is a Riemannian submersion over an interval of length 2j with fibers of unit area, hence
the volume estimate (iii). We obtain the lower bound (iv) for the 2-mass of [M] as in
[4], pp. 625-626 by a calibration argument. First we calculate the area of the cylinder M.
Recall that the universal cover of M is a subset of the xy-p\me in our coordinates. Since
T1 x {x} has length 1, we have

(2.3)
/-2J n

area (M) = / length (T1 x {x})dx =2 Vx2 +1 dx ~ j2.
Jo Jo

The calibrating form is the pullback of the area form of M by the nearest-point projection.
The projection, while not distance-decreasing, is area-decreasing. Consider the 2-form

(2.4) a = v^T^x^dx A dA where A = y — -z.
1+a-

Note that \/1 + x^a = *(dz) where * is the Hodge star of the left-invariant metric. This
formula is easily verified with respect to the orthonormal basis of left-invariant forms dx,
dy, dz — xdy (we owe this remark to T. Hangan). (Note that in Gromov's example, the
calibrating form is in fact the Hodge star of the projection to the circle fibre, suitably
normalized). The restriction of a to M coincides with the area form of M for x < j, and
a is of unit norm (see [4], pp. 627-628 for details). Let (foj(x) be a partition of unity type
function with support in ]0,j'[ and such that (f)j{x) = 1 for re G [1,J — 1]. The form (f)ja
is closed. Let M' be any rational cycle representing the class e[M] G ^(Y^QY), where
6 = ±1. As in [4], p. 626, we have from (2.3):

(2.5) mass(e[M]) = mfa^ea(M /) > / e^.-a = / (f)j0 > / xdx ~ j'2,
M/ J M ' J M J i

proving Lemma 2.1.

Remark 2.2. - The isometry ip : ( x ^ y ^ z ) ^—> (x + l ^ y + z ^ z ) acts in the ?/^-plane

by the unipotent matrix . Pittet [42] replaced this action by a hyperbolic one,
producing relative 2-cycles with exponential growth of the 2-mass, rather than quadratic
as in (iv) above.

Remark 2.3. - The universal cover of the 'half T2 x [0,j] is isometric to the subset
defined by the condition 0 < x < j of the Heisenberg group of unipotent matrices

1 x z
0 1 y
0 0 1

x , y , z G R

with the standard left-invariant metric dx2 + dy2 + (dz - xdy)2 (cf. [18], p. 67; [26],
p. 227). The isometry ^ is left multiplication by the matrix

1 1 0
0 1 0
0 0 1

46 SERIE - TOME 31 - 1998 - N° 6



SYSTOLIC FREEDOM OF ORIENTABLE MANIFOLDS 795

Let N = G/F be the standard nilmanifold of the Heisenberg group G, where F consists
of matrices with integer entries. Factoring by the iterates of '0, we obtain a projection
f : T2 x [0,j] —^ N which is a local isometry. Now take the interval I = [0,2j] and
fold it in two at x = j, i.e. send x to mm{x,2j - x). Let g : Yj -^ T2 x [0,j] be the
resulting folding map on Yj. The distance decreasing projection f o g \Yj —> N induces
a monomorphism at the level of the fundamental groups. Therefore

(2.6) sySi(y,)>7rsySi(AO,

where TT sys ^ is the length of the shortest noncontractible loop. Meanwhile, the induced
homomorphism in 1-dimensional homology sends the class [C] to 0, as the ^-axis in
G projects to a loop in the center of the fundamental group F of N , which is also its
commutator subgroup.

Remark 2.4. - The group F is the Heisenberg group over Z. It is presented by generators
x , y , z and relations [x,y] = z, [x,z] = 1, [y,z\ = 1, where [a,b] = aba^b-1. Let
a^ = bab~1. Note that for every positive integer j we have the following relation in F:

(2.7) z3 =y{x3)y-\

which is the combinatorial antecedent of (2.8) below. Let

, n i A-f^'2 -3}' -bT L -^ i J 5

so that ^Av = 1. It follows that the shortest loop in the class [T1 + j'C] G Hi(T2 x {j})
has unit length, since the torus T2 x {j} is equipped with the metric dy2 + (dz - j dy)2.
Thus by sliding the curve C C T2 to the value x = j, we obtain

(2.8) massi^+jC] < 1.

[1 + x2 —x~\ ^Remark 2.5. - The metric h^, defined by the matrix _^ , where x =x i j
mm{x,2j - x), is flat of unit area. The flat tori of unit area and unit 1-systole used in
our construction all lie in a compact part of the moduli space of tori, namely the interval
s _p ^Z~[ for s C [-- -] in the standard fundamental domain in C. The diameter of each
of these tori is less than 1, so that our manifold Yj is rather narrow:

(2.9) diami(y,) < 1,

where the 1-diameter of a Riemannian manifold X, denoted diami X, is the infimum
of numbers e > 0 such that there exists a continuous map from X to a graph with the
property that the inverse image of every point has diameter < e. More precisely, given a
map / : X —^ 7, from a Riema-nnian manifold X to a graph 7, define the size s(f) by
s{f) = sup^ diam (/^(rc)). Then the 1-diameter of X is the least size of a map from X
to a graph: diam i(X) == inf^j s(f), where the infimum is taken over all graphs 7 and all
continuous maps / : X -» 7. Setting 7 = [0,2j] and / == the rc-coordinate, we obtain (2.9).

Remark 2.6. - The construction of the manifold Y of Lemma 2.1 can be summarized as
follows. One takes a torus bundle, say N , over a circle, whose glueing automorphism A
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is not an isometry. Let v be a lattice vector whose images increase indefinitely in length
under the iterates of A~1. One chooses a fixed metric on N and pulls it back to the infinite
3-dimensional cylinder Yoo = T2 x R, where R is the universal cover of the circle. This
produces a periodic metric on Yoo. Consider the 2-dimensional cylinder M C Yoo which is
the circle subbundle spanned by the direction v. The key point now is that the area of M
grows faster than the volume of Yoo due to the choice of the direction v. One then takes a
long piece of Yoo and doubles it as described above to obtain the desired metric.

Remark 2.7. - A. Besicowitch [11] in 1952 exhibited a different type of (l,2)-freedom
on a 3-dimensional manifold with boundary, namely the cylinder D2 x [0,1] (cf. [13],
p. 296), disproving a conjecture of Loewner.

3. Construction in dimension/codimension one

PROPOSITION 3.1. - Every orientable n-manifold with b-t(X) = 1 is systolically (1, n — 1)-
free if n > 3.

Proof. - Such metrics on X can be obtained by pulling back free metrics on S1 x Sn~l

of [42] by a simplicial map of nonzero degree. We describe a construction which lends
itself to a generalisation to the case &i > 1. The construction of free metrics is local
in a neighbourhood of a loop C which generates Hi(X,Z) modulo torsion. Since X
is orientable, the normal bundle of C is trivial, and its tubular neighbourhood in X is
diffeomorphic to C x B71"1. Let L C B71'1 be a codimension 2 submanifold which then
has trivial normal bundle (for example, an (n — 3)-sphere). The boundary of a tubular
neighbourhood of L C Bn~[ is diffeomorphic to L x T1. Let S C X be the hypersurface

(3.1) ^ = C x L x T l = T 2 x L

where T2 = C x T1 is the 2-torus. A tubular neighbourhood of S C X is a cylinder
S x I = y x L where Y = T2 x I is a cylinder on the 2-torus. We construct direct sum
metrics on Y x L which are fixed on L. The special metrics on Y of Lemma 2.1 give
rise to the free metrics on X. A similar technique was used by C. Pittet [42]. His idea
was to use the torus S = T71"1 (where we use T2 x L), but only 2 circles are actually
needed. What happens metrically can be described as follows. We choose a metric on X
which is a direct sum in

(3.2) ^ x I = T 2 x L x I ,

where T2 is the standard unit square torus (with C and T1 both of unit length) and L
has unit volume. We now modify the metric i n S x J = y x L b y means of the metric
y = ( Y ^ g j ) of Lemma 2.1, while L keeps the same fixed metric of unit volume, and the
metric on Yjx L is a direct sum. Condition (i) of Lemma 2.1 ensures that the metric varies
continuously across 91. Denote the resulting Riemannian manifold Xj. The metric of Xj
stays the same on the complement of S x J, while on the region Yj x L it is periodic
in the sense given in the proof of Lemma 2.1. A loop of length less than 1 is contained
either in the cylinder, or in the 1-neighbourhood of its complement. In the latter case, it
can be viewed as a loop in Xj for j = 1. Thus

sys^(Xj) > mm(sySi(Zi),7TsySi(7V))
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by (2.6). Hence the 1-systole (as well as the homotopy 1-systole, justifying the inequality
(0.9) of Theorem B) is uniformly bounded from below as j increases. The calibrating
(n - l)-form 0 is supported on Y x L. It is obtained from the form (2.4) of Lemma 2.1
by exterior product with the volume form vol^ of L:

(3.4) / 3 = ( ^ a A v o l L .

Choose a hypersurface M c X 'dual' to C, which has standard intersection B71"1

with a tubular neighbourhood of C. Then M n Yj = M, the 2-dimensional cylinder of
Lemma 2.1. Hence

(3.5) sys,_i(X,) > mass,-i([M]) > / /3 = vol(L) / ^a ~ j\
J M JM

proving Proposition 3.1.

Remark 3.2. - This is a convenient time to explain why these metrics on X are 1-
unstable, i.e. the 1-mass tends to 0. Indeed, by construction the curve T1 is contractible
in X. Hence we have from (2,8),

(3.6) mass i[C] = 1 mass i[j'C] = 1 mass i[T1 + J'C] <, 1 -^ 0.
J J J

The map / o g of section 2.3 extends to a distance-decreasing map h to a fixed CW
complex X U (N x L),

(3.7) h : X j - ^ X u ( N x L ) ,

where manifolds X and TV x £ are glued along the common hypersurface T2 x L. The
induced homomorphism at the level of fundamental groups has nontrivial kernel generated
by the curve C (the commutator of T1 and the other generator of 7Ti(7V)). Note that a
contrary, and false, claim was made in [4], p. 626 concerning the homomorphism p5, in
order to prove a uniform lower bound for the 1-systole (see (4.9)). However, such a bound
follows immediately from the bounded geometry resulting from the construction, without
using the fixed CW complex.

Remark 3.3. - To a myopic observer, Xj looks like an interval of length 2j. Indeed,
let 7 be the graph defined by the connected components of the level sets of the distance
function from the subset X+ C Xj. By (2.9),

(3.8) diami(X^) < max(l,diam(X+)).

Remark 3.4. - We explain the choice of C and M above in terms of Morse theory. Let
a be a generator of the cohomology group H^X, Z) = Z. Then a defines a map X —^ S1

which can be made into a Morse map. The inverse image of a regular point is a smooth
submanifold M, which may be assumed to be connected by the Rearrangement Theorem
(see J. Milnor, Lectures on h-cobordism Theorem). We cut X open along M (i.e. cut S1

at the regular point) to obtain a cobordism with top and bottom given by M, while the
map to S1 becomes an ordinary Morse function on this cobordism. Next, take the 'same'
point at top and bottom (i.e. the same as a point of M) and join them in the cobordism
by a path with the following tv/o properties: (i) it avoids the critical points of the Morse
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function; (ii) the Morse function is strictly monotone along the path. Now if we glue top
and bottom to form X again, this path becomes a loop C which meets M transversely
in exactly one point p G X.

Proof of Theorem 1. - In the general case b = &i > 1, we will first construct curves
C i , . . . , Q) and hypersurfaces Mi , . . . , M^ such that the intersection Mi H Ck contains
exactly 6^ points, as follows. We choose a Z-basis a i , . . . , a & for the 1-dimensional
cohomology H^X, Z). We define Mi to be the inverse image of a regular point of a map
X —^ S1 defined by a^. The b maps define the period map X —^ T6 which is surjective
at the level of the fundamental groups: 7Ti(X) -^ 7Ti(T6) = Zb (Poincare duality). We
now choose curves C\,..., C& C X whose images represent the standard generators of
Ti-i (T6) = 7Ti(S1) + . . . +7Ti(S1). Then ai(Ck) = Sijc and so the algebraic number of points
in the intersection Mi H Ck is exactly 6ik. To eliminate points of intersection with negative
intersection index, we choose two adjacent points on Ck with opposite intersection indices.
We now perform a surgery on Mi by removing a little disk around each of the two points
and attaching a thin tube to Mi along the piece of Ck joining the two points. In this way,
we remove all negative intersections. In particular, we may assume that the intersection
Mi H Ck = 0 is empty if i i=- k. We choose a small e > 0 so that M, D (UgC^) = 0 for
all i -^ k. We then insert b copies o f Y j x L inside UgC4 as in the argument following
formula (3.2) for k = ! , . . . , & , to obtain a new Riemannian manifold Xj diffeomorphic
to X. The calibration argument is generalized as follows. Let /3k = (f)ja /\ vol^ be the
closed (n — l)-form supported in UgCfc. Then

(3.9) / (3k = 0 if i / k.
JMi

Take any nonzero integer class m = ]>^ €idi[Mi] G H^-i(^) where ei = d=l and di > 0,
% == ! , . . . , & . We use the signs ei to specify a calibration form f3 =- ^^ ^kl^k- Since the
supports of the /3k are disjoint, the form /3 has norm 1. Let M' G m be any rational
cycle. Then

(3.10) vol.-^M')^ / (3= f Y^e^k^Y.Cid, ( e^
JM' JM' , , JMii.k

In view of (3.9) we have

(3.11) vol^M')^^ / / 3 i > / 1 /? i~j 2 .
^ JMi JMi

This completes the proof of Theorem 1.

3.5. Example of the 3-torus.. Let X = T3 = R^Z3. Define three curves C^ C^ C^ C T3

respectively as the projections of the lines {(^i , i )}, {( |p^j)}» and {( j ; j^)}» where
t G R. Let Mi C T3 be the 2-torus which is the projection of the coordinate plane
perpendicular to Ci, e.g. M\ is the projection of {(0 ,5 ,^) ; s ^ t G R}. Then Mi H Ck
consists of Sik points. The boundary of the --neighbourhood of Ci is a 2-torus

(3.12) T^=9(U^)=C,xT1.
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We modify the flat metric in a ^-neighbourhood of each T] to make it into the direct
sum of circles Ci and T1 of unit length. We cut X open along each T? and insert three
copies of Yj of Lemma 2.1 along the cuts. The resulting manifold (T3,^) has 1-systole
uniformly bounded below as j increases, 2-sy stole growing as j'2, and volume as j. This
metric bears a formal resemblance to the 'Hedlund' metrics described by V. Bangert [3],
p. 278, though it is not obtained by a conformal coordinate change from the flat metric.

Remark 3.6. - Taking a product of (T3,^) with a circle of length j2, we obtain metrics
on the 4-torus with 2-systole growing faster than the square root of the volume. In other
words, T4 admits metrics of arbitrarily small volume such that every surface inside it
representing a nonzero class in B^T4) has at least unit area.

4. Product of spheres, coarea inequality, and intersection number

The product of the (l,n - l)-free metrics of section 3 on an n-manifold X with the
sphere S^"1 yields (&,n — l)-free metrics on X x S^'"1. As we will see, it turns out that
it is sufficient to have a product structure at the level of a fc-dimensional class containing
a representative A with trivial normal bundle. If such an A splits off a circle C:

(4.1) A = B x C

for some (fc — 1)-dimensional J3, we can start pasting in the special metrics of Lemma 2.1.
The idea of the construction is to keep the factor B of A as a direct summand, while
inserting, as in the case k = 1, a cylinder obtained by doubling a piece of the Heisenberg
group of length j —> oo. Here the circle C plays the same role as in the local construction
of Lemma 2.1 on Yj = T2 x J. We will illustrate the construction for the product of two
spheres (Proposition 4.2), and treat the general case in the next section. All of our lower
bounds for the fc-systole for k > 2 rely upon a technique which combines the coarea
inequality and the existence of an intersection number of cycles (dual to the cup product
of the dual classes). We now present the relevant lemma. All manifolds are assumed
orientable. Recall that the intersection pairing in an n-manifold X with boundary,

H^(X) ^ H,(X, OX) -. H^,_,(X),

is the homological operation Poincare-Lefschetz dual to the cup product in cohomology

Br-^x, ox) 0 H^^X) -^ H271-^-9^ ax).
Recall also that the intersection in question needs to be transverse. Since a treatment of
transverse intersection of arbitrary cycles does not seem to be readily available in the
literature, we will state precisely the result we need and prove it using only the intersection
number of cycles of complementary dimension, treated in [39].

LEMMA 4.1. - Let D, E, and G be submanifolds of a manifold X meeting transversely
in a single point, and consider the transverse intersection

(4.2) F = D H E.

Let d G [-D] be a cycle defined by the map of a manifold into X. Then for a dense open set
of such maps, the intersection f = d D E is a cycle but not a boundary.
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Proof. - If D and E have complementary dimensions, the lemma is immediate from the
existence of the intersection number of two cycles, Lemma 10 of J. Schwartz [441 p. 31
(cf. [19], [27], [39], [22], vol. 2, 2010, p. 771). In the general case, the fact that the class
of the intersection of the representative cycles is independent of the representatives seems
to be difficult to find in the literature. Note that, by the Jiggling Lemma ([44], p. 24), the
intersection d D E may as well be assumed to be the image of a manifold. In particular,
d H E is a cycle. By the associativity of set-theoretic intersection, we have

(4.3) (d H E) H G = d H (E n G).

Applying the above lemma on the intersection number twice, we obtain

(4.4) [/] . [G] = [fUG] = [dn {EHG)] == [d] . [E H G]

and therefore

(4.5) [/] . [G] = [D] . [E n G] = [D n E n G] = 1 e Ho(X).

Thus [/] is nonzero. Note that we need to work with maps from manifolds rather than
arbitrary cycles to be able to apply the Jiggling lemma. Note also that we do not prove
that [/] == [F], only that the class [/] is nonzero.

PROPOSITION 4.2. - The manifold X = S^ x S71-^ is [k,n - k) -free for all n > 3 and
all k, except possibly S2 x S2.

Proof. - For k = 1, the proposition is a special case of Theorem 1. The fc-freedom of
Sk x S^ for k > 3 was established in [38]. We may thus assume that 2 < k < i. Let
A C X be a copy of the sphere S^". We represent the class [A] e H/e(^Y") by an imbedded
product S^"1 x C C X, where C is a circle (cf. [28], p. 33). This can be done inside an
imbedding with trivial normal bundle of A x I in X, where I is an interval. Join two
points of A C A x J by a path disjoint from A. Remove little e-disks around its endpoints
in A. Attach to A the boundary of the tubular 6-neighbourhood of the path. The resulting
hypersurface Sk~l x C C A x I hsis trivial normal bundle in A x J and hence also in X.
Hence its tubular e' -neighbourhood Ug^S^'"1 x C) is diffeomorphic to Sk~l x C x B"^^.
Let M C X be a copy of the sphere Sn~k which meets S ^ ^ x C i n a single point.
We can assume that the intersections are standard: M n (Ug^S^1 x C)) = Bn~k. Let
T1 C Bn~k be an imbedded circle. For sufficiently small e'7, the boundary of the tubular
6^-neighbourhood of T1 is diffeomorphic to T1 x Sn~k~2 C Bn~k C M. The hypersurface

(4.6) S = S^ x C x T1 x S^"2 C ^/(S^1 x C)

separates X into two connected components, X- = S^'"1 x C x T1 x Bn~k~~l and X+
(for which no product structure is available). Let T2 = C x T1 and L = S^'"1 x S71'^"2.
We choose a fixed metric on X in such a way that T2 becomes the unit square torus
(with both C and T1 of unit length), while the product Y x L has a direct sum metric.
We now insert a 'cylinder'

(4.7) S x I = Y x L
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where Y = T2 x J, and use the metrics gj of Lemma 2.1 on V, to obtain the manifold

(4.8) X j = X- U (Yj x L) U X+

diffeomorphic to X. The quadratic (in j) lower bound for the (n - fc)-systole of Xj
is obtained by calibration using the form f3 = (f)ja A vol3—^-2 (c/^ formula (3.4)).
Proposition 4.2 now follows from the following lemma.

LEMMA 4.3. - The k-sy stole of Xj is uniformly bounded from below in j.

Proof. - Recall that the metrics (Y.gj) of Lemma 2.1 are periodic, while the metric on
X outside Y x L is fixed. In the case k = 1 this was sufficient to obtain a lower bound
for the 1-systole. However, for k > 2, the diameter of a small fc-cycle is not necessarily
small. We therefore have to give some proofs using the coarea (Eilenberg's) inequality.
Let z be a fc-cycle in Xj representing a nonzero homology class.

Case 1. If z lies in X- U X+ C Xj then it may be viewed as a cycle in (X,g). Hence
vol(^) > sysfc(^).

Case 2. Suppose z avoids X- U X+, then z cYj x L C Xj. Let TT :Yj x L -^ S^-1 be
the projection to the first factor of L. Since we have a projection of a Riemannian product,
the coarea inequality applies. Assuming transversality, we can write

(4.9) vol(^)> / length (^ H Tr-1^))^ > / sySi(y,)dt> / 7rsySi(7V)dt,
Js^-1 ^s^1 Js^1

again a uniform lower bound (c/: formula (2.6)). To justify the last inequality, we apply a
relative version of Lemma 4.1 v/ith D = S^-1 x C, E = Yj x S^-2, and F = C. We
conclude that the cycle ^FiTr"1^) C Yj x {t} x S"^-2 also represents a nonzero multiple
of [C] G Hi(S x I ) and therefore participates in the evaluation of sys ̂ (Yj x L) = sys i(Vj).

General case. The idea is to cut z at a narrow place and split it into the sum of 2
cycles which fall into the 2 special cases above. We argue by contradiction. Suppose the
area of the fc-cycle Zj in Xj tends to 0 as j -^ oo. Let d be the distance function from
the subset X- U X+ C Xj (on the inserted cylinder, d equals mm(x,2j - x)\ By the
coarea inequality, we find XQ G [0,1] such that volfe-i(^ H d'^o)) -^ 0- Note that the
subset d~l{[0,xo\) C Xj admits a continuous retraction with a fixed Lipschitz constant
to (X- U X+,^), and its complement, to S x I = Yjx L. Let 7 = ^ D d'^o). Since
volfc-i(7) -^ 0, it is homologous to 0 in S = S^'-1 x C x T1 x S^-2 (product of
four spheres). Hence 7 can be filled in by a fc-chain D with volfc(D) —^ 0, so that
9D = 7. This follows from the isoperimetric inequality for small cycles in products of
spheres, proved in [38], p. 203 (the generalisation to the case of 4 spheres instead of
2 is straightforward). This isoperimetric inequality is an immediate consequence of the
isoperimetric inequality of Federer and Fleming [24]. It is also a special case of [31],
Sublemma 3.4.B7. Now we let a = {z n ^([O^o])) - D and b = z - a, and apply the
two special cases discussed above, obtaining

(4.10) volfc(^) > mm(volfc(a),vo4(&))-volfcGD) > mm(sys^),7rsysi(7\0) - o(l).

This proves Lemma 4.3 and Proposition 4.2.
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5. Construction in general codimension and real Bott periodicity

LEMMA 5.1. - Let X be an n-dimensional orientable manifold and let k < ̂ . Assume
that H^-i(X) is torsion-free. Then X is (fc,n — k)-free if a suitable multiple of each
k-dimensional homology class contains a representative A with trivial normal bundle such
that either A splits off a circle in a Cartesian product (i.e. A = B x C where C is a
circle), or A is a sphere S^.

Proof. - By Poincare duality Qn-k(X) = H^X). By the universal coefficient formula
(cf. [29], p. 194, ex. (23.40)), the torsion of this group equals that of Rk-i(X) which
vanishes by hypothesis. Let M, be an integer basis for Rn-k(X). Let Ai, a dual 'basis' of
Hfe(X), in the sense that the intersection numbers satisfy Mi'Ai = Sn (cf. section 3). Recall
that the intersection numbers are well defined for each pair of cycles of complementary
dimensions by [44], p. 30-31. By hypothesis, a suitable multiple of each class Ai contains
a representative to which we can apply the construction of Proposition 3.1. These multiples
are fixed once and for all. Therefore a systolic lower bound for the multiple implies a
lower bound for the classes A\ themselves. If bk = 1, we carry out the construction
of Proposition 3.1, with L = S""3 replaced by L = B x S71"^"2, as in the proof of
Proposition 4.2. For arbitrary bk we proceed as in the proof of Theorem 1. If A = S^,
we add a homologically trivial handle to replace Sk by Sk~l x C, where C is a circle,
and argue as before.

Proof of Theorem 2. - An oriented rank n - 2 bundle v over an oriented surface A
is determined by the identification of a pair of trivialisations over a small disk and its
complement, along the circle which is their common boundary, i.e. by an element of
71-1(80^-2) = ^2 since n — 2 > 3. This Z2 information is also contained in the second
Stiefel-Whitney class w'z{y) 6 H^A, Z^) = Z2, or equivalently the second Stiefel-Whitney
number w^[v} = w^)[A} G Ho(A, Z^) = ̂ 2 (cf. [41], p. 50). Now let g : A -> X be an
imbedding, and let v = y{A C X) be its normal bundle in X. Since g*(TX) = TA + v,
we have the following identity in H^A) by [41], p. 38:

(5.1) g'w^TX) --= W2(TA) + wi(TA)wi(^) + w^(y) = w^)

since A is spin. If X is spin, then v is automatically trivial. Otherwise we assume that
g(A) represents an even multiple of Ao, an integer class: g^[A] = 2[Ao] e B.2(X). Then

(5.2) W2M = W2(^)[A] = g"w^TX)[A] = w^TX)(g,[A}) = w^(TX)(2[A^) = 0.

5.2 Use of Thomas theorem. Every 2-dimensional homology class in codimension at least
3 can be represented, up to a multiple, by an imbedded surface A (cf. [46] and [22],
p. 434). If A C X has genus g > 2 then it can be cut along nullhomologous curves into
pieces of genus 1. Since by hypothesis 7Ti(X) is abelian, the curves are nullhomotopic.
Hence A is homologous to a union of tori. An imbedded 2-sphere in X can also be turned
into a torus by adding a homologically insignificant handle. Thus every 2-dimensional
class can be represented by a union of tori. Furthermore, the torus admits a self-map of
degree 2, which can be perturbed in this codimension to be made into an imbedding.
The analysis above now implies that every class in V.'z(X) can be represented, up to a
multiple, by a union of imbedded tori with trivial normal bundles. We apply Lemma 5.1
to complete the proof of Theorem 2.
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EXAMPLE 5.3. - The manifold X = CP171 is (2,2m - 2)-free for all m > 3.

Proof of Theorem 3. - We first treat two special cases k = 3 and k = 4. Let k = 3.
The normal bundle of every imbedded 3-sphere in X is trivial because X and S3 are
oriented so that the normal bundle is orientable, and an oriented bundle of rank n — 3
over S3 is determined by the identification of the trivialisations over two hemispheres
along their common boundary S2, i.e. by an element of ^2(80^-3). The latter group is
trivial by a theorem of Elie Cartan [15], [19]. To give a quick proof of the vanishing
of this group, note that ^2(803) == 7T2(Spin3) = 0. The long exact sequence of the
fibration SO^ -^ SO^+i -^ S771 gives ^(SO^) -> ^(SO^+i) -^ ^2(8^ and therefore
^2(80^-3) = 0 for all n > 7. Since X is 2-connected, every 3-dimensional class can be
represented by the map of the 3-sphere, by Hurewicz's theorem (cf. [25], p. 101), and we
apply Lemma 5.1 to complete the proof in the case k = 3.

EXAMPLE 5.4. - The manifold SU(3) is 2-connected and therefore (3,5)-free. Is this still
true if the competing metrics of formula (1.2) are required to be left-invariant?

Let k = 4 and pi(X) = 0. A calculation similar to (5.1) shows that the first Pontrjagin
class p\(y} of the normal bundle v (of rank n - 4 > 5) of an imbedded 4-sphere vanishes
modulo 2-torsion (cf. [41], Theorem 15.3, p. 175). Since H^S4) = Z is torsion-free, we
have p\(y) = 0. We have

(5.3) 7T4(BSO(n - 4)) = 7T3(SO(n - 4)) = Z for n > 9

(cf. [22], vol. 4, p. 1745, Appendix A, Table 6.VII). The map from 7T3(SO(n - 4)) = Z to
H^S4) = Z, defined by taking the first Pontrjagin class of the corresponding bundle, is a
nontrivial additive homomorphism (cf. [41], p. 246, 145), hence injective. It follows that v
is the trivial bundle. Now suppose k is not divisible by 4. Since (n — k) — (k — 1) > 2,
we have 7Tk-i(SO(n - k)) = 7r/,_i(SO) (the stable group; cf. [21], chapter 6, paragraph
24, p. 233). By real Bott Periodicity, 71-^-1 (SO) is either 0 or Z2 if k is not divisible by
4 (cf. [12], p. 315). The theorem now follows from the following lemma.

LEMMA 5.5. - Let g : S^ —^ X be a sphere representing an even multiple of a class in
Hfc(X), where k is not a multiple of 4 and 2k < n. Then its normal bundle y is trivial.

Proof. - Recall that for such fc, real Bott periodicity implies that the only nontrivial
bundle, if it exists, is distinguished by the fc-th Stiefel-Whitney class. Now

(5.4) g"Wk(TX) = Wfc(TS^) + Wk-^TS^w^) + . . . 4- w^) = w^)

since the total Stiefel-Whitney class of the sphere is trivial: w(Sk) = 1. Writing
^[A] = 2[Ao] <E Hfc(X,Z), we obtain

(5.5) WfeM = wMS^ = g^w^TX)^} = w^TX^g^}) = w,(TX)(2[Ao]) = 0.

Hence the normal bundle of g(Sk) is trivial. Lemma 5.5 and Theorem 3 are proved.

Remark 5.6. - The simplest manifold not covered by Theorem 3 is the quaternionic
projective space HP3. Its (4,8) systolic freedom cannot be established by our methods as
j?i(HP3) = 4n e H^HP3) is nonzero, where u is a generator (cf. [41], p. 248). Note
that the systolic 4-freedom of HP2 follows by a method similar to Lemma 6.4 below,
starting with free metrics on S4 x S4, cf. [38] and [2]. We find ourselves in the awkward
situation of being able to establish the systolic freedom of CP3 (Theorem 2) and HP2,
but not of CP2 or HP3.
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6. Systolic freedom in four dimensions

The main goal of this section is the proof of Theorem 4. This theorem follows from
Propositions 6.2-6.4.

LEMMA 6.1. - Let X and X' be manifolds of the same dimension n. Suppose X' admits
a continuous map to the mapping cone Cf, where f : S —> X is an imbedding of a sphere
of codimension at least 2 in X. If the continuous map induces monomorphism in homology
in the relevant dimensions, then the freedom of X implies that of X ' .

Proof. - Let / : S ̂  X be the imbedding. Let I = [0,1} with i » 1 to be determined.
Let Cylf = X U^x{o} (S x I ) be the mapping cylinder and W = Cyl^U^x{^D the
mapping cone, where D is a cell of dimension dim {S) + 1 < n — 1. Let g be a metric
on X. Let fao = /*(^) be the induced metric on the sphere S. Let h\ be the metric of a
round sphere of sufficiently large radius r so that Ai > ho. We endow the cylinder S x I
with the metric (1 - x)ho + xh\ + dx2 for 0 < x < 1 and fai + dx2 for 1 < x < t We
thus obtain a metric on the complex W. Denote the resulting metric space by W(g,f.).
Let p : W(g^ t) —> I be the map extending the projection to the second factor S x I —^ I
on the cylinder, while p(X) = 0 and p(D) = i. Let q <, n - 1 and let z be a g-cycle
in W. The complex W is not a manifold, but its subspace S x I is a manifold and
we can apply the coarea inequality just in this part of W. By the coarea inequality,
volg(^) >: J^volg_i(^ np'^t^x^dx. Hence we can find an XQ G I such that

(6.1) vol.-i^np-1^)) < ̂ vol^).

Let us show that if X admits a systolically free sequence of metrics g j , then so does W. Here
the volume of W is by definition the sum of the volumes of all cells of maximal dimension.
Suppose a sequence of cycles zj in W{gj,C) satisfies volq(zj) = o(sySq(gj)) (o(-) having
the usual meaning, o(l) meaning in particular a function which tends to zero as j tends to
infinity). Choosing t = t(j) > sySq(gj), we obtain lim^oovolg-i^ ^}p~l{xo)) = 0. By
the isoperimetric inequality for small cycles (cf. [31], Sublemma 3.4.J3'), this (q- l)-cycle
can be filled by a g-chain B9 of volume which also tends to 0. Here we must choose i big
enough as a function of the metric gj so that the isoperimetric inequality would apply. Let
a = (^nd-^O^o]))-^ and b = z-a. Note that [b] = 0 and so [a] = [z] ̂  0. The cycle
a lies in the mapping cylinder which admits a distance-decreasing projection to (X,^),
hence volg(a) > sySq(X) and so vo\q(z) > volg(a) - volg(5) > sys^(X) - o(l). This
shows that the systoles of W are not significantly diminished when compared to those of X.

Now choose a simplicial structure on W. By the cellular approximation theorem, a
continuous map from X' to W can be deformed to a simplicial map. As in [I], we can
replace it by a map which has the following property with respect to suitable triangulations
of X' and W: on each simplex of X ' , it is either a diffeomorphism onto its image
or the collapse onto a wall of positive codimension. Let p be the maximal number of
n-simplices of X' mapping diffeomorphically to an n-simplex of X C W. Since the
(n — l)-cell does not contribute to n-dimensional volume, the pullback of the metric on
W is a positive quadratic form on X' whose n-volume is at most p times that of X. This
form is piecewise smooth and satisfies natural compatibility conditions along the common
face of each pair of simplices.
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Note that if a smooth compact n-manifold X admits systolically free piecewise smooth
metrics, then it also admits systolically free smooth metrics. To construct a smooth metric
from a piecewise smooth one, we proceed as in [1]. Given a piecewise smooth metric g,
compatible along the common face of each pair of adjacent simplices, we choose a smooth
metric h on X such that h > g at every point (in the sense of lengths of all tangent
vectors). Let TV be a regular neighbourhood of small volume of the (n - l)-skeleton of
the triangulation. Choose an open cover of X consisting of N and the interiors Ui of
all n-simplices. Using a partition of unity subordinate to this cover, we patch together
the metrics g\u, and h\N. The new metric dominates g for each tangent vector to M. In
particular, the volume of a cycle is not decreased. Meanwhile, n-dimensional volume is
increased no more than the volume of the regular neighbourhood.

The piecewise smooth metric on X' may a priori not be compatible with its smooth
structure, since the triangulation may not be smooth. To clarify this point, denote the
triangulation by s, and the piecev/ise smooth metric by g. Consider a smooth triangulation
s\ and approximate the identity map of Xf by simplicial map with respect to the two
triangulations s ' and s. Now we pull the metric g back to 5'. This gives a metric g '
adapted to the smooth triangulation 5', to which we may apply the argument with the
regular neighbourhood N.

We have thus obtained a smooth positive form on X ' ' . We make it definite without
significantly increasing its volume by adding a small multiple of a positive definite form.
The lower bounds for the systoles are immediate from the injectivity of the map X' —> W
on the relevant homology groups.

PROPOSITION 6.2. - Suppose CP2 and S2 x S2 admit 2-free metrics. Then so does every
closed simply connected 4-manifold X.

proof. - Let b = b^{X). Let W be the 4-skeleton of the Cartesian product
CP2 x ... x CP2 (b times), where CP2 comes with its standard cell structure. Note
that W is the 4-skeleton of the standard model of the Eilenberg-Maclane space AT(Z6,2).
Choose a CW structure on (the homotopy type of) X whose 2-skeleton is the wedge of b
copies of S2, with a single 4-cell attached. The identification of the 2-skeleta of X and W
extends across the 4-cell since ^(IV) = ^(CP2)6 = 0 from the long exact sequence of
the Hopf fibration over CP2. The freedom of W and then that of X is established along
the lines of the proof of Lemma 6.1, using the fact that two distinct 4-cells of W meet
along cells of codimension at least 2. For details, see section 5 of [49].

PROPOSITION 6.3. - Every closed simply connected ^-manifold X admits a map to a
connected sum of copies of CP2 -with either orientation, which induces a monomorphism
in homology of dimension 2.

Proof. - Let f{x, y) = E^=i AJ^J be the intersection form of X, where b^ = b^(X).
Let x,y G H2(X, Z) and let a •-= a{X) be the signature of X. Let p = (b^ + cr)/2 and
q = (&2 - a)/2 and define a manifold N by setting

(6.2) N = N(b^ a) = (CP2#...#CP2)#(CP2#...#CP2),
______0

the connected sum ofp copies of CP2 and q copies of CP . The intersection form of N is

(6.3) g(u,v) = u^ + ... + UpVp - Hp+î p+i - ... - Ub^.
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If pq -^ 0, then / and g are rationally equivalent by the classification theorem of integer
unimodular forms [45]. If, say, q = 0, we consider the pair of forms / +• {—1} and
g +• {—1} and use the 'Witt lemma' [16] to the effect that if two forms are rationally
equivalent after adding a common summand, then they are rationally equivalent. The
rational equivalence entails the existence of a non-singular integer matrix C such that

(6.4) f(C^Cv)=^2g^v)^

where A is a nonzero integer. It is well known [40] that every simply connected 4-manifold
X with intersection form / = (fij) is homotopy equivalent to the complex

(6.5) V^S2 U^ D\

where the glueing map (f) : S3 —^ (V^S2) represents the homotopy class

1 62

(6.6) ^^fzA^e,}.
^==i

Here the ei e ^(V^S2) are the canonical generators, while the Whitehead products
[e^Cj] for i < j together with j[e^e^] form a basis for ^(V^S2) by the Hilton-Milnor
theorem (cf. [37], [47]). Let us consider the map

(6.7) He : V^S2 - V^S2

defined by the matrix C introduced above. The usual calculation shows that

^*(W) = ^*(i/2Et=iA.[^.^])
(6.8) - l/2E^iA.[^*(e,)^c*(e,)]

= A^QeT, el] + ... + [e?, ~Cp\ - [e ,̂ e ]̂ - ... - [e^ 65;]),

where the e7 G 7r^(N) are the canonical generators defined by the inclusion

(6.9) V^iS2 C N.

The computation shows that ^c can be extended to a map

(6.10) Ec : X =hom V^iS2 U^ D4 -^ TV,

moreover deg Zc = A2.
Note that Proposition 6.3 provides an alternative proof, not involving CW complexes, of
the fact that if CP2 is free then every simply connected 4-manifold X is free. Here we
apply Lemma 6.1 to the mapping cone of the empty map.

PROPOSITION 6.4. - The following three assertions are equivalent: (i) CP2 is 2-free;
(ii) CP^CP2 is 2-free; (iii) S2 x S2 is 2-free.

Proof. - (z) =^ (ii): If CP2 has free metrics then so does CP2. Taking a connected
sum by a thin long tube produces a metric on CP^CP2 which admits distance-
decreasing projections of degree 1 to each of the summands. Since l^CP^CP2) =
H2(CP2) + H2(CP2) = Z + Z, the implication follows.
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(%%) =^ (in): Recall that CP^CP2 is the nontrivial 2-sphere bundle over S2. Let
/ : S2 —> S2 be a degree 2 map. The pullback of the nontrivial bundle by / is the trivial
one (cf. the w^ discussion preceding (5.1)). We thus obtain a map f^-S^xS2 -^ CP^CP2

inducing an injective homomorphism H2(S2 x S2) -^ H2(CP2#CP2). We approximate
this map by a simplicial one as in [I], and pull back the free metrics from CP^CP2

to S2 x S2 (cf. 6.5), proving this implication.

(Hi) =^ (i): We cannot map CP2 to S2 x S2 in such a way as to induce a monomorphism
in H2. The obstruction lies in the group ^(S2 x S2) = Z + Z. We can, however, kill two
birds with one stone, or more precisely with one 3-cell, eliminating 3-dimensional homotopy
(at least rationally). We glue in a 3-ball B3 to S2 x S2 along the diagonal sphere to obtain
a CW complex W which admits a map from CP2 inducing an injective homomorphism
on 2-dimensional homology. The 2-systole of W obeys the same asymptotics as that of
the area-rich metrics on S2 x S2. The coveted metrics on CP2 are pulled back from W
by the map CP2 -^ W.

Let W = (S2 x S2) U B3 where the 3-ball is glued in along the imbedded diagonal 2-
sphere representing the element (1,1) G ^(S2 x S2) = Z + Z. Let g : S2 x S2 -^ W be the
inclusion. We will specify a map / : CP1 -^ S2 x S2 such that the induced homomorphism
(g ° f)2 '' 7T2(CP1) -^ ^(W) is injective while (g o f)s : 7r3(CP1) -^ ^(W) is zero.
Recall that CP2 = CP1 U/, B4, where h is the generator of 7T3(CP1) (in fact, W is
homotopy equivalent to S2 U^h B4', whence the existence of the map extending a degree
2 map on the 2-sphere). Therefore the map g o f extends to a map CP2 —^ W which
induces an injective homomorphism in TT^, and hence in Hs by the Hurewicz theorem
(cf. [25]). The property (g o f)^ = 0 follows from the fact that Image (gs) is 2-torsion
while Image (fs) is even (see Lemma 6.5 below). The proof is completed by applying
Lemma 6.1 to the mapping cone of the inclusion of the diagonal in S2 x S2.

LEMMA 6.5. - Let f : CP1 —> S2 x S2 be a map sending CP1 to the first factor with
degree 2. Let W = (S2 x S2) U B3 where the 3-ball is glued in along the imbedded diagonal
2-sphere representing the element (1,1) G ^(S2 x S2) = Z + Z. Let g : S2 x S2 -^ W be
the inclusion. Then the map g o f extends to a map CP2 -^ W.

Proof. - How can we extend the map when the attaching map is not a multiple of a
Whitehead product? The idea is to use torsion freeness of ^(S2). A finer version of this
argument for other rank one symmetric spaces appears in [2], Remark 3.4. Let ei, 62 be the
standard generators of ^(S2 x S2) = Z + Z. The group ^(S2 x S2) = Z + Z is generated
by elements fai and h^ satisfying 2fa, = [e,,e,] for i = 1,2, where the brackets denote
the Whitehead product (cf. [25], p. 74 and [47], p. 495, theorem 2.5). Here [d, 62] = 0 in
7T3(S2 x S2) by definition of the Whitehead product. The induced homomorphism g^ satisfies
g^ + 62) = 0 G 7v^(W) by definition of W. Now let e G 7T2(CP1) and h G 7r3(CP1)
be the respective generators, so that [e,e] = 2h. Consider the class 2ei G ^(S2 x S2),
and take a representative / G 2ei. Then f^(e) = 2ei G ^(S2 x S2). By naturality of
the Whitehead product,

(6.12) 2f^(h) = [h(e\f2(e)\ = [2ei,2ei] = 4[ei,ei] = 8h, G ^(S2 x S2) = Z + Z.

In a free abelian group we can divide by 2, obtaining

(6.13) f3(h) = 4/ii G 7T3(S2 x S2).
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Now the lemma follows from the fact that CP2 = CPlUhB4: and the following calculation:

f f i 1 4 ^ (9^fW = g^h,) = 2^(2/ii) = 2[^(ei)^2(ei)]
v ' = 2[^(ei+62)^2(^1)] =2[0^2(ei)]=0.
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