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QUANTITATIVE NULLHOMOTOPY AND RATIONAL
HOMOTOPY TYPE

Gregory R. Chambers, Fedor Manin and Shmuel Weinberger

Abstract. In a 2014 survey, Gromov asks the following question: given a nullhomo-
topic map f : Sm → Sn of Lipschitz constant L, how does the Lipschitz constant of
an optimal nullhomotopy of f depend on L, m, and n? We establish that for fixed m
and n, the answer is at worst quadratic in L. More precisely, we construct a nullho-
motopy whose thickness (Lipschitz constant in the space variable) is C(m,n)(L+1)
and whose width (Lipschitz constant in the time variable) is C(m,n)(L+1)2. More
generally, we prove a similar result for maps f : X → Y for any compact Rie-
mannian manifold X and Y a compact simply connected Riemannian manifold in a
class which includes complex projective spaces, Grassmannians, and all other simply
connected homogeneous spaces. Moreover, for all simply connected Y , asymptotic
restrictions on the size of nullhomotopies are shown to be determined by rational
homotopy type.
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1 Introduction

Rational homotopy theory, as introduced by Quillen and Sullivan, is one of the great
successes of twentieth-century algebraic topology. It allows one to turn any simply
connected space, which may be given as a Postnikov tower or a cell complex, in a
rather simple algorithmic way, into one of several, ultimately equivalent, algebraic
structures. Moreover, as long as one is willing to ignore torsion, this conversion
preserves all homotopic information: it is an equivalence of (rational homotopy)
categories.

As in other such cases, we often understand very little about the geometry of the
maps that rational homotopy theory tells us must exist. Nevertheless, quite a bit of
geometric information may be squeezed out of this algebraic story.

Perhaps the earliest theorem of quantitative algebraic topology is the following,
stated by Gromov in [Gro78]:

Theorem 1.1. Let X and Y be compact simply connected Riemannian manifolds.
Then

#{[f ] ∈ [X : Y ] : Lip f ≤ L} = O(Lα),

where α depends only on the rational homotopy type of X and Y .

Näıvely, rational homotopy type should play a role here because torsion homotopy
groups can only affect the number of maps by a finite multiplicative constant. But
in fact, the proof of this theorem relies heavily on the Sullivan model of rational
homotopy theory and its realization via differential forms.

Later on, Gromov [Gro99] conjectured that an analogous result should hold for
homotopies between maps. To state the conjecture, we first introduce some ter-
minology. Suppose that X and Y are two metric simplicial complexes, and that
f, g : X → Y are two homotopic maps. We say a homotopy H : X × [0, 1] → Y from
f to g has thickness A and width B if d(H(x, t), H(y, t)) ≤ Ad(x, y) for all x, y, and
t and d(H(x, t), H(x, s)) ≤ B|t − s| for all x, t, and s.

Gromov’s original conjecture concerned only the thickness of homotopies:

Conjecture 1. Let X and Y be compact Riemannian manifolds (or some other
“reasonable” class of compact metric spaces) with Y simply connected. If f, g : X →
Y are homotopic maps with Lipschitz constant ≤ L, then there is a homotopy be-
tween them of thickness O(Lp), for some p depending only on the rational homotopy
type of Y . Perhaps p can always be taken to be 1.

In [FW13], Ferry and Weinberger suggest a related problem: can the Lipschitz con-
stant of a homotopy, seen as a map X × [0, 1] → Y , be bounded linearly in terms of
Lip f and Lip g? As we show in [CDMW16], this is not the case in general. However,
one may hope for a polynomial result. In light of the result in this paper, it may be
worthwhile to consider thickness and width separately. A compelling if somewhat
optimistic conjecture is as follows:
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Conjecture 2. In the setting of Conjecture 1, if f, g : X → Y are homotopic maps
with Lipschitz constant ≤ L, then there is a homotopy between them of thickness
O(L) and width O(Lp), where p depends only on the rational homotopy type of Y .

In the case of nullhomotopic maps, we make a stronger conjecture which refers
explicitly to the rational homotopy type of Y :

Conjecture 3. If f : X → Y is nullhomotopic with Lipschitz constant ≤ L, then
it has a nullhomotopy of thickness O(L) and width O(Lq), where q is the minimal
depth of a filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vq of the indecomposables in dimensions
≤ n of the Sullivan minimal model of Y with the property that dVi ⊆ Q⟨Vi−1⟩.

The cases q = 0 and q = 1 of this conjecture are proved in [FW13] and [CDMW16],
respectively. Indeed, those results hold for homotopies and not only nullhomotopies.
In this paper we prove the case q = 2:

Theorem 1.2. Let X and Y be finite simplicial complexes, with X n-dimensional.
If Y is simply connected and the indecomposables in dimensions ≤ n of its Sullivan
minimal model split as V1 ⊕ V2 with dV1 = 0 and dV2 ⊂ Q⟨V1⟩, then there is a
constant C(X,Y ) such that nullhomotopic L-Lipschitz maps from X to Y admit
nullhomotopies of thickness C(L+ 1) and width C(L+ 1)2.

The class of target spaces covered by this theorem includes, most notably, all simply
connected homogeneous spaces, including spheres. As a corollary, when the domain
is a suspension, this allows us to find short homotopies, not just nullhomotopies:

Corollary 1.3. In the setting of Theorem 1.2, if in addition X has the homotopy
type of a suspension, there is a constant C ′(X,Y ) such that any two homotopic
L-Lipschitz maps f, g : X → Y have a homotopy of thickness C ′(L + 1) and width
C ′(L+ 1)2.

In particular, this gives a result for maps between spheres. In [Gro14, Section 2],
Gromov asks the following related question: given an L-Lipschitz nullhomotopic map
f : Sm → Sn, how can the Lipschitz constant of a nullhomotopy be bounded as a
function of m, n and L? In this paper we get a bound of the form C(m,n)L2. Getting
an explicit estimate for C(m,n) is a topic for future work which is likely to require
some geometric understanding of homotopy groups of spheres.

As further confirmation that rational homotopy type plays a role, we prove the
following theorem, which holds for all simply connected targets:

Theorem 1.4. Suppose X, Y , and Z are finite complexes, with X n-dimensional,
and suppose that Y and Z are simply connected and rationally homotopy equivalent.
Then nullhomotopic maps X → Y and X → Z admit nullhomotopies of the same
shapes.

We make this more precise below, but for example, if one has certain bounds on
thickness and width for nullhomotopies of maps to Y , then the same asymptotic
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bounds hold for maps to Z. It would be surprising if this didn’t hold for all homo-
topies rather than just nullhomotopies, but our proof does not generalize.

This paper is in large part a sequel to [CDMW16]. While we explicitly restate
all the definitions and results we are using from that paper, the reader who has
absorbed its main techniques will have an easier time with the more complicated
cases covered here.
1.1 The role of rational homotopy. The main geometric tool that we use
to construct quantitative nullhomotopies can be seen in a simple example covered
by the results in [CDMW16]: maps Sn → Sn. To nullhomotope such a map, it is
enough to cancel point preimages with opposite local degree; this is an idea that goes
back to Brouwer. Tracing these point preimages through the nullhomotopy gives an
embedded 1-manifold in Sn× [0, 1]. In order to make the nullhomotopy quantitative,
we break up Sn × [0, 1] into a grid and make sure that each cube in the grid doesn’t
“see” too much of this 1-manifold.

Poincaré duality turns this story about 0- and 1-submanifolds into one about
bounded n- and (n−1)-dimensional obstruction cochains which generalizes to a result
for maps X → K(Z, n) for any finite simplicial complex X. In order to generalize
this to a larger class of target spaces, one may try to iterate this process over the
stages of a Postnikov system, using the obstruction theory for principal fibrations.

As pointed out by Gromov, tracing constants through the way such a lift is built
traditionally gives a Lipschitz constant which is a tower of exponentials. Thus to
get a reasonable quantitative estimate, we need to once again do the lifting in a
local way. Unfortunately, there is no guarantee that the nullhomotopy we came up
with in the previous stage is anywhere close to something that lifts. For example,
suppose that we are trying to nullhomotope an L-Lipschitz map f : S3 → S2 and
we have come up with a nullhomotopy F : S3 × [0, 1] → CP2 which is cellular on a
subdivision of a cell structure S3 × [0, 1] at scale 1/L. We would like to retract this
F to a nullhomotopy S3 × [0, 1] → S2. But a priori, the map F |t=1/2 : S3 → S2 need
not be nullhomotopic inside of S2; by assumption, it is only nullhomotopic as a map
to CP2. Indeed, unless our construction of F was particularly clever, it may have
Hopf invariant on the order of L4. This means it cannot be made nullhomotopic
even after a homotopy in CP2 if that homotopy is to be kept uniformly bounded.

Our (partial) solution to this problem is to turn to algebra. Let Y be a compact
metric simplicial complex. Its algebra of PL forms A∗(Y ) has a Sullivan minimal
model: a differential graded algebra (DGA) M∗(Y ) which efficiently encodes the
rational homotopy theory of the space and which is realized by a mapRY : M∗(Y ) →
A∗(Y ) inducing an isomorphism on cohomology. In particular, given a nullhomotopic
map f : X → Y , the map f∗ ◦RY : M∗(Y ) → A∗(X) is algebraically nullhomotopic,
that is, there is a homomorphism of DGAs

h : M∗(Y ) → A∗(X) ⊗ Q⟨t, dt⟩
with h|t=0,dt=0 = f∗◦RY and h|t=1,dt=0 = 0. In particular, this homomorphism must
commute with the differential, given on the codomain by a graded Leibniz rule.
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To construct such a homomorphism, one needs to antidifferentiate certain forms.
For example, if X = S3 and Y = S2, then M∗(Y ) is given by ⟨x2, y3 | dx =
0, dy = x2⟩ and RY takes x to a volume form ω on S2 and y to 0. Then given a
nullhomotopic map f : S3 → S2 which is simplicial on a triangulation of S3 at scale
1/L, a nullhomotopy h̃ : M∗(S2) → A∗(S3) ⊗ Q⟨t, dt⟩ can be given by

x -→ f∗ω ⊗ (1 − t)2 − α ⊗ 2(1 − t)dt

y -→ η ⊗ 4(1 − t)3dt,

where α and η are defined so as to satisfy dα = f∗ω and dη = f∗ω∧α. Here, f∗ω∧α
is an exact form since the Hopf invariant of f is zero, using J.H.C. Whitehead’s
definition of the Hopf invariant via integrals. A filling inequality allows us to choose
an α of ∞-norm O(L) and—since α and f∗ω each contribute a factor of L—an η of
∞-norm O(L2).

(Note that the various polynomials in t can be replaced by other polynomials,
or even, once we leave purely algebraic territory, by any functions of t which satisfy
the differential equations induced by the requirements on h̃. The choice of these
functions affects our final estimates only up to a constant.)

By “evaluating” t and dt we can turn this nullhomotopy into a map h : M∗(S2) →
A∗(S3 × I); this notation tacitly assumes a simplicial structure on S3 × I whose
choice may depend on L. If we choose a fine enough subdivision of the interval, into
O(L2) pieces, so that simplices are very skinny in the time direction, then dt is small
enough that the integrals over simplices of h(x) and h(y) are bounded uniformly,
independent of L.

Consider now the previously constructed nullhomotopy F : S3 × [0, 1] → CP2,
and let ξ be a differential form representing the fundamental class of CP2. If F ∗ξ
is a bounded distance from h(x), then Hopf invariants on boundaries of 4-cells can
be determined by integrating a form a bounded distance from h(y). Combined with
ideas from [FW13] and [CDMW16], this allows us to kill these Hopf invariants by
modifying the map in a bounded way.

Unfortunately, if we try to continue this process to a third level and beyond, the
“errors” are no longer uniformly bounded. This is related to the well-known fact
that (L+1)2 ̸= L2+1. This is why what seems to be the second step of an induction
does not actually generalize to a proof Conjecture 3 for any q ≥ 3. At this time we
have to be content with Theorem 1.2.

Another issue with potentially extending this method is that the property of h̃
that one can cancel out large antiderivatives by making dt small is special: one can
only construct such a nullhomotopy when Y has positive weights, that is, essentially
when M∗(Y ) has lots of automorphisms. This property is discussed in [BMSS98]
and examples of spaces which do not have it are given in [MT71] and [Ama14]. For
more general spaces, such nullhomotopies may necessarily have large terms which
are not multiples of dt. Thus, if one is to find a counterexample to Conjecture 3 in
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which a nullhomotopy must necessarily have nonlinear thickness, spaces which do
not admit positive weights seem to be a natural place to look.

1.2 Optimality. One may ask to what extent our results are sharp. We pro-
duce two main examples to this effect. First, we give a sequence of examples, also
mentioned in [CDMW16], which demonstrate that a linear bound does not always
hold, and in some cases the quadratic bound on width is the best we can do. More
generally, this family of examples demonstrates that, at least in some cases, the con-
jectured upper bound of Conjecture 3 is also a lower bound. Secondly, we construct
an example which shows that the statement of Theorem 1.2 does not hold if we
replace nullhomotopies by homotopies: the exponents in Conjectures 2 and 3 are
necessarily different.

Nevertheless, many open questions remain even in the restricted domain of The-
orem 1.2. There is some indication that for maps S3 → S2 our quadratic bound
on widths of nullhomotopies is not sharp, but rather is an artifact of the algebraic
method: it is possible to construct nullhomotopies with subquadratic, perhaps even
linear Lipschitz constant.

1.3 Outline of the paper. In Section 2, we introduce and summarize some
geometric results and terminology. This is followed in the third section by a proof
of Theorem 1.2 in the special case of maps S3 → S2. Section 4 repeats this for a
more general, but still restricted situation. In Section 5 we prove that the asymptotic
geometry of nullhomotopies is rationally invariant, and Section 6 uses this as well as
the result of Section 4 to prove the main theorem. Finally, in Section 7 we discuss
lower bounds on the size of homotopies.

2 Preliminaries

In this section, we summarize the geometric machinery developed in [CDMW16] as
well as introducing some of our own.

2.1 Simplicial approximation and mosaic maps. One result we will make
heavy use of is a quantitative simplicial approximation theorem, allowing us to
approximate any map between simplicial complexes by a simplicial one with a similar
Lipschitz constant. First, we need to define the appropriate kind of subdivision.

Definition. Define a simplicial subdivision scheme to be a family, for every pair
of natural numbers n and L, of metric simplicial complexes ∆n(L) isometric to
the standard ∆n with length 1 edges, such that ∆n(L) restricts to ∆n−1(L) on all
faces. A subdivision scheme is regular if for each n there is a constant An such that
∆n(L) has at most An isometry classes of simplices and a constant rn such that all
1-simplices of ∆n(L) have length in [r−1

n L−1, rnL−1].
Given a regular subdivision scheme, we can define the L-regular subdivision of

any metric simplicial complex, where each simplex is replaced by an appropriately
scaled copy of ∆n(L).
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Note that L times barycentric subdivision is not regular. Two known examples of
regular subdivision schemes are the edgewise subdivision described in [EG00] and
the cubical subdivision described in [FW13].

Proposition 2.1 (Quantitative simplicial approximation theorem). For finite sim-
plicial complexes X and Y with piecewise linear metrics, there are constants C
and C ′ such that any L-Lipschitz map f : X → Y has a CL-Lipschitz simplicial
approximation via a homotopy of thickness CL+ C ′ and width C ′.

As in [CDMW16], we will use simplicial approximation mainly as a way of ensuring
that our maps have a uniformly finite number of possible restrictions to simplices.
The property that we really care about, then, is the following:

Definition. Let Fk be a finite set of maps ∆k → Y , for some space Y . If X is
a simplicial complex, a map f : X → Y is F-mosaic if all of its restrictions to k-
simplices are in Fk. More generally, we can takeX to be any polyhedral complex with
a finite collection of cell shapes (e.g. a cubical complex, or a product of simplicial
complexes) and Fk to be a set of maps from each of the various shapes.

We refer to a collection of maps as uniformly mosaic if they are all F-mosaic
with respect to a fixed unspecified F .

The Fk in the definition naturally form a semi-simplicial set F via restriction maps.
Thus we can think of an F-mosaic map f equivalently as one that factors through

X
g−→ F hF−−→ Y,

where hF is fixed and g is simplicial, or more generally takes cells isomorphically
to cells. In particular, the property of a collection of maps being uniformly mosaic
is preserved by postcomposition with any map, for example one collapsing certain
simplices.

2.2 Isoperimetry for cochains. In rational homotopy theory, algebraic null-
homotopies are constructed by antidifferentiating certain exact differential forms.
To imitate this construction geometrically, we need to be able to antidifferentiate
simplicial cochains in a quantitative way. This is given to us by the following lemma,
proven in [CDMW16]. Here, the ℓ∞ norm of a cochain is simply the maximum of its
values on simplices.

Lemma 2.2 (ℓ∞ coisoperimetry). LetX be a finite simplicial complex equipped with
the standard metric, and let XL be the cubical or edgewise L-regular subdivision of
X, and k ≥ 1. Then there is a constant CIP = CIP(X, k) such that for any simplicial
coboundary w ∈ Ck(XL;Z), there is an a ∈ Ck−1(XL;Z) with δa = w such that
∥a∥∞ ≤ CIPL∥w∥∞.

The proof of this fact uses the following lemma which we will also need independently.
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Lemma 2.3. With the same assumptions, there is a constant K(X, k) such that
for any real simplicial cocycle w ∈ Ck−1(XL,R), there is an integral cocycle w̃ ∈
Ck−1(XL;Z) with ∥w − w̃∥∞ ≤ K.

2.3 Quantitative De Rham theory. In order to prove the main theorem, we
need to discuss cup products on the cochain level. Since simplicial cup products do
not have particularly nice properties, it will be more convenient to use differential
forms. Therefore it will be helpful to be able to associate to each simplicial cochain
a corresponding standard differential form. We use the notation

∫
ω to denote the

simplicial cochain obtained by integrating a differential form; here we construct a
chain homotopy inverse to this operation.

To do this, we use Whitney’s proof of the De Rham theorem, provided in [Whi57,
Section IV.27]. Whitney constructs an explicit isomorphism D• from the simplicial
cochain complex C•(M ;R) of a manifold M to a subcomplex of Ω•(M). The same
construction produces smooth forms on any simplicial complex as a stratified space.
For every n, let {gni : 0 ≤ i ≤ n} be a smooth partition of unity on the standard
simplex ∆n =

{
x⃗ :

∑n
j=0 xj = 1

}
⊂ Rn+1 with the following properties:

• gni ≡ 1 near the ith vertex and 0 near the opposite face;
• {gni } is invariant under the action of the symmetric group;
• for every j, gni is independent of xj when xj < εn, for fixed εn > 0;
• gni |∆n−1 = gn−1

i .

On any simplicial complexX, this defines a smooth partition of unity {gv : v ∈ X(0)}.
For a given ℓ-simplex c = (v0, . . . , vℓ), Whitney then defines

Dℓ(χc) = ℓ!
ℓ∑

i=0

(−1)igvidgv0 ∧ · · · ∧ d̂gvi ∧ · · · ∧ dgvℓ

(φℓ in his notation) and shows that this induces a map D• : C•(M ;R) → Ω•(M)
which is an isomorphism of cochain complexes onto its image.

In order to apply this isomorphism to our situation, we need to make a few more
remarks:

(1) If p : X → Y is a simplicial map, then p∗D• = D•p∗. This follows from the
special case of an (n + 1)-simplex collapsed onto an n-simplex, which is itself
easy to see.

(2) Given two simplicial complexes X and Y , the map

DX×Y
• := π∗

1D
X
• ∧ π∗

2D
Y
• : C•(X;R) ⊗ C•(Y ;R) → Ω•(X × Y )

is likewise an isomorphism from the cellular cochains on the product cell struc-
ture on X × Y to its image. In particular, we will use this in the setting
Y = [0, 1], split into some number of 1-simplices. We will say a form is desim-
plicial if it is in the image of this map.
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(3) Given a Riemannian metric on each stratum of X and a form ω, define ∥ω∥∞ to
be the maximum value of ω on a tuple of unit vectors. Then there are constants
Cℓ such that if we put on X × Y the product metric of the standard metrics
on simplices, then

∥Dℓ(c)∥∞ ≤ Cℓ∥c∥∞.

(4) Let ω ∈ Ω∗(X× [0, 1]) be a desimplicial form with ω|X×{1} ≡ 0. For a multivec-
tor ξ ∈ Tn

(x,t)(X×I), write ξs for the corresponding multivector in Tn
(x,s)(X×I).

Then the form

α(ξ) =
∫ 1

t
ωi(ξs, ds)ds

is also desimplicial.

3 The case of maps S3 → S2

In this section, as a warmup, we handle a concrete special case which touches upon
most of the problems which we will encounter in proving the more general theorem.

Theorem 3.1. There is a constant C such that any nullhomotopic L-Lipschitz map
f : S3 → S2 has a nullhomotopy of width C(L+ 1)2 and thickness C(L+ 1).

Proof. We first give our spaces some extra structure. We embed S2 in CP2, giving
each the cell structure with one cell in each even dimension. We give S3 a simplicial
structure which is an L-regular subdivision of some standard one, for example that
of ∂∆4. Finally, let I = [0, 1] be given the simplicial structure with CIP(S2, 2)L2

edges of equal length.
By postcomposing a simplicial approximation with a map contracting simplices,

and at the cost of a multiplicative increase in L, we can assume that maps f :
S3 → S2 are cellular and uniformly mosaic, with restrictions to 2-simplices having
degree between −1 and 1. We now use a construction similar to that of [CDMW16,
Thm. 4.2] to construct a complex G (independent of f) and a G-mosaic nullhomotopy

F : S3 × I → G → CP2.

Since f is cellular, we can define a cochain w ∈ C2(S3;π2(S2)) by ⟨w, c⟩ = [f |c] ∈
π2(S2). Since f is nullhomotopic, this cochain is the coboundary of some a ∈
C1(S3;π2(S2)). By Lemma 2.2, since ∥w∥∞ = 1, we can pick a such that ∥a∥∞ ≤
CIPL.

Now let â ∈ C1(S3 × I;π2(S2)) be defined by
〈
â, v ×

[
i

CIPL2
,
i+ 1
CIPL2

]〉
= 0 for 0-simplices v of S3,

0 ≤ i ≤ CIPL2;
〈
â, e ×

{
i

CIPL2

}〉
=

⌊(
1 − i

CIPL2

)2

⟨a, e⟩
⌋

for 1-simplices e of S3,
0 ≤ i ≤ CIPL2.



572 G. R. CHAMBERS ET AL. GAFA

In other words, â is the “rounded off” version of the cochain ā whose value on e×{t}
is (1 − t2)⟨a, e⟩. This ensures that the cochain δâ has the following properties:

1. ∥δâ∥∞ ≤ 3;
2. δâ|S3×{0}= w;
3. and δâ|S3×{1}= 0.

This allows us to build F : S3 × I → CP2 by skeleta as follows. Send the 1-skeleton
to the basepoint; this gives us G0 and G1 with one map each. Then send each 2-cell
c to S2 ⊂ CP2 via a fixed map of degree ⟨δâ, c⟩. This gives us a G2 with one cell
per degree between −3 and 3 and shape of cell, and a partial map F : (S3 × I)(2)
which can be extended to the 3-skeleton with no obstruction since δâ evaluates to
zero on cycles. For each possible map on the boundary of a 3-cell, we fix a filling,
giving G3 and an extension of F to the 3-skeleton. Since there is no obstruction to
extending the map to the 4-skeleton, we again fix a filling for each possible map
on the boundary of a 4-cell. At each step, we also include the zero map and the
restrictions of f to simplices in the corresponding skeleton of G, and ensure that the
restriction to S3 × {0, 1} is correct. This completes the construction of F .

We will proceed by changing this nullhomotopy into one which maps to S2. For
this to work, we need to kill the Hopf obstruction; that is, to change its behavior
on the 3-cells of S3 × I so that the restriction to the the boundary of each 4-cell of
S3 × I has Hopf invariant 0.

Let us translate this into the language of differential forms. The cohomology
ring H∗(CP2;Z) = Z[x]/(x3), where x ∈ H2(CP2;Z). Let ξ be a differential form
representing x, with the extra property that f∗ξ is desimplicial; this is possible from
the restrictions we put on f . Then for a 4-cell p of S3×I,

∫
p F

∗ξ2 is the degree of F |p
over the 4-cell of CP2, or equivalently the Hopf invariant of F |∂p (this restriction
is a map to S2 since F is cellular.) If α is any 1-form with dα = F ∗ξ, then this
Hopf invariant is given by Stokes’ theorem by

∫
∂p α ∧ F ∗ξ. Now suppose we have a

cochain b ∈ C3(S3×I;Z) such that ⟨b, ∂p⟩, or in other words δb =
∫
F ∗ξ2, but which

(probably unlike
∫

α ∧ F ∗ξ) takes uniformly bounded, integer values on simplices.
This would allow us to construct the new nullhomotopy as follows. Given two maps
u, v from a disk (of any dimension m) to some other space which coincide on the
boundary, let u ∗ v denote the map on the m-sphere which restricts to u and v on
the two hemispheres. Then:

• For each 3-cell q ∈ S3 × I, replace F |q with a map G|q such that the map
F |q ∗ G|q : S3 → S2 (which behaves like F on the upper hemisphere and G on
the lower) has Hopf invariant ⟨b, q⟩.

• Extend G to 4-cells; this can be done since the Hopf invariant on the boundary
of each 4-cell is zero.

Finding a b which satisfies these properties will be the goal of the rest of the proof.
We note that the behaviors of F ∗ξ on k-cells are in one-to-one correspondence

with the set Gk. For now, though, instead of F ∗ξ we will use the desimplicial form
ω̂ := D2

∫
F ∗ξ. This allows us to define a nice antidifferential.
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We write ω ∈ Ω2(S3) to mean the restriction of ω̂ to S3 × {0} (which is also
f∗ξ.) Further on, we will also define a “smooth” interpolation ω̄ between ω and 0, as
opposed to the “bumpy” interpolation ω̂. Note also that ω is the “differential form
version” of the cochain w. We use a similar convention for other forms further on.

For a vector v ∈ T(x,t)(S3 × I), write vs for its translate in T(x,s)(S3 × I). Now,
since ω̂|S3×{1} ≡ 0, and by the Poincaré lemma, the 1-form

α̂(v) =
∫ 1

t
ω̂(ds, vs)ds ∈ Ω1(S3 × I)

satisfies dα̂ = ω̂ and
∫

α̂ = â. Moreover, since ω̂ is desimplicial, this also means that
∥α∥∞ ≤ L∥ω∥∞ and, as discussed in Section 2.3, α is desimplicial. Thus we know
that ∥ ˆα ∧ ∥̂∞ω ≤ CL, but we don’t have a constant bound. On the way to defining
the desired cochain b, we will find a uniformly bounded form β such that for any
4-cell p,

∫

∂p
β =

∫

∂p
α̂ ∧ ω̂ =

∫

p
ω̂2.

Even then, we will not be able to simply set b =
∫

β, both because
∫

β may not
be integral and because δ

∫
β =

∫
ω̂2, which is potentially a different cochain from∫

F ∗ξ2. Nevertheless, after β is constructed, there is only a short way to go to
building b.

To construct β, we recall the algebraic nullhomotopy h̄ : M∗(S2) → A∗(S3) ⊗
Q⟨t, dt⟩ from the introduction, given by

x -→ ω ⊗ (1 − t)2 − α ⊗ 2(1 − t)dt

y -→ η ⊗ 4(1 − t)3dt,

where we choose α and η so that α = α̂|S3×{0}and dη = α∧ω. Note that our isoperi-
metric results mean that we can choose η to have ∞-norm O(L2). Moreover, since
we have subdivided the interval into O(L2) pieces, dt thought of as a 1-form on this
subdivision has ∞-norm O(L−2). Now, ω̂2 can be thought of as an approximation
of

h̄(x2) = dh̄(y) = α ∧ ω ⊗ 4(1 − t)3dt.

Therefore we can use the bounded form h̄(y) = η ⊗ 4(1 − t)3dt as a scaffolding to
help us build a form with bounded ∞-norm whose derivative is ω̂2.

To this end, writing π : S3 × [0, 1] → S3 for the projection onto the first factor,
we let

∆α := α̂ − ᾱ, where ᾱ = (1 − t)2π∗α

∆ω := d∆α = ω̂ − ω̄, where ω̄ = (1 − t)2π∗ω − 2(1 − t)dt ∧ π∗α.
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In other words, ∆α is the (bounded!) difference between α̂ and the form that α̂
would be if we hadn’t had to take integer parts in the construction of its cochain
counterpart â. So by construction, ∆α and ∆ω are both bounded.

Now, by Stokes’ theorem, for any 4-cell p of S3 × I, the Hopf invariant of F on
its boundary is given by

∫

p
ω̂2 =

∫

p

[
(∆ω)2 + 2ω̄ ∧ ∆ω + ω̄2

]

=
∫

p

[
(2ω̂ − ∆ω) ∧ ∆ω − 4(1 − t)3dt ∧ π∗(α ∧ ω)

]

=
∫

∂p

[
(2ω̂ − ∆ω) ∧ ∆α − 4(1 − t)3dt ∧ π∗η

]
.

Here, the equality between the first and second lines holds because α ∧ α and ω ∧ ω
are both zero.

Call the integrand in the last line β. We see that both terms of β are uniformly
bounded and are zero when restricted to S3 × {0, 1}.

Now consider the uniformly bounded cellular cochain
∫

β ∈ C3(S3 × I;R). We
have δ

∫
β =

∫
ω̂2, but it may not be the case that

∫
ω̂2 is the same cochain as∫

F ∗ξ2, which is the degree of F on 4-cells. This can be resolved in the following
manner. Recall that F factors through maps

S3 × I
G−→ G H−→ CP2,

where G is a fixed finite polyhedral complex independent of L. Then
(
D2

∫
H∗ξ

)2

and H∗ξ2 are well-defined, cohomologous forms on G and thus there is a cellular
cochain g ∈ C3(G;R), again independent of L, such that

dg =
∫ (

D2
∫
H∗ξ

)2 −
∫
H∗ξ2.

Then b′ =
∫

β −G∗g is a uniformly bounded cochain on S3 × I with δ(
∫

β −G∗g) =∫
F ∗ξ2. This cochain is not integral, but it does restrict to zero on S3 × {0, 1}.
By Lemma 2.3, we can find an integral cochain b0 ∈ C2(S3;Z) such that for every

2-simplex q of S3,

|⟨b0, q⟩ − ⟨b′, q × [0, 1]⟩| ≤ K(S3, 3).

We then set b by taking nearest integers to b′, similarly to how we constructed â
from ā. Specifically, we set ⟨b, q × [(i − 1)/CIPL2, i/CIPL2]⟩ so that

⟨b − b′, q × [0, i/CIPL
2]⟩ ∈ [0, 1),

for i ̸= CIPL2 (these values are at most distance 1 from those of b′) and set the
values on the last time increment so that ⟨b, q × [0, 1]⟩ = ⟨b0, q⟩ (and hence they are
at most K(S3, 3) + 1 away from those of b′). This together with the requirement
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that δb =
∫
F ∗ξ2 fixes the values on the transverse 3-simplices of S3 × [0, 1]; these

values are at most distance 4 from those of β. Therefore we get

∥b∥∞ ≤ ∥b′∥∞ +max{K(S3, 3) + 1, 4}.

This is a uniform bound and completes the proof. ⊓6

4 Lifting through k-invariants

We now extend the argument for S3 → S2 to a setting which is still geometrically
constrained, but which contains a larger class of rational homotopy types which,
together with the rational invariance results in the next section, can be assembled
into the final result.

Theorem 4.1. LetX be a finite N -dimensional simplicial complex. For i = 1, . . . , r,
let ni ≥ 2 and let Bi be a finite CW complex with an (N + 1)-connected map
Bi → K(Z, ni) whose CW structure is that of a simplicial complex with the (ni−1)-
skeleton collapsed. Define a CW-complex B =

∏r
i=1Bi. For some 2 ≤ n ≤ N ,

let Y be a finite subcomplex, whose inclusion map is (N + 1)-connected, of the
total space of a K(Z, n)-fibration over B, with projection map p : Y → B. Then
there is a C(X,Y ) such that any nullhomotopic L-Lipschitz map f : X → Y has a
nullhomotopy of width C(L+ 1)2 and thickness C(L+ 1).

Note thatK(Z, n)-fibrations over B are, up to equivalence, in bijection with elements
of Hn+1(B) which represent the obstruction to constructing a section, and that
any such fibration can be made to have finite skeleta, for example using Milnor’s
construction [Mil56].

The proof follows an outline similar to the special case in the previous section.
The main differences are technicalities imposed by the need to lift through a fibration
where in the last section we retracted.

Proof. Up to dimension N , H∗(B;Q) is naturally isomorphic to a free graded com-
mutative Q-algebra generated by elements of degree ni. Suppose first that the pri-
mary (and only) obstruction in Hn+1(B;Q) to trivializing p has an indecomposable
summand in this algebra. Equivalently, πn of the fiber goes to a finite quotient
in Y , so up to rational homotopy type up to dimension N , Y is still a product
of Eilenberg–MacLane spaces. This case follows directly from the main theorem of
[CDMW16], and linear nullhomotopies can be found; therefore, in the rest of this
proof, we assume that this obstruction class is contained in the ideal generated by
products in H∗(B;Q).

We start by showing that f can be assumed to take on a certain structure, in
particular being uniformly mosaic on a subdivision ofX at scale L. We will implicitly
work with such a subdivision; when we take the L∞ norm of forms on X, we will do
so with respect to the metric in which the simplices of the subdivision are of unit
size.
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Let πi be the projection B → Bi. We can simplicially approximate a map ho-
motopic to πi ◦ p ◦ f on the distinguished simplicial model of Bi, then send it back
to Bi via the map collapsing the (ni − 1)-skeleton. This gives us a short homotopy
between πi ◦ p ◦ f and a cellular map on an O(L)-regular subdivision of X which is
F i-mosaic for some F i depending only on Bi and the homotopy equivalence. This
gives us a short homotopy Et from p ◦ f to a F-mosaic map, where Fk =

∏r
i=1F i

k
and the boundary maps are also products.

Finally, we would like to lift Et to a short homotopy of f . By homotopy lifting,
this can be done, but we would like it done quantitatively in order to produce a
short homotopy Ẽt from f to an F̃-mosaic map for some F̃ . Therefore we do this
by skeleta. For k < n, we can choose a unique lift for every k-simplex of F . Now let
c be an n-simplex of X. We would like to show that we can lift Et|c so that Ẽ1|c is
one of a uniformly finite number of maps.

Let c̃ = c × {0} ∪ ∂c × [0, 1]. Since E is uniformly Lipschitz with respect to
the standard metric on the subdivision, we can simplicially approximate E|c̃ at a
uniform scale. In particular, if u : c̃ × [0, 1] is the linear homotopy to the simplicial
approximation, the map u|c̃×{1}∪∂c̃×[0,1] takes on a uniformly finite number of values
which we include in F̃n. We can take this to be the map Ẽ1|c.

Finally, for higher skeleta all lifts are again homotopic, and so when k > n we
can take a unique lift for every restriction of Ẽt to the boundary of a k-cell. The set
of such lifts will be called F̃k.

Now, at the cost of a linear penalty on L, we can assume that f is F̃-mosaic,
and therefore each fi is F i-mosaic. For each fi, a construction similar to that of the
homotopy F in the previous section builds a nullhomotopy Fi : X × I → Bi to the
following specifications.

• Fi is Gi-mosaic for some Gi, again depending only on Bi, on a cell structure
obtained by splitting the interval I into C2

ℓ L
2 equal subintervals, where Cℓ =

maxn≤N CIP(X,n);
• The degree of Fi on ni-cells of this cell structure is as follows. Let wi ∈ Cni(X)
be the cochain whose values are the degrees of fi on simplices, and let ai ∈
Cni−1(X) be a cochain with δai = wi and ∥ai∥∞ ≤ CIPL∥wi∥∞. Such an ai
exists since fi is nullhomotopic. Then the degree of Fi on a cell c is given by
⟨δâi, c⟩, where âi ∈ Cni−1(X × I) is defined by

⟨âi, c × {t}⟩ = ⌊(1 − t)ni⟨âi, c⟩⌋

on cells of that form and is zero on cells which extend in the time direction.
Since the derivative of (1 − t)ni and the values of wi are uniformly bounded,
so are the values of δâi.

Then F = (F1, . . . , Fr) is a nullhomotopy F of f in B which is G-mosaic, where once
again Gk =

∏r
i=1 Gi

k. Our plan is to find a nullhomotopy in Y which projects onto
F , again modeled on an algebraic nullhomotopy

h̄ : M∗(Y ) → Ω∗(X) ⊗ Q⟨t, dt⟩.
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The minimal model of B is a free algebra M(B) with trivial differential on the ni-
dimensional generators xi corresponding to the fundamental class of each Bi. The
projection p : Y → B corresponds to an extension

p∗ : M∗(B) → M∗(Y ) = M(B) ⊗ Q⟨y⟩,

where dy = P (x1, . . . , xr) is the aforementioned cohomological obstruction in
Q⟨x1, . . . , xr⟩ to finding a section of Y ; this is a polynomial all of whose terms
have total degree at least 2.

For each i, let ξi ∈ Ωni(Bi) be a form representing the fundamental class of Bi.
We then write

ωi = Dni

∫
f∗p∗p∗

i ξi.

Note that since fi is a composition of a simplicial map and a collapse, ωi is the pull-
back of a desimplicial form ξ′

i representing the fundamental class in Hni(K(Z, ni)).
Thus we can find a form ν = f∗ζ where

dζ = P (p∗
1ξ

′
1, . . . , p

∗
rξ

′
r).

(Further on, we will write this as P (
−−→
p∗

−ξ′).) Since ζ doesn’t depend on f or X, ∥ν∥∞
is uniformly bounded, as are the ωi. Similar to the previous section, we have that
for an (n+ 1)-simplex p of X,

∫

∂p
ν =

∫

p
P (ω⃗) ̸=

∫

p
P

(−−−−−→
f∗p∗p∗

−ξ
)
,

but they differ by a small coboundary and we will later need to take this into account.
We therefore get a homomorphism f̄ : M∗(Y ) → Ω∗(X) defined by xi -→ ωi and

y -→ ν. Since f is nullhomotopic, we can build the algebraic nullhomotopy h̄ of f̄ as
follows. For any DGA A define an operator

∫ 1
0 : A ⊗ ⟨t, dt⟩ → A by

∫ 1
0 a ⊗ ti = 0,

∫ 1
0 a ⊗ tidt = (−1)deg a

a

i+ 1
.

Then send

xi -→ ωi ⊗ (1 − t)ni + (−1)ni+1αi ⊗ ni(1 − t)ni−1dt

y -→ ν ⊗ (1 − t)n+1 + η ⊗ (n+ 1)(1 − t)ndt,

where α and η are chosen so that dαi = ωi and dη =
∫ 1
0 h̄(P (x⃗)) + (−1)n+1ν.

Note that the terms of
∫ 1
0 h̄(P (x⃗)) are each a product of some ωi’s together with

one αi. Since αi may be chosen so that ∥αi∥∞ = O(L), this means that η may be
chosen so that ∥η∥∞ = O(L2).

On the other hand, define a form ω̂i = Dni

∫
F ∗
i p

∗
i ξi ∈ Ωni(X × [0, 1]). This gives

us a homomorphism F̄ : M(B) → Ω∗(X × [0, 1]).
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Write π : X× [0, 1] → X for the projection onto the first factor. For a multivector
ξ ∈ Tn

(x,t)(X × I), and writing ξs for its parallel translate in Tn
(x,s)(X × I), let

α̂i(ξ) =
∫ 1

t
ωi(ds, ξs)ds.

Then dα̂i = ω̂i. Now defining forms ∆αi, ∆ωi, ᾱi and ω̄i by

∆αi := α̂i − ᾱi := α̂i − (1 − t)niπ∗αi

∆ωi := d∆αi = ω̂i − ω̄i

:= ω̂i − (1 − t)niπ∗ωi − ni(1 − t)ni−1dt ∧ π∗αi,

we get ∥∆ωi∥∞ ≤ C(N,B) and ∥∆αi∥∞ ≤ C(N,B).
Now, by Stokes’ theorem, for every (n+ 1)-cell c of X × [0, 1],

∫

c

F̄ (P (x⃗)) =

∫

c

P
(−→
∆ω − −→̄

ω
)

=

∫

c

[
∑

i

∆ωi poly
(−→
∆ω,

−→̄
ω

)
− P

(
⃗̄ω

)
]

=

∫

∂c

[
∑

i

∆αi poly
(−→
∆ω,

−→̄
ω

)
− (1 − t)n+1π∗ν − (n+ 1)(1 − t)nπ∗η ∧ dt

]
.

Call the integrand in the previous line β. Then since ∥dt∥∞ = 1/C2
ℓ L

2 and the
polynomials we have elided can be chosen so as to depend only on P , β satisfies
∥β∥∞ ≤ C(N,Y ) and dβ = P (ω⃗).

Now we are ready to construct a lift F̃ : X × I → Y of F . Since F is G-mosaic,
we can view it as a composition

X × I
G−→ G H−→ B.

Now let G′ be the smallest complex which surjects onto G and such that F̃ in turn
injects into it, with the composition induced by the projection F̃ → F . In particular,
(G′)(n−1) = G(n−1) but in the n-skeleton, some cells have a number of duplicates
compared to G. Then there are obvious maps

X × I
G′

−→ G′ H′

−→ B.

We can build a partial lift of H ′ to Y by lifting each map in G′
k, for each k ≤ n,

using the lift in F̃ where it exists. This then gives us a map H̃ : (G′)(n) → Y
and an obstruction cocycle o ∈ Cn+1(G′, F̃ ;Z) to extending it to (G′)(n+1) which is
independent of f .

Now, o and P (D2
∫
(H ′)∗p∗p∗

i ξi) are both representatives of the obstruction class
in Hn+1(G′, F̃ ;R) to lifting H to a map G → Y . Therefore, there is a cellular cochain
a ∈ Cn(G′, F̃ ;R) such that

δa =
∫
P (D2

∫
(H ′)∗p∗p∗

i ξi) − o.
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Since

F ∗P (x⃗) = (G′)∗P (D2
∫
(H ′)∗p∗p∗

i ξi),

the uniformly bounded cochain
∫

β − (G′)∗a ∈ Cn(X × I;R) satisfies

δ
(∫

β − (G′)∗a
)
= (G′)∗o.

This cochain is not integral, but we can use the method in the previous section to
find a nearby integral cochain b with the same coboundary, and such that it is still
zero on X × {0, 1}.

We will use b to construct a lift of F to Y which is G̃-mosaic for a G̃ = G̃(X,Y )
which we first construct. Let G̃ contain F̃ and for k ≤ n − 1 let G̃k consist of the
H̃-lifts of G′

k. Next, for every value γ that may be taken by b and every element
δ ∈ G′

n\F̃n we add in a lift ℓ(δ, γ) which differs from the one in G′
n by γ. Finally, for

any k > n, any cell of G′
k, and any lift of its boundary, we add a single extended lift

to G̃k if one exists.
Now we modify H̃ ◦G′ to define a map F̃ |(X×[0,1])(n) : for every n-cell c, we let the

map on c be ℓ(H̃ ◦G′|c,−b(c)). This kills the obstruction, allowing us to lift further
to construct our G̃-mosaic map F̃ : X × [0, 1] → Y . ⊓6

5 Rational invariance

In this section, we show that the difficulty of nullhomotoping L-Lipschitz maps
X → Y depends on Y only up to rational homotopy type. The proof of this can be
separated into a topological result and a metric result.

We start with the metric result, which is again proven in [CDMW16]. It shows
that if a map X → Z is homotopically trivial relative to a subspace Y ⊂ Z whose
relative homotopy groups are finite, then one can find such a homotopic trivialization
which is geometrically bounded.

Lemma 5.1. Let Y ⊂ Z be a pair of finite simplicial complexes such that πk(Z, Y ) is
finite for k ≤ n+1. Then there is a constant C(n, Y, Z) with the following property.
Let (X,A) be a pair of (not necessarily finite) n-dimensional simplicial complexes
and f : (X,A) → (Z, Y ) a simplicial map which is homotopic rel A to a map
g : X → Y . Then there is a short homotopy rel A of f to a map g′ which lands in Y
and is homotopic as a map into Y to g. By “short”, we mean that it is C-Lipschitz
under the standard metric on the product cell structure on X × [0, 1].

Note that the constant C does not depend on X and in particular on the choice
of a subdivision of X. Thus if we consider Lipschitz and not just simplicial maps
from X to Y , the width of the homotopy remains constant, rather than linear in the
Lipschitz constant.

We now move on to the topological portion of the discussion, in which we prove
Theorem 1.4. First we state this result more precisely.
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X × [0, 1] X × [0, 1]

K

Figure 1: A camel. Note the two collars which are isometric to some fixed simplicial structure
on X × [0, 1].

Theorem 5.2. Rationally equivalent simply connected finite simplicial complexes
admit nullhomotopies of the same shapes. That is, suppose we are given the following
data:

(1) Rationally homotopy equivalent simply connected finite metric simplicial com-
plexes Y and Z;

(2) A finite n-dimensional simplicial complex X;
(3) A simplicial pair (K,X × ([0, 1] ∪ [2, 3])) which is homeomorphic to

(X × [0, 3], X × ([0, 1] ∪ [2, 3]))

and given the standard metric on simplices. Here the product of X with each
unit interval is given an arbitrary fixed simplicial structure which restricts at
t = 0 and t = 1 to the simplicial structure on X.

Then there is a constant C = C(X,Y, Z) > 0 such that if for every nullhomotopic
L-Lipschitz map f : X → Y there is an M -Lipschitz nullhomotopy F : K → Y , then
for every L/C-Lipschitz map g : X → Z there is a (CM+C)-Lipschitz nullhomotopy
G : K → Z.

The point of introducing the complex K is to prescribe a metric on the cylinder
X × [0, 3]. The theorem then says that, under any such metric, sizes of homotopies
do not depend very much on torsion in the target space. For example, this controls
the sizes of nullhomotopies through a camel with two humps, as in the figure. In the
main application of this theorem to the proof of Theorem 1.2, K will be a straight,
but elongated cylinder whose length depends on the the Lipschitz constant.

Proof. Since Y and Z are rationally homotopy equivalent, there is a finite complex
W and a pair of maps Y → W ← Z which induce equivalences on the level of
rational homotopy. A proof for this is given, for example, in [Man16, Lemma 1.3
and Cor. 1.9]. Thus we can assume that Y is a subcomplex of Z or vice versa.

We first do the case when Y ⊂ Z. Let C(n, Y, Z) be the constant given in
Lemma 5.1. Suppose g : X → Z is a nullhomotopic L/C-Lipschitz map, which we
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can assume to be simplicial on a subdivision XL at scale ∼ C/L. In particular,
g can be homotoped into Y , and so by Lemma 5.1 this can be done via a short
homotopyH : XL×[0, 1] → Z. Now, f(x) := H(x, 1) is an L-Lipschitz nullhomotopic
map X → Y , and so there is an M -Lipschitz nullhomotopy F : K → Y of f .
Concatenating H and F gives an (M +C)-Lipschitz nullhomotopy G : K → Z of g.
This completes the first case.

Now suppose Z ⊂ Y , and suppose g : X → Z is a nullhomotopic L-Lipschitz
map. By assumption, there is an M -Lipschitz nullhomotopy F : K → Y of g (as
a map to Y ) and an uncontrolled nullhomotopy G̃ : CX → Z of g. There is no
guarantee, however, that F can be homotoped into Z rel X, even in an uncontrolled
way.

On the other hand, concatenating F and G̃ along g gives us a map H : SX → Y .
Homotopy classes of such maps form a group, and the induced mapping [SX,Z] →
[SX, Y ] is a homomorphism. We would like to analyze the cokernel of this homo-
morphism; to do this, we use obstruction theory on the relative Postnikov tower

Y P1 = P0 = Z

P2

...

Pn

ϕ0 = ϕ

ϕn

ϕn

pn

p3

p2

of the inclusion ϕ : Y ↪→ Z. Here, Pk is a space such that πi(Pk, Y ) = 0 for i ≤ k
and πi(Z,Pk) = 0 for i > k. The map pk therefore only has one nonzero relative
homotopy group, πk(Z, Y ). In this setting there is an obstruction theory long exact
sequence of groups

· · · → Hk−1(X;πk(Z, Y )) → [SX,Pk] → [SX,Pk−1] → Hk(X;πk(Z, Y )) → · · · .

Thus the cokernel we are interested in has cardinality at most
∏n

i=1|Hk(X;πk(Z, Y ))|.
For each element γ of this cokernel, choose a map Fγ : SX → Y representing it.

Now let R ⊂ K = X × (5/2, 3]. Then there is an obvious 2-Lipschitz homeomor-
phism ψ1 : K\R → K which is the identity outside X× [2, 3]. Also, let ψ2 : R̄ → SX
be the surjection which contracts X × {5/2} and X × {3}. Then the map

F̃ (x) =
{
F ◦ ψ1(x) x ∈ K\R
F−[H] ◦ ψ2(x) x ∈ R

gives us a nullhomotopy of g which can be homotoped into Z and which is (C0M +
C0)-Lipschitz, where C0 depends only on the geometry of the various Fγ .

Finally, we can use Lemma 5.1 to ensure that we get a (CM + C)-Lipschitz
nullhomotopy G : K → Z, where C is the product of C0 and the constant from the
lemma. ⊓6
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6 Proof of the main theorem

Putting together Theorems 5.2 and 4.1, we can now prove Theorem 1.2. We restate
this theorem equivalently below:

Theorem. Let X be an n-dimensional finite complex, and let Y be a finite complex
which is rationally equivalent up to dimension n to the total space of an induced
fibration whose fiber and base are both products of simply connected Eilenberg–
MacLane spaces. Then there is a constant C(X,Y ) such that nullhomotopic L-
Lipschitz maps from X to Y admit nullhomotopies of thickness C(L+1) and width
C(L+ 1)2.

Let’s unwrap a bit the rational homotopy theory of the spaces that we are consid-
ering, particularly the word induced.

The basic fact that underlies everything is that H∗(K(Q, k);Q) = Q[x] if k is
even and is Q[x]/(x2 = 0) if k is odd. Note that both cases can be described as
saying that the cohomology is the free graded-commutative differential algebra on
a k-dimensional class. In light of Kunneths theorem, we can now say that if V is a
graded vector space, and K(V ) is a product of Eilenberg-MacLane spaces K(Vk, k),
then the rational cohomology of K(V ) is the free graded algebra Q[V ].

Notice of course, that if X is a space whose rational cohomology is a free DGA,
then by considering the generating cohomology classes as maps into Eilenberg–
MacLane spaces, we get a map into a product of such spaces, i.e. a map X → K(V )
which is a rational isomorphism.

A special case is the even dimensional sphere. S2k → K(Z, 2k) is a tautological
map. However, the cup square vanishes for the sphere for dimensional reasons, so
this tautological map lifts naturally to the homotopy fiber of the map K(Z, 2k) ∪2−→
K(Z, 4k). The map to this fiber is a rational equivalence, as seen using the fact that
the Euler class of the rational fibration sequence

S4k−1
(0) = K(Q, 4k − 1) → S2k

(0) → K(Q, 2k)

is cup square together with the Gysin sequence.
More general homogeneous spaces G/H have similar structure (after some work!)

The inclusion H → G is a homomorphism, and therefore induces a map BH → BG
whose fiber is easily seen to be G/H. For any connected Lie groupK, the cohomology
is a free algebra, i.e., since K is finite-dimensional, it is the cohomology of a product
of odd spheres; by a theorem of Hopf, this product is in fact homotopy equivalent to
K (see e.g. Example 3 of [FHT12, Section 12(a)]). That the cohomology of BK is
also free is less obvious, but is also classical; this cohomology can be described using
the Lie algebra of K. This gives rise to a description of the map BH → BG, which
also shows that the map G/H → BH is (up to homotopy) an induced fibration,
a notion we now explain in our setting. A proof of this can be found in [FHT12,
Section 15(f)].
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Suppose now that we have two graded Q–vector spaces V and W . To describe a
map f : K(V ) → K(W ) is the same thing as describing a graded homomorphism
W → Q[V ]. The fiber F of this map has a description via a fibration

K(W, [−1]) → F → K(V ).

(where the [−1] indicates a shift in grading by −1), but it is not the most general
such fibration; we say, following [Gan67], that it is induced (by the map K(V ) →
K(W ). In the general case, the structure group would be a space of self-homotopy
equivalences of K(W, [−1]), but here we are only allowing K(W, [−1]) itself, acting
on itself as a topological group. The classifying space of K(W, [−1]) is, of course
K(W ).

In this case, the free algebra generated by W with the shifted grading together
with V , equipped with the differential given by dw = f∗w, is a DGA model for the
space F . A minimal model for this DGA is obtained by deleting pairs of indecom-
posables (that is, elements of W and V ) (g, h) with dg = h. Conversely, given such a
minimal model, we can construct an induced fibration using the recipe above. This
shows that this condition is equivalent to that in the introduction.

Moreover, by choosing a lattice VZ ⊂ V and a lattice in W whose differential
lands in Q[VZ], one constructs an induced fibration of this form whose homotopy
groups are all free abelian and whose total space has finite skeleta. We use this
construction in the proof below.

Thus the space Y in Theorem 1.2 can be any simply-connected homogeneous
target space, including spheres, complex projective spaces, and Grassmannians. An-
other corollary concerns maps to spaces which are highly connected. The first part
is a result from [CDMW16].

Corollary 6.1. Let Y be a rationally (k − 1)-connected finite complex and X an
n-dimensional finite complex.

(a) If n ≤ 2k−2, then there is a constant C(X,Y ) such that homotopic L-Lipschitz
maps from X to Y admit C(L+ 1)-Lipschitz homotopies.

(b) If 2k−1 ≤ n ≤ 3k−3, then there is a constant C(X,Y ) such that nullhomotopic
L-Lipschitz maps admit nullhomotopies of thickness C(L+1) and width C(L+
1)2.

Proof of Theorem 1.2. As discussed above, Y is rationally equivalent up to dimen-
sion n to the total space Z of an induced fibration

s∏

j=1

K(Z, nj) → Z →
r∏

i=1

K(Z, ni).

As noted before, we may assume that Z is the fiber product of fibrations K(Z, nj) →
Zj → B, where B is as in Theorem 4.1 and the Zj have finite skeleta. Concretely,
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we can think of Z as the pullback via the diagonal map B → Bs of the product
fibration

Z1 × · · · × Zs → Bs.

Then if f is a nullhomotopic map X → Z, we can construct a nullhomotopy with
the desired properties by finding a nullhomotopy F in B, lifting it as in Theorem
4.1 to F̃j : X × I → Zj for each 1 ≤ j ≤ s, and finally setting

F̃ (x, t) = (F̃1(x, t), . . . , F̃s(x, t)) ∈ Z.

Once we have shown the result for Z, it must hold for Y by Theorem 5.2, as follows.
For a given L, we takeKL = X×[0, L]. We have shown that for any nullhomotopic L-
Lipschitz f : X → Z, there is a CL-Lipschitz nullhomotopy of f in KL. Therefore,
the same is true in Y , with a different constant. Compressing KL back down to
X × [0, 1], we get back our separate estimates on thickness and width. ⊓6

7 Some lower bounds

It is first worth noting that nullhomotopies of maps, for example, from Sn → Sn

and S3 → CP2 cannot be done in constant time, as is the case for targets with
finite homotopy groups as in Theorem 1 of [FW13]. Thus the linear upper bound in
Conjecture 3 when q = 1 is sharp. All this is discussed in [CDMW16].

One may ask then whether Theorem 1.2 similarly gives sharp bounds. This boils
down to two separate questions. First, is the quadratic bound on the width of the
homotopy necessary, or could a linear bound suffice? Secondly, can the theorem be
extended to homotopies rather than just nullhomotopies, as is the case with the
theorem in [CDMW16]? It turns out that both of these features are required.

7.1 Maps that are hard to nullhomotope. First, we give a series of examples
(see also [CDMW16]) that show that for every q, the upper bound in Conjecture 3 is
the best one possible in general. In particular, we show that it gives a sharp estimate
on the minimum volume of a nullhomotopy in certain cases; this can potentially be
apportioned to the width and thickness in other ways. Let the space Yq be given by
S2 ∨S2 together with (q+3)-cells whose attaching maps form a basis for πq+2(S2 ∨
S2)⊗Q. Note that by rational homotopy theory, π∗+1(S2∨S2)⊗Q is a free graded Lie
algebra on two generators of degree 1 whose Lie bracket is the Whitehead product.
In particular, if f and g are the identity maps on the two copies of S2, the iterated
Whitehead product

h1 = [f, [f, . . . [f, g] . . .]] : Sq+2 → S2 ∨ S2,

with f repeated q times, represents a nonzero element of πq+2(S2 ∨ S2). Moreover,
the map

hL = [L2f, [L2f, . . . [L2f, L2g] . . .]] : Sq+2 → S2 ∨ S2
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is an O(L)-Lipschitz representative of L2q+2[h1]. Thus in Yq, we can define a null-
homotopy H of hL by first homotoping it inside S2 ∨S2 to h1 ◦ ϕ2q+2 for some map
ϕ2q+2 : Sq+2 → Sq+2 of degree L2q+2, and then nullhomotoping each copy of h1 via
a standard nullhomotopy.

Since h1 is not nullhomotopic in S2 ∨S2, this standard nullhomotopy must have
degree C ̸= 0 (in the sense of relative homology) on at least one of the (q + 3)-cells,
giving a closed (q+3)-form ω on Y such that

∫
Sq+2×I ω∗H = L2q+2C. Now, suppose

H ′ is some other nullhomotopy of hL. Then gluing H and H ′ along the copies of
Sq+2 × {0} gives a map p : Sq+3 → Y . Since the Hurewicz map sends πq+3(Yq) to
zero, the total degree of p on cells must be zero. This shows that p must have degree
zero on cells, in other words, that

∫
Sq+2×I ω∗H ′ = L2q+2C. Thus the volume of a

nullhomotopy of hL grows at least as L2q+2.
In particular, a nullhomotopy F : Sq+2 × [0, 1] → Yq of hL which has thickness

∼L has to have width ∼Lq.
Now, the rational homotopy groups of Yq are given by the free Lie algebra on two

generators truncated in degree q+1. A standard computation shows that differentials
of r-dimensional generators in the corresponding minimal model are multiples of the
(r − 1)-dimensional generators. Therefore, the minimal depth of the filtration in
Conjecture 3 in this case is q, demonstrating that this is in some sense the “best
possible” conjecture. In particular, the bound in Theorem 1.2 is sharp in at least
some cases. On the other hand, it is still open whether this quadratic bound is sharp,
for example, for maps S3 → S2.

7.2 Maps that are hard to homotope. To see that general homotopies do
not always behave like nullhomotopies, we consider maps S3 × S4 → S4. Any map
f : S3 × S4 → S4 induces a homomorphism of minimal DGAs

⟨x4, y7 : dx = 0, dy = x2⟩ f∗

−→ ⟨a3, b4, c7 : da = db = 0, dc = b2⟩

which must send x -→ pb and y -→ p2c + qab for some p, q ∈ Q. Conversely, for any
p, q ∈ Z we can define a map fp,q as illustrated in Figure 2 such that f∗

p,q sends x -→ pb
and y -→ p2c+ qab. This follows from the action of the first map on cohomology and
of the second on homotopy groups.

Now, given p ̸= 0, for any q1, q2 ∈ Q there is a homotopy of DGA homomorphisms

⟨x4, y7 : dx = 0, dy = x2⟩ → ⟨a3, b4, c7 : da = db = 0, dc = b2⟩ ⊗ ⟨t0, dt1⟩

between f∗
p,q1 and f∗

p,q2 , given by

x -→ pb+
q2 − q1
2p

adt

y -→ p2c+ q1ab(1 − t) + q2abt.

This suggests that, at least up to a finite order difference, fp,q1 ≃ fp,q2 .
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S3
S4 S4

S7

degree p

Hopf
invariant q

S4

S3
S4 S4

S7

degree p

Hopf
invariant q

S4

Figure 2: Construct maps S3 ×S4 → S4 by “budding off” a small ball and then projecting
the rest onto the S4 factor.

Indeed, one can see more geometrically that two such maps are homotopic if the
number q2−q1

2p is an integer. For concreteness, suppose p = 1 and q1 = 0. A potential
homotopy between f1,0 and f1,q must factor through the quotient space of S3×S4×I
where S3 ×S4 × {0} is projected onto S4 and S3 ×S4 × {1} is mapped onto S4 ∨S7

as in Figure 2. This quotient space is easily seen to be homeomorphic to S4 × S4

minus an open ball, and thus homotopy equivalent to S4 ∨ S4. Let α and β be the
homotopy classes of the identity maps on the copies of S4, which are images under
the quotient map of S3 × S4 × {0} and S3 × ∗ × I respectively. Since we know what
happens on the ends of the interval, we see that, if h : S4 ∨S4 → S4 is a map in the
homotopy class of such a homotopy, then h∗α = [idS4 ] and

h∗[α,β] =
q

2
[idS4 , idS4 ] = q[Hopf].

Indeed such a map h exists, with h∗β = q
2 [idS4 ]. In other words, there is a homotopy

F : S3 × S4 × I → S4 between f1,0 and f1,q, and any such homotopy satisfies∫
S3×∗×I F

∗d vol = q
2 .

If we take q = L8, the way we have defined f1,q gives it Lipschitz constant O(L).
On the other hand, we have just shown that a homotopy between f1,L8 and f1,0
must have degree at least L8/2 on the 4-dimensional submanifold S3 × ∗ × I ⊂
S3 ×S4 × I. Thus such a homotopy must have Lipschitz constant Ω(L2), or, if it has
linear thickness, it must have width Ω(L5). Either way, it cannot possibly satisfy the
bounds of Theorem 1.2, showing that the theorem cannot directly generalize beyond
nullhomotopies.
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