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O. I n t r o d u c t i o n  

These lecture notes were written for a course given at the C.I.M.E. sesslon "Recent develop- 

ments in geometric topology and related topics", June 4-12, 1990, at Montecatini Terme. Their 

aim is to expose three basic results in riemannian geometry, the proofs of which rely on the tech- 

nique of "critical points of distance functions" used in conjunction witlh Toponogov's theorem on 

geodesic triangles. This method was pioneered by Grove and Shiohama, [GrS]. 

Specifically, we discuss 

i) the Grove-Petersen theorem of the finiteness of homotopy types of manifolds admit t ing metrics 

with suitable bounds on diameter, volume and curvature; [GrP], 

ii) Gromov's bound on the Betti numbers in terms of curvature and diameter; [G], 

iii) the Abresch-Gromoll theorem on finiteness of topological type, for manifolds with nonnegative 

Pdcci curvature, curvature bounded below and slow diameter growth; [AG1]. 

The first two of these theorems are stated in w 3 and proved in w 4 and w167 5-6, respectively. 

The third is stated and proved in w 8. 



The reader is assumed to have a background in riemannian geometry at least the rough 

equivalent of the first six chapters of [CE], and to be familiar with basic algebraic topology. 

For completeness however, the statement of Toponogov's theorem is recalled in w 2. Additional 

material on finiteness theorems and on Ricci curvature is provied in w 3 and w 7. 

1. Cri t ica l  Poin t s  of Dis tance  Func t ions .  

Let ,~,f~ be a complete riemannian manifold. We will assume that all geodesics are 

pararaetrized by arc length. For p E -~u we denote the distance from x to p by x,p  and put 

pj,(z) := x,p  

Note that pp(x) is smooth on M \ {p O Cp}, where Cp, the cut locus of p, is a closed nowhere 

dense set of measure zero. 

Grove and Shiohama made the funda~nental observation that there is a meaningful definition 

of "critical point" for such distance functions, such that in the absence of critical points, the 

Isotopy Lemma of Morse Theory holds. They "also observed that in the presence of a lower 

curvature bound, Toponogov's theorem can be used to derive geometric information, fl'om the 

exiatence of critical points. They used these ideas to give a short proof of a generalized Sphere 

Theorem, see Theorem 2.5. Other important applications are discussed in subsequent sections. 

R e m a r k  1.1. If the aectional curvature satisfies KM ~ K (for / (  > 0) and q is a critical 
7F 

point of pp with pp(q) .<_ - f - -~ ,  then there is also a reasonable notion of indez which predicts 

the change in the topology when crossing a critical level. But so far, this fact has not had strong 

applications. 

Def in i t ion  1.2. The point q (~ p) is a critical point of pp if for all v in the tangent space, 

Mq, there is a minimal geodesic, 7, from q to p, making an angle, ~ (v,7'(0)) <__ 9 '  with 7'(0). 

Also, p is a critical point of pp. 

From now on we just say that q is a critical point of p. 

R e m a r k  1.3. If q ~ p is a critical point of p, then q E Cp. If q is not critical, the collection 

of tangent vectors to all geodesics, 7, as above, lies in some open half space in Mq. Thus, there 

exists w E Mq, such that ~[ (w, 7'(0)) < 2 '  for all minimal 7 from p to q. 

Put  Br(p) = {x I ~ < r}. 

I so topy  L e m m a  1.4. I f  rl < r2 <_" oo, and /f Br2(p) \ Br,(p) is free of critical points 

of pp, then this region is homeomorphic to OBr,(p) • [rl,r2].Moreover, OBr, (p) is a topological 

8ubmanifold (with empty boundary). 

Proof :  If x is noncritical, then there exists w e M, with ~ (:t'(0), w) < 2 '  for all minimal 7 

from x to p. By continuity, there exists an extension of w to a vector field, W,, on a neighborhood, 
Tr 

U~, of x, such that if y e U~ and a is minimal from y to p, then ~ (a'(O),W~(y)) < 2" Take a 

finite open cover of Br2(P) \ Br~ (p), by sets, U,,, locally finite if r2 = oo, and a smooth partition 



of unity, ~ ~i --= I, subordinate to it. Put W = ~ ~Wz,. Clearly, W is nonvanisking. For each 

integral curve ~b of W, the firat variation formula gives 

�9 p p ( ~ ( t ~ ) )  - p p ( , p ( t ~ ) )  < ( t~  - t 2 )  cos(~- - ~), 

for some small e. This holds on compact subsets if r2 : oo. The first statement easily follows. 

To see that 0B~, (p) is a submanifold, let q E OEr~ (p), r a minimal geodesic from q to p, 

and V a small piece of the totally geodesic hypersurface at q, normal to a. Then for z E V, 

sufficiently close to q, each integral curve, ~b, of W through z intersects OBrz (p) in exactly one 

point, z' E 0B~ (p) (~ extends on both sides of V). It is easy to check that the map, z ---* z ~, 

provides a local chart for OBrl (p) at q. 

Example 1.5. M compact and q a farthest point from p implies that q is a critical point of 

pp, Obviously, the topology changes when we pass q. This observation was made by Berger, well 

in advance of the formal definition of "critical point"; [Be]. 

E x a m p l e  1.6. If 7 is a geodesic loop of length s and if 7 [[0, ~] and 7 I[~-, ~] are minimal, 

then 7(~) is a critical point of 7(0). In particular, if q is a closest point, to p on Cv, and q is 

not conjugate to p along some minimal geodesic then q is a critical point of p; see Chapter 5 

of[CE]. Thus, if p, q realize the shortest distance from a point to its cut locus in M", and are not 

conjugate along any minimal '7, then p and q axe mutur critical. 

E x a m p l e  1.7. On a fiat torus with fundamentM domain a rectangle, the barycenters of the 

sides and the corners project to the three critical points of p, other than p itself. 

qi q3 

�9 p q2 

Fig. 1.1 

E x a m p l e  1.8. A conjugate point need not be critical. Here is a concrete example. Write 

the standard metric on S 2 in the form g = dr 2 + sin 2 r dO 2, where 0 _~ r ~ it, 0 _~ 0 _~ 2~r. Let 

f ( r ,  O) be a smooth function, periodic in 0, such that 

i) f(r,O) - i,  for all (r,O) satisfying any of the following conditions: 

~r 3 
O < r <  i , i~'_<r < ~ ,  

Here we require e < 7r/4. 



ii) f > 1 elsewhere. 

The metric g' = f d r  2 + sin2r d02 satisfies g' _> g. In fact, if the intersection of a curve, c, 

with the region, ~r/4 < r < 37r/4, is not contained in the region 7r - e < 0 < ~r % ~, then its length 

with respect to g' is strictly longer than with respect to g. It follows that for the metric g', the 

only minimal geodesics connecting the "south pole" (0 = 0) to the "north pole", (0 = ~r) are the 

curves c(t) = (t,00), ~r - e _< 0o _< 7r + e. Since 2e < r ,  it follows that the north and south poles 

are mutually conjugate, but mutually noncritical. 

We are indebted to D. Gromoll for helpful discussions concerning this example. 

R e m a r k  1.9. The criticality radiuf, rp, is, by definition, the largest r such that  Br(p) is 

free of critical points. By the Isotopy Lemma 1.4, Br, (p) is homeomorphic to a s tandard open 

bail, since it is homeomorphic to an arbitrari ly small open ball with center p. 

2. T o p o n o g o v ' s  T h e o r e m ;  f i rs t  a p p l i c a t i o n s .  

Denote the length of 7 by L[7]. 

By definition, a geode~ic triangle consists of three geodesic segments, 7i, of length L[7i] = s 

which satisfy 

7,(~i) = 7i+1(0) rood 3 (i = 0,1,2) . 

The angle at a corner, say 70(0), is by definition, 2~(-7~(s The angle opposite 7i 

will be denoted by ai. 

A pair of sides e.g. 72, 70 are said to determine a hinge. 

J 
v 

Fig. 2.1 

Let M ~  denote the n-dimensional, simply connected space of curvature -- H (i.e. hyperbolic 

space, Euclidean space, or a sphere). 

Toponogov's theorem has two statements. These are equivalent in the sense that  either one 

can easily be obtained from the other. 

Theorem 2.1 (Toponogov). Let M" be complete ~th curvatun: KM >_ H. 

A) Let {7O,7h72) determine a triangle in M". AJ~ume 71, 72 are minimal and tz + s >_ lo. If 
7f 

-al < a l ,  ~ - < a 2 .  



B) Let {72,70} determine a hinge in M "  with angle a. Assume 72 is minimal  and if  H > 0, 

L['/0] < ~ .  Let {7-2'~1 determine a hinge in M h ~oith L[7~] = L[~_,], i = 0 ,2 ,  and the same 

angle c~. Then 

'/2(0),7o(eo) _< 22(0),7o(eo). 

P r o o f :  See [CE], Chapter 2. 

R e m a r k  2.2. In the applications of Tol)onogov which occur in the sequel, the following 

elementary fact is often used without explicit mention. Consider the collection of hinges, {7_7.0, 7_5} 

in M~t, with fixed side lengths, e0, ~72 and variable angle c~; 0 <_ a < rr. Then 7_.0(g0),~2(0 ) is a 

strictly increasing/unction o/ a. 

R e m a r k  2.3. If the inequalities in A) or B) are all equalities, more can be said (see [CE]). 

By using Toponogov's theorem we can derive geometric information from the existence of 

critical points. 

Let the triangle, {"/0,')'1,')'2} satisfy the hypothesis of Toponogov's theorem, and assume 

"/0(g0) is critical with respect to '/0(0). Then (as explained in detail in the applications), we can 

i) bound from above the side length e2 (see Theorems 2.5, 4.2), 

ii) bound from below, the excess, t~0 + el - e2 (see Proposition 8.5), 

iii) bound from below, the angle a l  (see Lemma 2.6, Corollaries 2.7, 2.9, 2.10 and 6.3). 

R e m a r k  2.4. It is important  to realize that in order to obtain the preceding bounds, we do 

not assume a2 < 7r/2. The assumption that  "YI(Q) is critical with respect to ~'0(0) implies that 

( - '~ (g0) , ' / [ (0 ) )  < rr/2, for ~ome minimal "~0 from "~0(0) to "/0(g0). This is all that  we require. 

T h e o r e m  2.5 (Grove-Shiohama). Let M n be complete, with K M  >_ H,  for some H > O. I f  
7r 

M "  has diameter, dia(M n) > .~--~,  then M "  is homeomorphic to the sphere, S n. 

P r o o f :  Let p, q E M r* be such that  ~ = alia(M"); in particular,  p and q are mutually 

critical (see Example 1.5). 

C l a i m .  There exists no x r q, p which is critical with respect to p (the same holds for q). 

P r o o f  o f  C l a i m :  Assume x is such a point. Let "/5 be minimal from q to x. By assumption 

there exists "/0, minimal from x to p, with 

7r ' g  ~1 = ~ ( - ~ 2 ( ~ ) , ~ ( 0 ) )  < 92.  

Similarly, since p and q axe mutually critical, there exist minimal  "/1, zYl from p to q such that  

7r  

( - ' / ~ ( e 0 ) , ' / i ( 0 ) )  < 92 

and 

N o t e  that  L N  = L[~I] = ~7~  > - -  

~ !  ! 
( - ' / 1 ( e l ) , ~ 2 ( o ) )  5 92 �9 

2 v ~ "  



Apply A) of Toponogov's theorem to both {3'0,3,1,7o} and {70,~1,72}. Since a triangle in 

M~ (the sphere) is determined up to congruence by its side lengths, we get a unique triangle, 

{~_0,3,1,~2}, in M ~ ,  all of whose angles are _< 7r/2. By elementary spherical trigonometry, this 
7r 

implies that all sides have length _< o ~ '  contradicting ~ > 2"--~" 

Given the claim, the proof is easily completed (compare the proof of Reeb's Theorem given 

in [M]). 

The following observation and its corollaries (2.7, 2.10} are of great importance. 

L e l n m a  2.6 (Gromov). Let  ql be critical with respcc~ to p and le~ q2 sat is fy  

f o r  some  u > 1. 

( ~ ( 0 ) ,  ~'~(0)). 

i) If  KM > O, 

P, q'2 >_ up, ql , 

Let  % , %  be m i n i m a l  geodesics f r o m  p to ql ,q2 re.~peciively and put  0 = 

O >_ c o s - l ( 1 / ~ )  . 

ii) f f K M  k H ,  ( H  < O) a n d  ~ <_ d ,  then 

0 ~ cos -1 \ tanh(x/-~Hd) J " 

P r o o f :  Put P, q l  = x ,  q l ,  q~ = y ,  p ,  q2 = z .  Let a be minimal from ql to q2. Since q is critical 

for p, there exists r, minimal from q to p with 

7r 
(o'(0) , , - ' (0))  < ~ .  

i) Applying Toponogov's Theorem B) to the hinges {~r,r} and {71,72} gives 

Z 2 <~ x 2 + y2 

y2 < x ~ 4" z 2 - 2 x z c o s O  (law of cosines) 

Since z >_ v �9 x, the conclusion easily follows. 

ii) By scaling, we can assume H -- -1 .  Replace the inequalities above by the following ones from 

hyperbolic trigonometry (see e.g. [Be]) 

cosh z < cosh z cosh y , 

cosh y < cosh x cosh z - sinh x sinh z cos 8 . 

Substituting the second of these into the first and simplifying gives 

_ / t anhx ,  
0 > c o s  - ~  , ta-~-- ;z  ) , 

which suffices to complete the proof. 



C o r o l l a r y  2.7. Let ql . . . . .  qN be a seqaence of critical points of p, with 

P, qi+l-> v ~  ( v >  1) 

i) I f  K M .  >_ 0 then 

N < XO*, v) 

ii) IfKM _~ H ( H  < 0) and qN <_ d, then 

N < Af(n, v, Hd  2 ) . 

P r o o f :  Take minimal  geodesics, "/i from p to qi. View {7~(0)} as a subset of S '*-1 C 5/I~. 

Then  Lemma 2.6 gives a lower bound  on the distance, 0, between any pair 7~(0), 7~(0). The balls 

of radius 0/2 about  the 7[(0) e S "-1 are mutual ly  disjoint. Hence, if we denote by V,-1,1(r), the 

volume of a ball of radius r on S n - l ,  we can take 

H =  Vn-l l(~) 
V,,_,.,(0/2) ' 

where Vn_l, l (Tr)  = Vol(S "-1 ) and 0 is the m i n i n m m  value allowed by Lemma 2.6. 

R e m a r k  2.8. It turns  out that  Corollary 2.7 is the only place in which the hypothesis on 

sectional curvature is used in deriving Gromov's  bound  on Betti numbers  in terms of curvature 

and diameter.  For details, see Theorem 3.8 and w167 5-6. 

The following result is a weak version (with a much shorter proof) of the main  result of 

[CG12], compare also w 8. 

C o r o l l a r y  2.9.  Let M n be complete, with KM- _> 0. Given p, there exist8 a compact set 

C, such that p has no critical points lying outside C. In particular M n is homeomorphic to the 

interior of a compact manifold with boundary. 

P r o o f i  The first s ta tement ,  which is obvious from Corollary 2.7, easily implies the second. 

C o r o l l a r y  2 .10.  Let Af(n,g ,  Hd  2) be a8 in Corollary 2.7, and let f l y  ~f < r2. Then there 

exists (al ,  s2) C [rl, r~] such that p ; l ( ( s l ,  ~2)) is free of critical points and 

*52 -- 81 ~___ (r2 -- r lvN ' ) ( l  + v + ' " / / . M ' ) - I  

Moreover, the set of critical points has measure at most (I  - v-N')r2. 

P r o o f :  Let r l  + el denote the first critical value _> r l ;  e2 + v(rl  + gl) the first after v(rl -}-el) 

etc. It is easy to see that  in the worst case 

e l = e 2  . . . . .  e ,  

( . . - (v(v( rx  + e) + e) + e . . . )  + e - -  r~ 

The first assertion follows easily. The proof of the second is similar. 



R e m a r k  2.11. The proof of Corollary 2.7 easily yields an explicit estimate for the constant 

.IV'. For example, in case KM- >_ 0, we get 

H(n,  u) < 1 cos-1(i/u 

Thus, for ~ close to I, 
[ 2r~ 2 1(,,-i)12 

N(, , ,v )  _< l.(~,_ 1) J 

3. B a c k g r o u n d  on Fini teness  T h e o r e m s .  

The theorems in question bound topology in terms of bounds on geometry. In subsequent 

lectures we will prove two such results due to Gromov, [G] and Grove-Petersen [GrP]. Before 

stating these, we establish the context by giving an earlier result of Cheeger [C1], [C3] (see also 

[GLP], [GreWu], [Pel], [Pe2], [We] for related developments). 

T h e o r e m  3.1. (Cheeger). Given n, d, V, I( > O, the collection of compact n-manifolds which 

admit metrics who~e diameter, volume and curwture satisfy, 

dia(M n) ~ d , 

Vol(M") _> V ,  

IKMI -< I (  , 

contains only a finite number, C(n,, V- ld ' ,Kd~) ,  of diffeomorphism types. 

R e m a r k  3.2. The basic point in the proof is to establish a lower bound on the length 

of a smooth closed geodesic (here one need only assume KM ~ K). This, together with the 

assumption ]('M --~ /(,  gives a lower bound on the injectivity radius of the exponential map (see 

ICE], Chapter 5). Although Theorem 3.1 predated the use of critical points, the crucial ingredient 

in the Grove-Petersen theorem below is essentially a generalization of the above mentioned lemma 

on closed geodesics (compare Example 1.6). 

T h e o r e m  3.3 (Grove-Petersen). Given n ,d ,V  > 0 and H, the collection of compact n- 

dimensional manifolds which admit metrics satisfying 

dia(M ") <: d ,  

Vol(M ~) > V ,  

K M > _ H ,  

contain~ only a finite number, C(n, V - l  d ~, Hd2), of homotopy types. 

R e m a r k  3.4. In [GrPW], the conclusion of Theorem 3.3 is strengthened to finiteness up 

to homeomorphism (n r 3) and up to diffeomorphism (n ~- 3, 4). The proof employs techniques 

from "controlled topology". Thus, Theorem 3.3 supersedes Theorem 3.1 (as stated) if n ~ 3, 4. 

However, Theorem 3.1 can actually be strengthened to give a conclusion which does not hold 

under the hypotheses of Theorem 3.3. 



Given { A/i n } as in Theorem 3.1, there is a subsequence {M 7 }, a manifold M ' ,  and diffeomor- 

phisms, •i : M" ~ MT, such that the pulled back metrics, r converge in the Cl'a-topology, 

for all a > 1 (see the references given at the beginning of this section for further details). 

E x a m p l e  3.5, By rounding off the tip of a cone, a surface of nonnegative curvature is 

obtained. From this example, one sees that under the conditions of Theorem 3.3, arbitrarily 

small metric balls need not be contractible. Thus, the criticality radius can be arbitrarily small 

(compare Remark 1.9). 

Fig. 3.1 

However, it will be shown that the inclusion of a sufficiently small ball into a somewhat larger 

one is homotopieaily trivial. 

E x a m p l e  3.6. Consider the aurface of a solid cylindrical block from which a large number, 

j ,  of cylinders (with radii tending to 0) have been removed. 

! " I  

I I I i i  l 
l Ill , 
I I I I 

I I I  i i  l 
I i i  i 

.. -- -. LL 
S'  I I I I I ! I ,  

, , , , ,  .,.-- 

Fig. 3.2 

The edges can be rounded so as to obtain a manifold, M~, with Vol(~,~) _> V, dia(M~) _< d (but 
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inf KM] --* --oo, as j ~ e~). For the first Betti number, one has bl('M}) = 2j ---* v~. 

Note that the metrics in this sequence can be rescaled so that [~M] 2> --1, Vol(M~) ~ oa. 

Then, of course, d ia(M])  ~ e~ as well. 

E x a m p l e  3.7. Consider the lens space L,a,, obtained by dividing 

s ~ = { ( ~ ,  ~-~) I I:~l" + I:~? = 1 } ,  

by the action of 2~ n = { 1, a . . . . .  a "-1 }, where a : ( z l ,  z2 ) "* (e2~i/nzl ,  e2~i/nz2 ). Then dia(L3n) = 

1, I(L3 ---- 1, but Vol(.hln 3) --~ 0, and Hx(L3,,2~ ) = 2~ .  Thus, if the lower bound on volume is 

relaxed, there are infinitely many possibilities for the first homology group, Hr. Nonetheless, the 

following theorem of Gromov asserts ~hat for any fixed coefficient field, F ,  the Betti numbers, 

bi(l~l ~) are bounded independent of F,  

T h e o r e m  3.8 (Gromov). Given n, d > O, H,  and a field F,  if 

then 

dia(M '*) < d ,  

K^t-  >_ H ,  

Z b i ( M  ") _< C(n,  H d  2) . 

C o r o l l a r y  3.9. I f  M ~ haa nonnegative sectional curvature, I(M. ~ O, then 

E b i ( M  ") < C(n) . 
i 

R e m a r k  3.10. The most optimistic conjecture is that KM- _> 0 implies bi (M n) <_ (~), and 

hence, ~ i  bi(Mn) -< 2n" Note bi(T n) = (?) where T n is a flat n-torus. At present, one knows only 

t h a t / ( M -  ~ 0 (in fact RicM- >_ 0) implies bl(~,f n) _ n. But the method of proof of Theorem 3.8 

does not give this sharp estimate; compare also [GLP], p. 72. 

In proving Theorems 3.1, 3.3 and 3.8, a crucial point is to bound the number of balls of 

radius e needed to cover a ball of radius r. 

P r o p o s i t i o n  3.11 (Gromov). Let the Ricci curvature of M "  $atisfy RiCM. >_ 

( n - 1 ) H .  Then given r, e > 0 andp E M n, there exists a covering, Br(p) C [JN B~(pi), (Pi E Br(p)) 

with N < N l ( n ,  H r 2 , r / e ) .  Moreover, the multiplicity of  this covering is at moat N2(n,  Hr2) .  

R e m a r k  3.12. The condition RicM- > (n -- 1)H is impiied by ar(M . ~" H, in which case, the 

bound on N1 could be obtained from Toponogov's theorem. For the proof of Proposition 3.11, 

see w 7. 

R e m a r k  3.13. The conclusion of Theorem 3.8 (and hence of Corollary 2.7) fails if the 

hypothesis Ifm _> H is weakened to the lower bound on Pdcci curvature, .~icM, >_ (n -- 1)H; see 

[An], [ShY]. 
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R e m a r k  3.14. S. Zhu has shown that homotopy finiteness continues to hold for n = 3, 

if the lower bound on sectional curvature is replaced by a lower bound on Ricci curvature; [Z]. 

Whether or not this remains true in higher dimensions is an open problem. 

4. H o m o t o p y  f in i teness .  

Pai rs  of m u t u a l l y  cr i t ical  po in ts .  

The main point in proving the theorem on homotopy finiteness is to establish a lower bound 

on the distance between a pair of mutually critical points (compare Example 1.6). For technical 

reasons we actually need a quantitative refinement of the notion of criticality. 

Def in i t ion  4.1. q is e-almost critical with respect to p, if for all v E -~fq, there exists 7, 

minimal from q to p, with ~ (v,7'(O)) <_ ~ + e. 

T h e o r e m  4.2. There exist e = e ( n , V - l  d~,Hd2),  $ = 5 ( n , V - l d n ,  H d  2) > 0, such that if 

p, q E M n 

dia(M ~) < d ,  

Vol(M") > V , 

KM- >_ H ,  

p,---q1 < 6 d ,  

then at least one of p, q is not e-almost critical .with respect to the other. 

The proof of Theorem 4.2 uses two results on volume comparison. The first of these, Lem- 

ma 4.3, is stated below and proved in the Appendix to this section. The second result, Proposi- 

tion 4.7 is stated and proved in the Appendix. 

For X C Y closed, put 

T~(X) = {q ~ Y l q, Z < r} 

(the case of interest below is Y = S n - l ,  the unit (n - 1)-sphere). 

Recall that the volume of a ball in M~ is given as follows. Put  

{ (~H s i n s v ~ s )  n-1 H > 0 

An-I,H(a) = s n-1 H = 0 
( _~H sinh,fL--ffs)~-I H < 0 

Vn,H(r) = Vn-1 .An_I,H(S) ds , 

where v . - i  = Vn-l,l(~r) is the volume of the unit (n - 1)-sphere. Then in M~,  

Vol(B~(p)) = V.,H(r) 

L e m m a  4.3. Let X C S n be closed. Then 

a) Vol(T~,(X)) > V.,l(rl) 
Vol(T~(X)) - V.,l(r2) " 
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V o l ( T r , ( X ) )  - V o l ( T r , ( X ) )  < V. , ( r2 )  - V., d r , )  
b) Vol(Tr, (X)) - V. , , (r2) 

R e m a r k  4.4. The lemma actually holds for X C M",  where RicM. _> (n -- 1)H provided 

V.,z(r) is replaced by V.,H (see Proposition 7.1). 

P r o o f  o f  T h e o r e m  4.2: By scaling, we can assume d = 1. 

In i)-iii) below we determine e, 6. In iv) we show that they have the desired properties. 

i) Fix e > 0. Let ~,7_z determine a hinge in M~t with angle, 

71" 

at the point, 

~ ( e 0 )  = ~_~(o) 

Here, L[7~] = s Let 6 = 6(H, e, r) be the length of the base of an isosceles triangle in ~I~/ with 

equal sides of length r and angle r /2  - e opposite these sides. Then if 

e0 < 6 ,  

el _>r ,  

we have 

~(o),2~(e,)<e~. 

Zo(O) 
l ~ : - - - ~ ~ Z 1  ( ' 11 )  

Fig. 4.1 

ii) Dete, mine e = e(n, V - Z , H )  by 

Vq 11" r , , - , , , (~ -  + e) - V._ , , , (~ -  - t )  V 
' f 6 

v._~,~(~ + ~) x V.,.(1) = . 

Hi) Determine r = r(n,V-Z,S) by 
V 

v , , , x ( , ' )  = ~ �9 
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iv) Assume p,q are mutually e-almost critical and that ~ < 6 with 6, e,r as in i)-iii). We claim 
9 

Vol(M") < 3 V which is a contradiction. 

Let 

M"(p)  = {x e M" I x ~  < z-~} 

Since .~ / \  (.~,In(p) U .~f"(q)) has measure zero, by symmetry, it suffices to show 

V 
Vol(.'~I"(p)) _< -~ .  

Let X C S n-1 C !VI~ be the set of tangent vectors to minimal geodesics from p to q. By 

assumption, T(~/2)+~(X) = S ~-1. Hence by ii), Lemma 4.3 b) and Proposition 4.7, the volume 

of the set of points, x e M" \ Cp, such that x = 7(~?), and 7'(0) r T(,~/2)_,(X), is at most V/6. 

But if y = a(u), a'(O) E T(~/2)_~(X) and u > r, then by i) and Toponogov's theorem B), we 

have  

q, y < p, U. 

Therefore y ~. M"(p).  

By the choice of r (see iii)) the set of such y E/~d~(p) has volume < V/6 (see again Proposi- 

tion 4.7). Thus, we get the contradiction 

V V V 
Vol(M"(p)) < ~- + ~ = y 

Let A C M x M denote the diagonal. 

Coro l l a ry  4.5. Let M '~, 6 be as above. Then ~here exists a deformation retraction Ht : 

T(6/2)d(A) --~ A (t E [0, 1]) such that the curves, t ---* H~(p,q) have length 

L[Ht(p,q)] g R(n, V - ld" ,Hd~)~ ,q  . 

Proof i  By scaling, it suffices to assume d = 1. Let (p,q) E Ts/2(A) with say q not e-critical 

with respect to p. Let Uq, Wq be as in the Isotopy Lemma 1.4. Let W[p,q) be the vector field 

(0, Wq) on some sufficiently small neighborhood Vp x Wq. (By averaging under the flip, we can 

even replace W~p,q) by W~'r,q) such that W~'p,q) = W['q,p)). The proof is completed by a partition 

of unity construction and first variation argument like those in the Isotopy Lemma 1.4 (the 

deformation we obtain does not necessarily preserve T6/2(A), but satisfies the estimate above). 

Curves varying continuously with their endpoints. 

Let (p,q) E T,/2(~).  Write Ht(p,q) = (r  r Put 

r 0 <_ t <_ �89 
r  r  � 8 9  
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Then 0(t, p, q) is a curve from p to q, which depends continuously on (.p, q), with 

L[r < R~,q . 

P 

P 

q 

Fig. 4.2 

Maps  which  are  close are  homotop ic .  

C o r o l l a r y  4.6. Let N be arbitrary and fi : N --~ M ~ (a, above) i = 1,2. I/  ] l (x) ,]2(z)  < 

~ d, for all x E N, fo, fl  are homotopic. then 

P r o o f :  The required homotopy is given by 

.f ,(z) = r  ) . 

M a p p i n g  in simpllces (center  o f  mass) .  

Let (Pv . . . . .  pk) E M x . . .  x M, such that ~ _< (1 + . , .  + ~ k - l ) - i  ~ d. Construct a map 

of a k-simplex into M",  inductively as follows. 

i) Join Po to Pl by r 

ii) Join P2 to each point of r ) by r r p0,pl),P2). 

iii) Join p~ to each point of r162 by r r r etc. 

5 

4, ( t ,Po ,Pl ) 

PO 

P2 

Fig. 4.3 
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After an obvious reparametr izat ion,  we get a map to .~I n of the simplex (a0 , .  

a i <  1 , ~ a i =  1. 

P r o o f  o f  T h e o r e m  3.3:  

i) By scaling, the metr ic  we can assume d = 1 

ii) By Proposi t ion 3.11, for any such M " ,  we can fix a covering, 

l~f" = UB,(pi)  , where 0 < i < Nl(n,H,e,  lO) . 

, ak) ,  0 < 

Moreover, the mult ipl ici ty of this covering is _< N2(n, H). Take 

e = ~ 2 ( I + R + . - . + R N ~ - I ) - I _  , 

with ~, R as in Theorem 4.1. 

iii) Since 0 < ~ < 1, by the "pigeon-hole" principle, we can divide the collection of all such 

M n into C(n, V -1, H) classes, such that  if M~,  11f~ are in the same class, 

card({pi,1 }) = card({pl.2 }) = c < Ni  , 

and for {pi,t} C M~,  e = 1, 2 as above, 

RN,-1)-I I ~ j , ~  -p~,2,~7-,~,21 <_ ~ ( 1  + R + . . .  + 

iv) It suffices to show that  M ~ , , ~ '  as in iii) are homotopy equivalent.  Construct  a map hi : 

M~' --* M~' as follows. Choose a par t i t ion of unity, Y'~r -- 1, subordinate  to {B,(pi,x)).  Define 

a map  rh of M~' to the s tandard  (c - 1)-simplex by 

~l(X)  = ( r  . . . . .  r  

Let K be the subcomplex consisting of those closed simplices whose interior  has nonempty  inter- 

section with  range ~1. It  follows from iii) that  for any a E K we can define a map  gl : a ---* M~* 

(using the center of mass construction).  The  maps on the various a C K fit together to give 

gl : K --* M~.  Pu t  hi = glrh and define h2 : 2VI~ ~ ---* h i~  similarly. 

Let IdMj denote the identi ty map  on )~fj. It is easy to see that  the pairs (h2hl,IdMt), 

(hi h2, IdM3) satisfy the hypothesis  of Corollary 4.6. q.e.d. 

A p p e n d i x  

P r o o f  o f  L e m m a  4.3: For all e :> 0, we can find a finite set of points,  X~, such that  

T~(X~) D X,  T~(X) D X~. Since ult imately,  we can let e ---, 0, it follows easily tha t  it suffices to 

assume tha t  X = Pl U - - .  U PN is itself a finite set. Fix i and define the ~tarlike set, Ur, by 

Ur={xeTr(X) l ~ < z - - , ~  V j~ i ) .  
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Since i is arbitrary,  it clearly sui~ces to show 

VoI(U,,) > V.j(r]) 

Vol(U,,) - V.,1(r2) " 

Put 

{Ar, = "7(8) I `7(s) e Ur, mad 3t > rl with 7(t) �9 U , , }  . 

Then, clearly we get 
rot(U,.,) Vol(A,.,) V,,.~(,.~) 
Vol(Ur,) >- Vol(U,.,) >- V , , l ( r 2 )  " q.e.d. 

\ 
1 
I 
I 

/ 

OBr I (PO OBr 2(p{) 

Fig. 4.4 

Let 7 be a geodesic with 7(0) = p and let ?(s denote the cut point of 7. Let U be the 

interior of the cut locus in M~. Thus, 

U = {tr I O < t < t#} . 

Then expp U = M". 

Let I : M~ --* (~f~/)p_ be an isometry and put 

P r o p o s i t i o n  4.7.  The rn~p 

expp 1-1 - S E �9 �9 expp 1 

i~ diJ$r decreasing if KM,  > t l  and ~olumr dccreasin9 if I~cM,, > (n - 1)H. 

P r o o f :  The first assertion is clear from Toponogov's theorem B). In p~u'ticular the above 

map is volume decreasing in this case. For the second assertion, see Remark 7.3. 
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5. B e t t l  n u m b e r s  a n d  r a n k .  

Gromov's inequality (Theorem 3.8) 

~ bi(M ") < C(n, Hd ~) 

depends on a novel method of estimating Betti numbers (as well as on the interaction between 

curvature and critical point theory, in particular, Corollary 2.7). In the present section, we 

estimate Betti numbers in terms of an invariant called rank. This part  of the discussion (and much 

of that of w applies to metric spaces considerably more general than riemannian manifolds. In 

w we show that  in the context of Theorem 3.8, rank can be estimated in terms of curvature and 

diameter (specifically in terms of the numbers A/'( n, Hd 2 ) of Corollary 2.7 and N1 (n, Hd  2, 10 n+l) 

of Proposition 3.11). 

Let U1, U2 C M be open. The Mayer-Vietoris sequence, 

H'-*(U1 n U2) --, Hi(U1 U [72) ~ Hi(U1) �9 Hi(u2) 

leads immediately to the estimate 

bi(U1 U U2) < bi(U1 ) + b'(U2) + bi-l(U1 n U2) 

(we regard b/(X) = 0 for j < 0). 

This generalizes as follows: 

Consider U1 , . . . ,  Utr and put 

G(i)  : =  Uko n . . .  n uk i  

Proposition 5.1. 

Proof." Note that  

uo) 

U0 u . . .  u U,+l = (U1 u . - .  Ut) u Ut+l 

(U0 u . . .  u V't) n tr,+~ = (u0 n Ut+~) u . . .  u (~r, n tr,+~) 

Apply the previous estimate and induction to the pair (UI U . . .  U Ut), Ut+l and use induction to 

estimate bi-l((Uo U . .. U Ut) n Ut+1). 

It is extremely useful to further generalize these estimates to give bounds on the ranks of 

induced maps on cohomology (note b i = rk( Id n, )). 

Let Vla--~V2/~Vs be linear transformations of vector spaces. Then 

rk(fg)  < min(rk( f ) ,  rk(g)) . 
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U v w 

Thus, if A c B c C c D ,  with u, v, w, the inclusion maps and u*, v*, w*, the induced maps on 

cohomology, then 

(*) rk((uvw)*) <_ rk (v ' )  , 

D e f i n i t i o n  5.2.  If A C B let bi(A,B) denote rk(u*), where u* : H i ( B )  ~ Hi(A).  

R e m a r k  5.3. If A, B are open, with A C B, then there exists a submanifold,  Y" ,  with 

smooth  boundary,  such that  A C Y"  C B. Then  

bi(A,B) < bi(Y,Y ") = h i (y)  < cx~ . 

Let U~ C U] +1, i = 1 . . . . .  N ,  j = 0 . . . .  ,n  + 1. Pu t  X j = U,U].  Thus 

X ~ CX* C...cX "+I �9 

T h e n  we have the following generalization of Proposi t ion 5.1. 

P r o p o s i t i o n  5.4.  

b i (X~  "+1) < ~ bJ(u I U 1+1 , 
-- ~ (i-i) (i-j)) 

j,(i-j) 

The proof of Proposition 5.4, which is a standard application of the double Complez associated 

to an open cover, is given in the Appendix  to this section. 

We are part icular ly interested in coverings by balls. First  we note the obvious 

L e m m a  5.5.  

Br(pl) n . . .  n B~(pj) # 0 

implies that for 1 < i < j 

Br(pl)  N . . .  N B~(pj) C Br(Pi) C Bs~(pi) C Blot(p1) f ' l . . .  N Blor(P.i) �9 

P r o o f :  This  follows immedia te ly  from the tr iangle inequality. 

C o n t e n t .  

Pu t  

bi(r,p) :-- bi(Br(p), Bsr(P) ) 

cont(r,V) := ~ b'(r,p) 
i 

N o t e .  If r > d ia(M),  then bi(r,p) = bi(M). 

C o r o l l a r y  5.6.  

bi(Br(pl) N . . . B r ( p i )  , Blor(Pl) n . . . B l o r ( p i ) )  <- bi(r,P~) , 1 < i < j . 

P r o o f :  This  follows from Lemma  5.5 and the inequMity (*) preceding Definition 5.2. 
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Assume now that for any ball, B~(p), we have B,.(p) C uNI3,(pi),  with pi E Br(p) and 

N < N(e,  r). 

For the next corollary we will need the observation that if p' E B~(p), then by the triangle 

inequality, 

(+) Blo.~/lo(P') =B~(p ' )  C B ~ ( p ) .  

Coro l l a ry  5.7. I f  for all p' E B~(p) and j = 1 . . . . .  n + 1 

cont(10-Jr, f )  <_ c , 

then 

cont(r,p) ~ (n + 1) �9 2 N(l~ �9 c 

Proof :  Take a cover of B~(p) by balls Bao_(,+~)r(pi ) as above. Put U[ = Bloi-(.+~)~(pi) 
J and apply Proposition 5.4. The total number of intersections, U(i_i ), on the right-hand side of 

the inequality in Proposition 5.4 is at most (n + 1)2 N(a~ Also, by Corollary 5.6, we 

certainly have 

" U j + a  ~ < c .  bJ(Ur . _ i ~ _  

Since 

Br(p )  C U ~ c U "+1 c Bsr (p)  

(see (+) above) the claim follows from the inequality (*). 

Thus, the content of a given ball can be estimated in terms of the contents of certain smaller 

balls. 

There is an easier, but equally important means of estimating content. 

Compress ion  

Def in i t ion  5.8. We say B,.(p) compresses to 23,(q) and write Br(p) ~ B,(q) ,  if 

1) 5s + ~ < 5r. 

2) There is a homotopy, f t  : Br(p)  ---* Bsr(p), with )to the inclusion and f l (Br (p ) )  C B~(q). 

Note .  By 1), Br(p) ~ Bs(q) implies s < r. 

L e m m a  5.9. /f  Br(p) ~-~ B,(q) ,  then 

b~(r,p) < bi(s,q) . 

cont(r,p) _< coat(s, q) , 

Proof: Obvious by (,). 
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R a n k  

Now for each ball, Br(p) we define (inductively) an integer called the rank. This invariant 

enables us to conveniently combine our two methods of est imating content (Corollary 5.7 and 

Lemma 5.9). 

D e f i n i t i o n  5.10.  

i) rank(r ,p)  := 0, if Br(p) ~ B~(q), with Be(q) contractible. 

it) rank(r ,p)  :=  j ,  if rank(r ,p)  is not < j - 1 and if Br(p) ~ B,(q) ,  such that  for a l lq '  �9 B,(q),  

with ~1 ~ ~ s ,  we have rank(s ' ,q ')  <_ j - 1. 

R e m a r k  5.11.  Of necessity, there exists some Bs,(q ~) as in it) with rank(s ' ,q  ~) = j - 1; 

otherwise we would have rank(r ,p)  < j - 1. 

P r o p o s i t i o n  5 .12.  I f  balls of radiu~ < e are contractible, ~hen 

rank(r ,p)  <: log r /e  
- l o g 1 0  + 1 .  

P r o o f ;  Trivial by induction.  

C o r o l l a r y  5 .13.  

cont(r ,p)  _< ( (n  + 1)2N(lO-("+')r'r)) r a n k { r ' p )  . 

P r o o f :  By induction,  this follows from Corollary 5.7, and Definition 5.10. 

R e m a r k  5.14.  Needless to say, there is some degree of arbi trar iness involved in the choice 

of constants  5, 10, (and �89 which appear in Definitions 5.2, 5.10 (and 6.1) respectively. 

R e m a r k  5 .15.  In certain respects, our terminology and nota t ion in w167 differ somewhat 

from that  of [G]. 

A p p e n d i x .  T h e  g e n e r a l i z e d  M a y e r - V i e t o r i s  e s t i m a t e .  

Our  considerations here are very similar to those of [BT], Chapter  II. 

Let UiUi = X be an open cover of X.  Pu t  

C , , J  = e(oCi(U(o) 

where CJ(U(i)) denotes the space of s ingular  j -coehains,  with coefficients in some field. The double 

complex C* :=  ~ i , jC  i'j has two differentials, 

6 : C ~'j ~ C ~+ l"j , 6 2 = 0  

d : C  i ' j ---*C i'i+1 , d 2 = 0  

(d is induced by d : CJ(U(i)) --~ CJ+I(U(i))). The total differential, (d+6) ,  also satisfies (d + 6) 2 = 

0. 

A j -cocha ln  on X = UU i determines and is determined by x E C ~ with 6x = 0. Under  this 

identification d : C od --* C ~ corresponds to d : C J ( X )  ~ CJ+I(X) .  
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A basic fact we need is that C* is 6.acyclic for i > O, i.e. y 6 C i'j (i > 0); 6!1 = 0 implies 

y = 6z for some z 6 C i - l ' j .  

--k [T~ + 1 Let X k = UiU~, where U i C �9 . Denote by C*(k), the double complex associated to 

X k = OiUi k. There is a na tura l  restriction map rk : ci'J(]r ~ ci 'J(]r + 1), commut ing  with d, 6. 

P r o o f  of  P r o p o s i t i o n  5.4: Let ZJ C C~ + 1) N ker d + 6, be a space of representative 

cocycles, mapping isomorphically onto H J ( X  j+l ). We will define a filtration, 

Z j = Z j " i+, ~ z] ~ . . .  ~ z ~ ,  

such that  

( •  d im(Z~+, /ZJ , )  < E b'(Ur ) '  
s,(j-s) 

and if z 6 Z~, then r~ �9 r ~ . . .  r~(z) is exact. This will suffice to prove Proposit ion 5.4. 

Pu t  

Z] := {z 6 Z i I r ; ( z )  is d exact} . 

- 1 .  �9 J Choose a linear map d . r j ( Z j )  --+ C~ d d - l ( z )  = z. From 6z = O, d6 = -6d ,  we get 

d6d-1(z)  = 0 (and of course 6(6d-1(z))  = 0). 

Define Z J_l C Z j by 

zj:={  zLll " - 1 .  rj_16d v j ( z )  is dexac t  } 

By proceeding in this way, we obta in  Z]+ 1 D Z j D . . .  D Z0/, for which the inequali ty (x )  

obviously holds. 

Note that  z 6 Z0 / implies 

r ~ 6 d - l r ~ 6 d - 1 . . . 6 d - l r ; ( z )  ~ O,  

since an exact 0-cochaln vanishes identically. 

To show r ~ . . .  r~(z) is exact, put  

a, (_i)~+j-1~;... �9 -x �9 .6d-i~;)(~). = rs_ l (d  r , ) ( 6 d - l r : + l . .  

Then 

r ; . . . r ; ( z )  = ( d + 6 ) ( a j _ l  + . . . + a o )  �9 

Using 6-~ycliei ty,  choose bo 6 C-/-1'~ with 6bo -- ao. Pu t  a' 1 = al - dbo. Then  

r ~ . . . r ; ( z )  = ( d + 6 ) ( ~ _ 1  + . . . + a 0 -  ( d +  6)b0) 

= (d + 6)(~s-1 + ... +a2 +a~) 
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Proceeding in this way, we find by induction, 6 j - t  �9 C~ with 

r 0 - . . . r ; ( z )  ~-~ (d q- 6)5j-1 

Then,  we have 
r O . . . r ; ( z )  = d a j - 1  , 

0 = 6[Lj--1 , 

which completes the proof. 

6, R a n k ,  c u r v a t u r e  a n d  d i a m e t e r .  

In this section, we will show how a lower bound on curvature  leads to an est imate on 

rank(r ,p) ,  and hence via Corollary 5.13, to an es t imate  on cont(r ,p) .  For this purpose, it is 

convenient to work with a slightly modified definition of rank. 
1 

D e f i n i t i o n  6.1.  A ball, Br(p), is called incompressible if Br(p) ~-* B, (q)  implies s > ~r.  

It is obvious that  any ball, Br(p),  can be compressed either to a contractible ball (in which 

case rank(r ,p)  = 0) or to an incompressible ball. 

D e f i n i t i o n  6.2.  

i) rank'(p,  r) :=  0, if Br(p) ~-* B,(q),  with Be(q) contractible 

ii) rankl(p, r )  :=  j if rankl(p , r )  # j - 1 and Br(p) ~-+ B,(q)  such that :  Bs(q) is incompressible 

and for all q' �9 B~(q) and s '  < Ms, we have rank(q' ,  s ')  < j - 1. 

Thus,  we have modified Definition 5.10, by adding the s t ipulat ion that  the ball, Bs(q), of ii), 

must be incompressible. 

Clearly, rank'(p,  r) still satisfies the bound of Proposi t ion 5.12. Moreover,  it is obvious that  

rank(r ,p)  < rank ' ( r ,p )  . 

The  reason for insisting on incompressibil i ty in the definition of rank ' (r ,  p) stems from 

L e m m a  6.3.  Let B~(p) C M ~, a complete riemannian manifold. Assume 

5s + ~--,-~ < 5r , 

P,-"YJ -< 2r . 

Then if  Br(p) does not compress to Bs(y),  there exists a critical point, x, of y, with 

s < ~ , y  < r + p , y  . 

rhu~, z C Br+2~(p)  c Bsr(p). 

P r o o f :  If there were no such critical point,  then by the Isotopy Lemma  1.4, the ball Br+~,y(y) 

could be deformed to lie inside of Bs(y).  Since, 5s + ~ < 5r, and 

B~(p) c B . + ~ ( ~ )  c Bs~(p) , 
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this would contradict the assumption that B~(p) does not compress to B,(y) .  

Now we can show a connection between the size of rank~(r,p) and  the existence of critical 

points. 

We will need the observation that  if p' E B~(p), then by the triangle inequality, 

(*) Bs.I~/lo)(P') = B~/2(p') C Ba~/2(P) �9 

L e m m a  6.4. Let M "  be riemannian and let rank ' ( r ,p )  = j .  Then there exists y ~ Bsr(p) 

and x j , . . . ,  Xl E Bsr(P), such that for all i < j ,  xi is critical with respect to y and 

5 
xf,'y > ~x i - l - , y  �9 

P r o o f :  We can assume without loss of generality that B~(p) is incompressible (in this case, 

we will see that  y E B3r/2(P), xi E Bs~/2(p)). Put  pj = p, r i = r. By the definition of rank'(r,p), 

there exists 15j-1 E Br i (p j ) ,  § <- 1Agrj, such that  

By (*) above, 

rank ' (~j_l  ,iSj_l ) = j - 1 . 

B3rj/2(pj) ~ B s r ~ _ , ( ~ i - ~ )  �9 

If B§ , (iSj-1) is incompressible, put  

P i - 1  = / ~ i - a  , r j - 1  = §  �9 

If not,  there exists an incompressible ball, which in this case we call Br#_~(pj- l ) ,  such that  

B~,_ , (~j -1)  ~ B~_,(p~_~) and  

rankt ( r j -1  , Pi-1)  = J - 1 . 

Since B§ 1 (~j-1)  ~ Brj_~ (Pj-1)  implies Bs,.~_~ (pj-1)  C Bsr~_l (/~j-1), in either case we obtain 

Bs,~/2 (pj) ~ B5 ,~_, (pj  _ ~ ) 

Also, since in the second case r j -1  _~ r j - 1 ,  in either case, we have 

1 
rj--1 _~ ~-~rj . 

By proceeding in this fashion, we obta in  balls, B~(pi) ,  i = O, 1 , . . .  , j ,  such that  for 1 < i < j ,  

Brl (Pi) is incompressible and  
Bsrl/2(Pi) D Bsr,_~ (Pi-1) 

1 
r i_  1 < - ~  ri . 
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Put y = p0. Then, y E B3r,/2(pi), for all 1 < i < j .  In particular, 

1 
Pi,Y + 5 .  ~ri  < 4ri < 5ri , 

3 
Pi,Y <-- -~ri < 2ri 

(the conditions of Lemma 6.3). 

Since, Br~(pi) is incompressible, it does not compress to Br,/2(y). Thus, by Lemma 6.3, 

there exists a critical point, xi, with 

3 1 < ~ <  ri-{-9" ~ri 4ri 

C o r o l l a r y  6.5. 

Then, 
1 

x i , y  >_ ~ri 

> 5ri-1 

_ 45-4ri-1 

5 
> ~ z i - l , y .  

f ~V(n) 
rank(r,p) <_ ~. A/'(n, Hd 2) 

q.e.d. 

H = 0  
H < 0  . 

Proof." This follows immediately from Corollary 2.7, Lemma 6.4 and the inequality 

rank(r ,p)  _< rank'(r ,p) .  

P r o o f  o f  T h e o r e m  3.8: By Proposition 3.11, 

Nl(n, 10 -(~+1)) 
N(lO-(n+Dr'r) <- Nl(n, Hd 2, 10 -(n+l))  

with Nl(10-( '*+l)r ,  r) the covering number appearing in CoroLlary 5.7. Hence, by that  corollary, 

and by CoroUary 6.5 for all e > 0, 

E bi(M") = cont(d + e,p) 

< ((n + 1 )2~ )  ~r 

q.e.d. 

R e m a r k  6.6. Inspection of the bounds given in Corollary 2.7 and Proposition 3.11 (compare 

Corollary 2.11) reveals that the dependence on n of the constant C(n) in Theorem 3.8 is at worst 

of the form 2 z'" (for suitable a > 0). However, Abresch has shown that  by arguing more carefully 

(along essentially the same lines as we have done) one obtains C(n) < 2""a; [A], [Me]. Recall that 

in view of the existence of fiat tori, C(n) = 2 n is the best one could hope for. 
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7. Ricei c u r v a t u r e ,  v o l u m e  and  the  Laplacian.  

In this section we present some basic properties of manifolds whose Ricci curvature satisfies 

PdcM- >_ (n - 1)H. In particular, after proving Proposition 3.11, we derive some estimates 

involving the Laplacian, which are used in w There, we prove a theorem of Abresch-Gromoll, 

asserting that complete manifolds with Pdcu- > 0, which satisfy certain additional conditions, 

have finite topological type. 

Let {e,} be an orthonormal basis of 3I~'. We denote by Ric(u,v) the symmetric bilinear 

f o r m ~  

i 

Thus, Ric(u, v) is the trace of the linear transformation w ~ R ( w ,  u)v .  

We write 

RicM, >_ (n - 1)H , 

if 

Ric(v,v) >_ ( n -  1 ) / - / ,  

for all unit tangent vectors v. Of course, this condition is implied by K M ,  > H ,  but not vice versa. 

Suppose 71[0,s contains no cut point. Then the distance function, r = Pu(0), is smooth near 

7 [[0,~]. Put N = grad r. Thus, N(7(t)) = 7'(t). Let e2 , ' . . en  be orthonormal, with 

( e .  7'(0))~(0) = 0 ,  

~ N e i  = 0 . 

Then 

Also, 

We have, 

RicCN, N) = ~ ( ( V , ,  VN -- VNV,, -- V[,,,N])N, e , ) .  
i 

~T NN = 0 . 

- ~ ( V ~ V 0 , N ,  ~,) : - ~2  N<V:,N, ~,) 

- - m  I , 

where rn is the mean curvature of the distance sphere, 0Br(7(0) ), in the direction of the inner 

normal, - N  (and m'  Om = -~-r ). Finally, 

- Z(vE.,,~1~r e,> = - ~ < v . , ~ r  eA (% ~r ~,>, 
i,j 

= -IlHessrl}  2 , 

where Hessr denotes the Hessian of r. Thus, we get the basic equation, 

( .)  I]I-Iessrfl 2 + Ric(N, N) = - m '  . 
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Additionally, lett ing A denote tile Laplacian, we have 

~ r  = ( ~-[eiei  + N N  - Velei -- V N N ) r  
2 

Alternatively, this relation follows from the formula, for A in geodesic polar coordinates, 

02 
A = ~ + , . ( . , , ) ~  + 7~. 

where ~ is the intrinsic Laplacian of the distance sphere 0Br(7(a )  ). 

An invariant  definiton of the Laplacian is, 

& f  = t r(Hessl)  . 

ThUs, we also have 

tr(Hessr) = m . 

From the Schwarz inequality and the fact that one eigenvaiue of Hessr is = 0 (corresponding 

to the eigenvector, N),  we get 

?TZ 2 

(**) IIHessrll ~ >__ n - 1  

Subst i tu t ing (*) into (**) gives the differential inequality, 

Ric(N, N)  < m I . 
n - 1  

Note that ,  as r --* 0, 

n - 1  
Set u = - -  

m 

n -- I 
re(r) ~ - -  

r 

�9 Then if we assume RicM- k (n -- 1)H, we easily obta in  

U t 

- - > 1 .  
1 + H u  2 - 

By integrat ing this expression, we find that  RicM- > (n -- 1)H implies 

(-[-) re(X) ~ mH(r (x )  ) , 

or equivalently, 

(++) A t ( x )  ~_ AHr]r=r(z ) , 

where rag(r) ,  the mean  curvature of OBr(p_) C .A4"~ in direction - N ,  is given by 

{ vFffcot vFHr H > 0 
mH(r)  = (n -- 1) r -1 H = 0 

x/-L-H coth x / ~ r  H < 0 
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Let w denote the volume form on the unit sphere. Write 

dr A A(r)w 

for the volume form on M"  \ Cp, Then m = ~-. Differentiating A / A H , , - I  and using (+)  gives 

[A(r) /AH,, , -~(r)]  ~ , 

A ( r )  < A H  . . . .  l ( r )  �9 

(AH,n-I ( r )  is defined prior to Lemma 4.3.) 

Now, by arguing as in the proofs, of Lemma 4.3 and Proposition 4.7, we can immediately 

extend Lemma 4.3 as follows. 

P r o p o s i t i o n  7.1. Let RicM.  >_ (n -- 1)H and le~ X C M n be compact,. Then for rx < r~, 

Vol(Tr, (X ) )  Yn,H(rl ) 
Voi(Tr~(X) ) -> V.,n(r2--'--~" 

R e m a r k  7.2. In the basic case, X = p, the above inequality was emphasized in [G]; compare 

also [C2]. 
Proof of Proposition 3.11: Take a maximal set of points, pi, in Br-~/2(P) at mutual 

distance >_ ~. Clearly {Pi} is ~-dense in B~_~/2(p), and hence, e-dense in Br(p). The balls 

{B~/4(p~)} are all disjoint. Moreover, by Proposition 7.1, 

V,,n(e/4) < Vol(B~/4(pi)) 

V, .H(2r)  -- Vol(B2~(pi)) ' 

while since Br(p) C B2r(Pi), 

Vol( B ~ / 4 (pi ) ) 

Vol(B2r(pi)) 

Thus, the number of bails is bounded by 

Vol( B~/4(pi ) ) 
< Vol(Br(p)) 

V.,s(2r) 
Vn,H(e/4) " 

If B~(pj )N B~(pi) ~ 0, then B~(pj)  C B3~ (Pi). Then, as above, it follows that the multiplicity 

of our covering is bounded by 
v.,n(3~) 

q.e.d. 
Vn,H(e/2) " 

Now, the scale invariant inequalities of Proposition 3.11 follow by an obvious scaling argu- 

ment. 

R e m a r k  7.3. At this point it is clear that the hypothesis, RicM, _> (n -- 1)H, implies that 

the map in Proposition 4.7 is volume decreasing. 

We now observe that  the inequality, (++) ,  on the Laplacian of the distance function, can be 

generalized in a meaningful way so as to include points which lie on the cut locus. This discussion 

goes back to a fundamental paper of E. Calabi, [Ca]. 
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First we need some definitions. 

Def in i t i on  7.4. An upper barrier for a continuous function f at the point x0, is a C 2 

function, g, defined in some neighborhood of x0, such that g > f and g(xo) = f (xo) .  

The crucial observation for applications to geometry is the following. 

L e m m a  7.5. If  7(e) is a cut point ofT(0), then for all e < g, p-t(e)(x)+ e is an upper barrier 

for r = P~(o) at 7(e). 

P r o o f :  This follows immediately from the triangle inequality. 

Def in i t i on  7.6. We say Af(x0)  < a (and A ( - - f ( x o ) )  > --a) in the barrier sense if for all 

e > 0, there is an upper barrier f~0,~ for f at x0 with 

Afro. ,  <_ a +  e . 

Now we can generalize ( + + )  above as follows. 

P r o p o s i t i o n  7.7. Let M ~ be complete, with 

RicM- > (n -- 1)H . 

i) If  f ( r )  satisfies, f t  > O, then in the barrier sense, 

A f ( r ( x ) )  < AHf ( r ) [ r=r(x ) .  

ii) / f  f ( r )  satisfies f '  < O, then in the barrier sense, 

A f ( r ( x )  ) > AHf(r)[~=~(~) . 

P r o o f :  It suffices to prove i). At smooth (i.e. noncut) points, it is clear from (+)  and the 

formula for A in polar coordinates. At cut points, it follows immediately by using the barrier 

Functions which satisfy say A f  > 0 in the barrier sense, also satisfy a maximum principle. 

This fact (due to Calabi) was used by Eschenberg and Heintze [EH] to give a very short proof of 

the splitting theorem of [CGll]. (They also gave a somewhat longer, but completely elementary 

proof along closely related lines). Theorem 7.9 below, which is crucial for the discussion of w 

was part ly inspired by their work. 

T h e o r e m  7.8 (Maximum principle). Let M be a connected riemannian manifold and let 

f E C ~  Suppose that A f  > 0 in the barrier sense. Then f attains no weak local max imum 

unless i~ is a constant function. 

For completeness, in the Appendix to this section, we give a proof of Theorem 7.8. 

We now give an estimate of Abresch-Gromoll on the growth of nonnegative Lipschitz functions 

whose Laplacian is bounded above in the barrier sense. This will be applied to excess functions, 

i.e. functions of the form 

e(x) = ~ ,p  + ~ ,q  - p ,q  
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(for fixed p, q). The  es t imate  involves a comparison function on the model  space M~t. We now 

specify this function. 

Given y E M ~ ,  as usual, put  r (x)  :=  py(x). Fix R > 0 and a constant  b > 0. Then  there is 

a unique smallest function, G(r(x)) ,  defined on M ~  \ y_ satisying, 

I) G > 0 ( 0 < r < R )  

2) G ' < 0 ( 0 < r < R )  

3) G ( R )  = 0, 

4) A H G  - b, 

For any H,  the function G can be wri t ten in closed form; see [AG1]. Here we need only the 

case, H = 0, n > 2. Then,  

Let M n be complete  with Ricm-  >_ O, y E M ~, r ( x )  = py(x ) .  T h e n  by 2) and 4) together 

with Proposi t ion 7.7, 

(x) A G ( r ( x )  ) >_ b 

holds in the sense of barriers. 

For f a Lipschitz function on M n, denote by dil f the smallest constant  k such that  for all 

Xl~X2~ 

If(z1) - f (x2) l  < k za-TT~ �9 

T h e o r e m  7.9.  Let  M n be comple te ,  wi th  P~lCM" >__ (12 - -  1)H. Le t  u : B R + , ( y )  ~ R ( for  

s o m e  ~7 > O) be a L ip sch i t z  f u n c t i o n  sa t i s f y ing  

i) u > 0 ,  

ii) u(yo)  = O, 

f o r  s o m e  yo E B n ( y ) .  

iii) dil u < a, 

iv) Au  < b, 

in  the barr ier  sense .  T h e n  f o r  all c, wi th  0 < c < R 

u (y )  < a . c + G(c)  . 

P r o o f :  Take e < r / a n d  define the function G using the value R + e, in place of R. Since we 

can eventual ly let e > 0, it will suffice to prove the inequali ty in this case. 

In what  follows we write G for G(r(x)) .  Fix 0 < c < R and suppose the bound  is false. Then 

by iii), it follows that  

u I 0Be(y) > C l0Bc(y)  
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Also, by i) and property 3) of the function G, 

u l OBa+,(y) >_ G t OBR+,(y) �9 

Thus, the function (G - u) satisfies 

( G - u )  [ OBc(y) <_O , 

(G -- u) [ OBR+e(y) <_ 0 . 

However, by ii) and property 1) of G, 

( G -  ~L)(y0) > 0 .  

Hence, (G - u) [ Bn+,(y) \ Be(y) ha~ a strict interior maximum. But since by iv) and (x)  we 

k n o w  

A ( G  - u)  _> 0 

holds in the barrier sense, this contradicts the maximum principle (Theorem 7.8). 

R e m a r k  7.10. One easily checks that in the explicit formula for G in the case H = 0, the 

optimal value of c is the unique number satisfying 0 < c < R, and 

a n  
c( ( R / c ) "  - l )  = y 

However, in Corollary 7.11 below, a value which is approximately optimal is all that is required. 

As previously mentioned, Theorem 7.9 can be used to obtain an estimate on excess functions. 

Let 

E(x) = ~ + ~ - yl, y2 

be the excess function associated to yl, y2 6 M n. We can regard E ( z )  as the excess of any triangle 

with vertices x, yl, Y2 and all sides minimal. 

Let ~, be a minimal geodesic from yl to y2. The function E satisfies 

i) E ( x )  >_ 0, 

ii) E l 7 = 0 .  

iii) dil E _< 2. 

In case RiCM, >_ 0, by ( + + )  above and Proposition 7.7, we have 

iv) AE < ( n - -  1 ) ( 1  + 1 ) ,  

where s j (x )  = x, YJ" 

Define the function s(x)  by 

s ( x ) = m i n ( s l ( x ) , ~ 2 ( x )  

Define the height function, h(x), by 

h(x) = minx ,v( t )  , 
3",t 
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where 3' is a minimal  segment from gl to y_~. 

Clearly, h(x) = 0 implies E (x )  = 0 and, by the triangle inequality, 

E(x) <_ 2h(x) . 

Under  the assumption Rice',l- > 0, we now derive a quant i ta t ive  relation between the values 

h(x) and s(x) which guarantees that  E (x )  is small at the point x. 

C o r o l l a r y  7.11.  I.fRic,~[,, >_ O, then for h < �89 

E _< s(h'~)~/~ ~-1 ) 
3 

.S 

P r o o f i  The  function E satisfies the hypothesis of Theorem 7.9 with a = 2, b = 4(n - 1)/s.  

Use c = (2hn/~) 1/("-1) in the es t imate  

E <_ 2c+ G(c) . 

The sum of the first and third terms in the explicit expression for G is negative. The  middle term 

gives a contr ibution at most  equal to 

2(n - 1) 2 hn(2h~)(2-n)/(,~-l) < 4e 
~n n ----~ - - - 7 - "  - 

The claim follows immediately. 

R e m a r k  7 .12.  The  es t imate  we have derived is of par t icular  interest  at points  x, where h, 8 

are large individually, but  hn/s is small. Roughly speaking, such triangles might  be called "thin".  

R e m a r k  7 .13.  Suppose, in fact, that  KM~ _> 0. Let y0 be a closest point  to x among all 

points which lie on minimal  segments from yl to y~. Divide a tr iangle with vertices x, yl ,  y~ into 

two right triangles with vertices x, yl,  Y0 and x, y2, y0. Put  ~ = t i ,  j = 1, 2. Then  Toponogov's  

theorem B) gives 

8i < (h 2 + t ] )  1/~ , 

(vO 
< t~(i + 2 ( ~ - )  ~) . 

~j 

Thus,  for t = min(Q, t2) ,  we have 

E <<. ( h ) . h .  

If, at the point  x, the values h, t axe large but  h2/t is small, then E is still small. Note that  such 

thin triangles axe not required to be as thin as those in Remark  7.12. 

R e m a r k  7 .14.  Corollary 7.11 is the first es t imate in which a nontr ivial  bound  on a ~um of 

distance~, sl + ~2, is obtained from a bound on Ricci curvature.  But  at present,  there is no useful 

bound on the individual  s i ,  as in (v0.  
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A p p e n d i x .  T h e  m a x i m u m  p r i n c i p l e .  

P r o o f  o f  T h e o r e m  7.8: Let p be a weak local max imum i.e. f(p) >_ f (x)  for al l  x near p. 

Take a small normal  coordinate  ball, B6(p), and assume that  there exists z E OB6(p) such that  

f(p) > f(z).  Then,  by continuity, f(p) > f (z ' )  for z' E OB6(p) sufficiently close to z. Choose a 

normal  coordinate system, {xi}, such that  z = (6,0, . . .  ,0). Put  

r  = .q - <l(x~ + . . .  + ,,::,) , 

where d is so large that  if y E OB,5(p) and f (y)  = f(p) ,  then r < 0. Note that  grad r doesn't  

vm:ish. 

Pu t  

r  a ' ~ - l .  

Then  

Thus, for a sufficiently large, 

Moreover, 

For r / >  0, sufficiently small, 

A ( r  = ( a e l [ g r a d  r ~ + a z x r  ~* . 

A r  

r  = 0 .  

( f  + qr < f(P) �9 

Thus, f + r/r has an interior max imum at some point  q e B6(p). 

If fq,~ is a barrier  for f at q with Afq,, > -e ,  then fq,~ + rl~b is also a barr ier  for f + q r  at 

q. For e sufficiently small, we have 

ex(fq,, + , 1 r  > o .  

Since f + r/r has a local max imum at q, and 

fq,, + ,7 r  < f + , 7 r  

(fq,r + qr = ( f  + q~b)(q) , 

we find that  fq,, + ~/r has a local max imum at q as well. But this is incompat ible  with A(fq,, + 

7/r > 0. (Note that  in normal  coordinates at q, zh = rg~ + . . .  + 0,2). 

It follows that  for all small  6, we have f I OB6(p) = f(p). Since M is connected this implies 

f -- f(p). 
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8. N o n n e g a t i v e  lqicci  c u r v a t u r e ,  d i a m e t e r  g r o w t h  a n d  f i n i t e n e s s  o f  t o p o l o g i c a l  t y p e  

In this section we prove that if M "  is complete,  RicM- > 0, KM-  >_ --1, and if a certain 

additional condit ion holds, then has finite topological type i.e. M n is homeomorphic  t o  the 

interior of a compact  manifold with boundary. 

The  most general form of the additional condit ion uses the ray densi ty  func t ion .  ~ ( r , p ) ,  

associated to p 6 3 t " .  However in some ways, a s tronger condit ion formulated in terms of a 

second function, D(r ,p) ,  the diameter  growth flLnction is more natural .  

D e f i n i t i o n  8.1.  Let M ~ be complete. A ray is a geodesic, 3' : [0, oo) --* M n, each segment 

of which is minimal.  

When  M "  is complete and noncompact  then rays always exist. 

P r o p o s i t i o n  8.2. Let M n be complete noneompact.  Then for  all p, there exists at least one 

ray,. 3", with 3"(0) = p. 

P r o o f :  Since M ~ is not  compact,  there is a sequence, qi, with p, qi ---+ oo. Let 3 ì be minimal 

from p to qi and let {Tj} be a subsequence such that  3`}(0) --~ v, for some v 6 / ~ I ; ,  with Hvll = 1. 

Let 3  ̀ : [0, oo) ---. M "  be the geodesic with 3''(0) = v. Then  each segment,  3' I [0,[], is a l imit of 

minimal  segments,  7i I [0, g], and hence is minimal  itself. Thus 3  ̀is a ray. 

Let x 6 M ", and let 7 be a ray from p. Note that  if 

tl _< x , p - - x , 3 `  

t~ > x---,ff + x , 7  

then 

x, 7 = h(x)  , 

where h(x)  is the  height function of w for the excess function associated to the points  7 ( t 0 ,  

3`(t~). 
D e f i n i t i o n  8.3.  Define the ray density function by 

Tg(r,p) = sup {infx---,~ I 7 a ray, '7(0) = p} �9 
z6OB,(p) 

P r o p o s i t i o n  8.4.  Let M n be complete, with RiCM. > 0 on M n \ BA(p), f o r  some A < oo. 

A s s u m e  

T~(r,p) = o(r 1/") . 

Then  for all e > 0 there exists 6 > 0, such that  if x, 7 are as in Definition 8.3 (x arbi t rary)  with 

x , p  >_ 6 -1 , 

and t is sufficiently large relative to x----,-~, then the excess function associated to 7(0), 7(t)  satisfies 

E(x) < e . 
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Proof." For the case in which RicM- _> 0 on all of 3I".  this is immediate from Corollary 7.11. 

The general case is dealt with in the Appendix to this section. 

On the other hand, in case KM _> -1 ,  the following proposition provides a positive lower 

bound for E(x)  when x is critical with respect to say yl. 

Put x ,y l  = x, 

P r o p o s i t i o n  8.5. Let M "  be complete with ] ( , l I  n ~_ - 1  (H < 0). Let x be critical with 

respect to Yl. Then for all e > 0 there ezist~ b such that 

implies 

x, y2 >_5 -1 

0 

Proof." By Toponogov's theorem B) aald the assumption that x is critical with respect to Yl, 

it suffices to assume that x ,y l , y2  E M2_1 C M21 and that the minimal geodesics from x to Yl, 

Y2 make an angle zr/2. By hyperbolic trigonometry 

By the triangle inequality, 

coshgl, y2 =cosh s coshx, y2 

As both yl ,y2,  and ~ --* e~ with a fixed, 

cosh x, Yl ._~ ex,V----u 

cosh  Yl, Y2 

The claim follows easily. 

By combining Propositions 8.4 and 8.5 we obtain 

T h e o r e m  8.6 ( A b r e s c h - G r o m o l l ) .  Let M n be complete with 

i) RicM. > 0 on M n \ Bx(p),  for 8ome A, 

ii) T~(r,p) = o(rl /n),  for some p E M ~, 

iii) K M ,  >_ H > - ~ .  

Then there ezista a compact set, C, such that M ~ \  C contain8 no critical points of p. In particular, 

M n has finite topological type. 

We now define the diameter growth functin 7?(r, p). For every r, the open set 

M ~ \ Br(p) contains only finitely many unbounded components, Ur. Each Ur has finitely many 

boundary components, Er C OBr(p). In particular Er is a closed subset. 

Let dia(Er) denote maximum distance, meaaured in M " ,  between a pair of points of Er. 

Def in i t ion  8.'/'. 

D(r, p) = sup dia(~r) . 
E, 
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Given any boundary  component,  E~, we can construct a ray, 7, such that  "r C U r ,  for t > r 

and so, 3~(r) E U~. To do so, it suffices to choose the sequence of points,  {qi}, of Proposit ion 8.3 

to lie in Ur. Then  the convergent subsequence -'r satisfies the condit ions above. Hence 3' satisfies 

them as well. 

With  this observation, it follows immediately from the proof of Theorem 8.6, that  if we 

assume 

~(r , l ) )  = o(rW~ ) , 

then for r >_ r0 sufficiently large, no point of any set ~,r is critical with respect to p. 

Fix to, Uro, a boundary  component Ero and a ray % with 3'(r0) E Er0, 3'{.t) E Ur0, for 

t > r0. For each t > r0, let Et denote the boundary  component  of the unbounded  component of 

M ~ \ Bt(p) with 3`(t) C Et. Using the observation of the previous paragraph and the Isotopy 

Lemma 1.4, we easily construct  an imbedding, 

r : (r0, oo) x 20 ~ U~ , 

such that 

r  E r 0 ) ) =  E , .  

It follows easily that  lp((r0, oo) x Er0) ) is open and closed in Ur0. Hence 

~b(O'0,oo) x 2 r 0 ) =  Ur0 �9 

Thus we obta in  

T h e o r e m  8.8 (Abresch-Gromoll).  Let M n be complete with 

i) PdcM, > 0 on M n \ Bx(p),  for some A, 

ii) ~)(r,p) = o(r 1/n) for some p E M ~, 

iii) K M  n ~> - H  > - o o .  

Then 

9Z(r,p)  = o ( r l / " )  . 

Thus there exists a compact set C such that M n \ C contains no critical points of p. In particular, 

M n has finite topological type. 

R e m a r k  8.9.  Clearly, any two points on OBr(p) can be joined by a broken geodesic passing 

through p of length 2r. Thus,  one always has 

T)(r,p) <_ 2r , 

for the function, ~D(r,p), defined in Definition 8.7. However, it is also of interest to consider 

modified definitions of diameter  growth, for which the above inequality, need not  hold. For such 

definitions and their geometric significance, see [AG1], [Liu], [Shen], [Z]. 
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R e m a r k  8.10.  Examples of enid [SHY] show that if i) and iii) of Theorem 8.8 are retained 

but  (e.g. if n = 7) ii) is weakened to "D(r,p) = O(r 1/2 ) then the conclusion fails; see also [AnKLe]. 

R e m a r k  8.11,  For further results related to those of this section; see Shen. 

Appendix .  Nonnegat ive  Ricci curvature outside a compact  set.  

P r o o f  o f  P r o p o s i t i o n  8.4: The triangle inequality implies that  for 0 < tl < t the excess 

function, /~, associated to "/(tl ), 7(t) satisfies 

E<__~ 

(where E is the excess function associated to 7(0), 7(t)). Thus it suffices to show that  if x-~ is 

sufficiently large and t l ,  t are suitably chosen, t h e n / ~  can be made arbitrari ly small. 

Clearly, we need only ensure that in the present more general s i tuat ion the bounds on 

AG,  A E  I Bt,(~)(x) are just  as in the case in which RicM- >_ 0 on all of M" .  This is clear 

for AG,  since Bh(x)(x) N B.x(p) = (3, provided ~ is sufficiently large. 

As for the function L', it clearly suffices to know that a minimal  geodesic, a, from 7( t l )  or 

"y(t) to z e Bh(~:)(x) does not intersect B),(p). Consider, for definiteness, the point 3'(Q) and 

suppose a fq B,~(p) r 0. Then by the triangle inequality, 

(,) " r ( h ) ,  z > ( t ,  - ~ )  + (.~-;--~ - h ( z )  - ~ ) ,  

On the other hand,  if t_ is a point on 7 closest to x, clearly 

Also 

Combining these gives 

( ** )  

From (*), (**), we get 

and, we can take t l  = 2h(z) + A. 

[AI 

7(t),  z < 2h(x) . 

t - t~ <_ ~ , p  + h ( x )  - t~ . 

7 ( t l ) , z  < x--,-~ + 3h(x) - tl  �9 

tl  < 2 h ( x ) + A ,  

The argument  for 7(t)  is similar to the one just  given. 
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