Large Riemannian Manifolds

M. Gromov

```
Institut des Hautes Études Scientifiques
35, Route de Chartres, 91440 Bures-Sur-Yvette
France
```

We want to discuss here several unsolved problems concerning <u>metric</u> <u>invariants</u> of a Riemannian manifold V = (V, g) which mediate between the curvature and topology of V.

1. VOLUME OF BALLS $B_{i}(\rho)$ IN LARGE MANIFOLDS V.

Assume V is complete and define for all $\rho > 0$.

$$\sup Vol(V; \rho) = \sup_{V \in V} Vol B_{V}(\rho)$$

for the balls $B_v(\rho) \subseteq V$. If V has bounded geometry (e.g. compact), then the behavior of sup Vol(V; ρ) for $\rho \longrightarrow 0$ is controlled by the lower bound of the scalar curvature of V, called

$$\inf_{v \in V} S(v) = \inf_{v \in V} S(v, v).$$

On the other hand, the asymptotic behaviour of sup Vol for $\rho \longrightarrow \infty$ has a topological meaning if, for example, V is metrically covers some compact manifold.

1.A. Vague Conjecture.

If V is large compared to \mathbb{R}^n for $n = \dim V$, then $\sup Vol(V; \rho) \ge \sup Vol(\mathbb{R}^n; \rho) = A_n \rho^n$,

where A_n is the volume of the unit ball in \mathbb{R}^n . Furthermore, inf S(V) = 0 for large manifolds V (compare [GL] and [S]). To make sense of 1.A, we give several precise notions of largeness.

\mathcal{L}_1 . Contractible almost homogeneous manifolds (CAH).

This means that V is contractible and that the action of the isometry group Is(V) is cocompact on V. For example the universal coverings of compact aspherical manifolds are CAH.

\mathcal{L}_2 . Geometrically contractible manifolds (GC).

Define $GC_k(V, \rho)$ for all $\rho \ge 0$ to be the lower bound of the numbers $r \ge \rho \ge 0$, such that the inclusion of the concentric balls in V

$$B_{v}(\rho) \longrightarrow B_{v}(r)$$

is a k-contractible map for all $v \in V$.

Recall, that a continuous map $f: X \longrightarrow Y$ is called k-degenerate, if there exist a k-dimensional polyhedron P and continuous maps $f_1: X \longrightarrow P$ and $f_2: P \longrightarrow Y$, such that $f = f_2 \circ f_1$. Then, f is called k-contractible if it is homotopic to a k-degenerate map.

A manifold V is called GC if $GC_0(V, \rho) < \infty$ for all $\rho \ge 0$.

Obviously, CAH \implies GC. (Compare [G]₂ P.43.)

\mathcal{L}_3 . <u>Manifolds with</u> Diam_{n-1} = ∞ .

Define $\operatorname{Diam}_{\mathsf{k}} \mathsf{V}$ to be the lower bound of those $\delta > 0$ for which there exists a continuous map of V into some k-dimensional polyhedron, say f: $\mathsf{V} \longrightarrow \mathsf{P}$, such that

Diam
$$f^{-1}(p) < \delta$$
,

for all $p \in P$ (compare [G]₂ P.127).

It is not hard to prove the following relation between Diam_{k} and GC for $k + \ell = n - 1 = \dim V - 1$ (compare [G]₂ P.143).

There exists a function $\rho_n(\delta)$ for $\delta \ge 0$, such that

$$\text{Diam}_{k} \mathbb{V} \leq \delta \Longrightarrow \text{GC}_{\ell}(\mathbb{V}, \rho) = \infty \text{ for } \rho \geq \rho_{n}(\delta).$$

In particular, GC \implies Diam_{n-1} = ' ∞ .

 \mathcal{L}_4 . Manifolds with Cont_{n-1}Rad = ∞ .

Imbed V into the space of functions $L_{\infty}(V)$ by $v \longmapsto dist(v, *)$. If V is compact, define $\operatorname{Cont}_{k}\operatorname{Rad} V$ to be the lower bound of the numbers $\varepsilon \geq 0$, such that the inclusion map of V into the ε -neighborhood $U_{\varepsilon}(V) \subset L_{\infty}(V)$ is k-contractible, where the function space $L_{\infty}(V)$ is equipped with the L_{∞} -norm:

$$\left|\left|f(v)\right|\right| = \sup_{V \in V} \left|f(v)\right|$$

(compare [G]₂ P.P.41, 138).

If V is noncompact, one modifies this definition by restricting to proper k-contracting homotopies which keep pull-backs of bounded subsets in $U_c(V)$ bounded in V.

It is easy to see that

$$Cont_k Rad V \leq \frac{1}{2} Diam_k V$$

and that

GC \implies Cont_{n-1}Rad = ∞ .

Furthermore, (see [G], P.138).

$$Cont_{n-1}Rad V \leq C_n (Vol V)^{1/n}$$

for some universal constant $C_n > 0$. In particular

$$CG \implies Vol V = \infty$$
.

\mathcal{L}_5 . <u>Manifolds with</u> Fill Rad = ∞ .

Define Fill Rad V to be the minimal ε for which V is \mathbf{z}_2^- homologous to zero in the ε -neighborhood $U_{\varepsilon}(V) \in L_{\infty}(V)$ (compare [G]₂ P.41). Clearly, Filling Rad $\leq \operatorname{Cont}_{n-1}$ Rad. Yet Fill Rad > 0 for all manifolds V. (See [G]₂ for applications of Fill Rad and [K] for a computation of Fill Rad of some symmetric spaces). It is also clear that

Also notice that Fill Rad decreases under proper distance decreasing maps $V_1 \longrightarrow V_2$ of degree one (mod 2) (see [G]₂ P.8).

$\boldsymbol{\mathcal{L}}_6$. Hyperspherical manifolds.

Assume V is oriented and define HS $\operatorname{Rad}_{k}V$ to be the upper bound of those numbers $R \geq 0$ for which there exists a proper Λ^{k} -contracting map of V onto the sphere $S^{n}(R) \subseteq \mathbb{R}^{n+1}$ of radius R, say

f: $v \longrightarrow s^n(R)$,

such that deg $f \neq 0$. Here "proper" means that the complement of some compact subset in V goes to a single point in S^n and " Λ^k -contract-ing" signifies that f decreases the k-dimensional volumes of all k-dimensional submanifolds in V (compare [GL]). One says that V is HS if HS Rad₁V = ∞ .

<u>Remark</u>. One can modify the definition of HS Rad by restricting to maps f with deg f \equiv 1 (mod 2). Then modified HS clearly implies Fill Rad = ∞ .

Stable classes \mathcal{L}_{i}^{+} and \mathcal{L}_{i}^{-} .

Given a class \mathfrak{L} of n-dimensional manifolds. One defines V \mathfrak{L}^+ iff V admits a proper distance decreasing map of degree one onto some manifold V' \mathfrak{L} . One also defines V \mathfrak{L}^- iff the existence of a proper distance decreasing map V' \longrightarrow V of degree one implies V' \mathfrak{L} . The stabilization \mathfrak{L}^+ looks interesting for the classes \mathfrak{L}_2 , \mathfrak{L}_3 and \mathfrak{L}_4 . Furthermore, it is logical to allow an arbitrary pseudo-manifold V' in the definition of \mathfrak{L}_3^- and $\mathfrak{L}_4^$ and to stabilize (in an obvious way) the invariants Diam_k and Cont_kRad in order to match the classes \mathfrak{L}_3^- and \mathfrak{L}_4^- . Following this line of reasoning, one can define Diam_k h and Cont_kh for an arbitrary homology class h in V by representing h by distance decreasing maps V' \longrightarrow V for dim V' = dim h.

1.B. On the Vague Conjecture.

There is no solid evidence for 1.A for manifolds in the classes \mathcal{L}_{i} and \mathcal{L}_{i}^{\pm} . One even does not know if

sup Vol(V;
$$\rho$$
) > $\pi \rho^2$

for CAH surfaces. However it is easy to see that

$$\sup Vol(V; \rho) > 3\rho^2$$

for GC surfaces (compare $[G]_2$ P.40). This suggests relaxing 1.A to the inequality

$$\sup Vol(V; \rho) \ge C_{p} \rho^{n}$$
(1)

for some universal constant in the interval $0 < C_n < A_n$. In fact, (a quantitative version of) (1) is proven on P.130 in [G]₂ for manifolds V with Diam_{n-1}V = ∞ , provided Ricci V > -1.

Finally, a non-sharp version of 1.A is known to be true asymptoticly for $\rho \longrightarrow \infty$ for CAH manifolds. Namely, the polynomial growth theorem for abstract groups reduces the problem to the universal covering $V \longrightarrow T^n$ of the homotopy n-torus T^n and the argument on P.100 in [G]₂ yields the bound

$$\liminf_{\rho \to \infty} \rho^{-n} \text{ Vol } B(\rho) \ge C_n > 0$$

for the concentric balls $B(\rho)$ in the universal covering of T^n .

Now, we turn to the inequality inf $S(V) \leq 0$ for large manifolds V. One is able to prove (see [GL] and [G]₂ P.129) that

$$\inf S(V) \leq (\pi 6\sqrt{2}) / \text{Diam}_{V} V)^{2}$$
(2)

for complete simply connected 3-manifolds. In particular $\text{Diam}_1 V = \infty$ implies inf $S(V) \leq 0$ for these V. Next one believes that

$$\inf S(V) \leq C_n (HS Rad_2 V)^{-2}.$$
(3)

This is proven for spin manifold V in [GL] and a similar inequality is anounced in [S] for the general case. Yet, one does not know the best constant C_n in (3). For example, let a metric g on S^n satisfy $g \ge g_0$ for the standard metric g_0 on S^n . One does not know if inf $S(g) \le S(g_0)$.

Many CAH manifolds V are shown to be HS (see [GL] and references therein) and no counterexample to CAH \implies HS is known. More generally, let V' be a closed manifold whose classifying map to the Eilenberg Maclain space K(π , 1) for $\pi = \pi_1(V')$ sends the fundamental class [V] (here, V is assumed oriented) to a <u>non-zero</u> class in H_n(K(π , 1); **Q**). Then, one asks if the universal covering V of V' is HS. (The HS property of V does not depend on the metric in V'). If so, the manifold V' admits no metric with S(V) > 0 as it follows from (3).

If $V \in \mathcal{L}_i$, i = 1, ..., 6, then, clearly, $V \times \mathbb{R}^N \in \mathcal{L}_i$ for all N. In particular, if V is HS then $V \times \mathbb{R}^N$ also is HS. The converse is unlikely to be true but no counter example is known. On the other hand, the largeness of $V \times \mathbb{R}^N$ has roughly the same effect on S(V) as that of V itself. Namely,

$$\inf S(V) \leq C'_{n+N} (HS \operatorname{Rad}_2 V \times \mathbb{R}^N)^{-2}, \qquad (3')$$

provided V is spin (compare [S] for non-spin manifolds).

2. MANIFOLDS WITH K \geq 0.

Let V be a complete connected manifold with non-negative sectional curvature. Then one can show that the largeness conditions \mathcal{L}_i are equivalent for i = 3, 4, 5, 6, and V is \mathcal{L}_i -large for $i = 3, \ldots, 6$ if and only if

$$\sup \operatorname{Vol}(V; \rho) = \sup \operatorname{Vol}(\mathbb{R}^{n}; \rho) = A_{\rho} \rho^{n}$$
(4)

for all $\rho \ge 0$. Furthermore, if

$$\sup Vol(V; 1) < A' < A_n$$
,

then

$$\sup \operatorname{Vol}(V; \rho) \leq C \rho^{n-1}$$
(5)

for all $\rho > 1$ and for some universal constant C = C(n, A').

If in addition to $K(V) \ge 0$ one assumes $S(V) \ge \sigma^2 > 0$, then one can strengthen (5) by

$$\sup \operatorname{Vol}(V; \rho) \leq C'_{n,\sigma} \rho^{n-2}$$
(5')

and show that

$$\operatorname{Diam}_{n-2} V \leq C''_{n,\sigma} / \sigma.$$
(6)

2.A. Open Questions.

(a) It seems likely, that complete hyperspherical manifolds with K(V)
 > 0 are geometrically contractible.

(b) The relating (4), (5) and (5') may generalize to the case Ricci V ≥ 0 . This seems quite realistic if $|K(V)| \leq 1$ and Inj Rad V ≥ 1 . (c) It is unknown if (6) holds true for <u>all</u> complete manifolds with $S(V) \geq \sigma^2$.

2.B. Idea of the Proof of (4) - (6).

For certain sequences of points $v_i \in V$ the sequences of the pointed metric spaces (V, v_i) converge in the Hausdorff topology to isometric products $\mathbb{R}^d \times V'$ for (possibly singular) spaces V' with $K \ge 0$. If d is the largest possible, then V' with is compact and $\operatorname{Diam}_d V \le \operatorname{const} \sup \operatorname{diam} V'$. In particular, if V is large, then (the maximal) V'd = n and $\lim_{i \to \infty} V_i$ (g) = $A_n \rho^n$. This proves (4); the inequalities (5), (5') and (6) follow by a similar argument.

2.C.

To grasp the geometric meaning of the invariants $\operatorname{diam}_k V$, consider the Euclidean solid

$$V' = \{(x_0, \ldots, x_{n-1}) | |x_k| \le \text{Diam}_k V, k = 0, \ldots, n-1\} \subset \mathbb{R}^n.$$

One believes that every compact manifold V with (possibly empty) convex boundary and with $K(V) \geq 0$ roughly looks like V'. For example, the volume of V' seems a good approximation to Vol V and the spectrum of the Laplace operator on V' might approximate that on V. Namely, the corresponding numbers of eigenvalues $\leq \lambda$ are conjectured to satisfy,

$$N'(C_n\lambda) \ge N(\lambda) \ge N'(C_n^{-1}\lambda).$$

A similar rough approximation is expected for small balls in manifolds with $K(V) \leq 1$. Here the case $|K(V)| \leq 1$ looks easy.

2.D. Manifolds with $S_k(V) \ge \alpha$ and $R_k(V) \ge \alpha$.

Write $S_k(V) \ge \alpha$ if the average of the sectional curvatures over the 2-planes in every tangent k-dimensional surface in T(V) is $\ge \alpha$. Write $R_k(V) \ge \alpha$ if the sum of the first k eigenvalues of Ricci on $T_V(V)$ is $\ge \alpha$ for all $v \in V$. One does not know the geometric significanse of the inequalites $S_k \ge 0$ for $3 \le k \le n - 1$ and $R_k \ge 0$ for $2 \le k \le n - 1$, unless some additional conditions are imposed on V. What one wishes is an upper bound like $\text{Diam}_{\ell} \le C/\sigma$ for $S_{\ell+2} \ge \sigma^2$. Here is a simple fact supporting this conjecture.

Let V be a complete manifold with Ricci ≥ 0 and $R_k \geq \sigma^2$ for some fixed $k \leq n$. Then sup Vol(V; ρ) $\leq C\rho^{k-1}/\sigma$ provided $|K(V)| \leq const < \infty$ and Inj Rad V $\geq \varepsilon > 0$.

This is shown by a limit argument as in 2.B.

Observe, that the inequality $R_k \geq \alpha$ defines a <u>convex</u> subset in the space of the curvature tensors on every space $T_v(V)$. This insures the stability of this inequality under certain (weak) limits of metrics.

3. VERY LARGE MANIFOLDS.

Define $\operatorname{Vol}_k(V)$ as the lower bound of those $s \geq 0$ for which there exists a simplicial map $f: V \longrightarrow P$ for some smooth triangulation of V and some (n-k)-dimensional polyhedron P, such that the k-dimensional volume of the pull-back $f^{-1}(p) \in V$ is $\leq s$ for all $p \in P$. It is known that

$$(Vol_k V)^{1/k} \ge C_n$$
 Fill Rad V,

for all complete manifolds V (see [G]₂ P.134), but a similar inequality with C_k instead of C_n (here $n = \dim V$) is unknown.

Next, let

$$h_{k}(V; \rho) = \inf_{V \in V} \log \operatorname{Vol}_{k} B_{V}(\rho)$$

for the ball $B_{V}(\rho) \subset V$ and define the entropy $h_{L}(V)$ by

$$h_{k}(V) = \liminf_{\rho \to \infty} \rho^{-1}h_{k}(V, \rho).$$

The most interesting is the entropy of the universal coverings \tilde{V} of compact manifolds V. Here one expect the ratios such as $h_k(\tilde{V})/(\text{Vol }V)^{1/n}$ or as $h_k(V)/\text{Diam}_{\mathcal{V}}V$ to bound some topological invariants of V. It is known, for instance, that

$$(h_{n}(\tilde{v}))^{n}/\text{Vol } v \geq C_{n}||v||$$
(7)

where $\|V\|$ denotes the <u>simplicial volume</u> of V, that is, roughly speaking, the minimal number of simplices needed to trianglate the fundamental classes of V (see [G]₁ P.245).

If \tilde{V} is contractible, then one expects a similar bound for Pontryagin numbers and for the L₂-Betti numbers of V (see [G]₁ P.293 for related results).

A complementary problem is to bound h_k by some curvature condition on V. For example, does the inequality $S(V) \ge -\sigma^2$ implies $h_2(V) \le C\sigma$? Here is a closely related.

3.A. Conjecture.

Every closed manifold V with $S(V) > -\sigma^2$ satisfies

$$||V|| \leq C_n \sigma^n \text{ Vol } V.$$
(8)

Remarks.

(A) The inequality (8) for Ricci $V \ge -\sigma^2$ follows from (7), but the best constant C_n is unknown for $n \ge 3$. (B) One can imagine a stronger version of (8), namely

$$||V|| \leq C_n \int_V |S_v(V)|^{n/2} dV$$
 (8')

where $S_V = \min(0, S_V)$. But this is unknown even with K(V) in place of S(V). In fact, the only known lower bound for the total curvature $\int_{V} |K|_{v}^{n/2} dv$ comes from characteristic numbers of V. One does not know, v for example, if every hyperbolic 3-manifold admits a sequence of metrics such that $\int_{V} |S_v|^{3/2} dv \longrightarrow 0$, even if one insists on K < 0 for these metrics.

3.B. Specific Entropy sh_kV.

Let $\operatorname{sh}_k(V; \rho)$ be the upper bound of the numbers $\ell \geq 0$ with the following property. There exists a C^1 -map f: V \longrightarrow V, such that dist(f, Id) $\leq \rho$ and every k-dimensional submanifold V' in V satisfies

 $\log \operatorname{Vol}_k V' - \log \operatorname{Vol}_k f(V') \ge \ell$.

Then set

$$sh_k V = \liminf_{\rho \to \infty} \rho^{-1} sh_k(V; \rho).$$

Observe, for the universal covering \tilde{V} of a compact manifold V, that $\mathrm{sh}_k \tilde{V} = 0$ iff the fundamental group $\pi_1(V)$ is amenable and that $\mathrm{sh}_2 \tilde{V} > 0$ iff $\pi_1(V)$ is hyperbolic (e.g. V admits a metric with K < 0). Furthermore, every symmetric space with K ≤ 0 and rank = 2 has $\mathrm{h}_k > 0$ and $\mathrm{sh}_k > 0$ if and only if k > 2.

Conjecture. Let V be a complete geometrically contractible manifold with $S(V) \ge -\sigma^2$. Then

 $sh_2 V \leq C_n |\sigma|$.

A related question is as follows. Let V be a compact manifold with $S(V) \geq \sigma^2$. Does there exist a (possibly singular) 2-dimensional surface (or a varifold) V' \subseteq V, such that Area V' $\leq C_n \sigma^{-2}$? In fact, one expects that

$$\operatorname{Vol}_2 V \leq C_n \sigma^{-2}$$
.

4. NORMS ON THE COHOMOLOGY AND ON THE K-FUNCTOR.

The L_{ω} -norm on $H^*(V; \mathbb{R})$ is obtained by minimizing the L_{ω} -norm = $\sup_{V \in V} ||_{V}$ of closed forms ω representing classes in H^* (see §7.4 in [G]₂ for details and references). Next, for an isomorphism class α of an orthogonal or unitary vector bundle $X \longrightarrow V$ we define $||\alpha||$ by minimizing the L_{ω} -norm of the curvature forms of (orthogonal or unitary) connections on X. An alternative "norm", called $||\alpha||^+$, is obtained by minimizing the Lipschitz constant of classifying maps of V into the pertinent Grassmann manifold G. Clearly

 $||\alpha|| \leq C ||\alpha||^+$

for $C = C(n, \dim \alpha)$. Furthermore, if α is the class of a complex line bundle, then $||\alpha|| = ||c_1(\alpha)||$ for the first Chern class $c_1(\alpha)$. In fact, every closed 2-form ω on V in an <u>integral</u> cohomology class is the curvature form of some line bundle with curvature = ω .

4.A. Theorem (see [G1L], [G]1 P.294 and references therein).

Denote by s = s(V) the minimal norm $||\gamma||$ for all orthogonal bundles with $w_2(\gamma) = w_2(V)$ for the second Stiefel Whitney class w_2 . Then every unitary β satisfies

$$|\{ch \ \beta \cdot \hat{A}(V)\}[V]| \leq C_n N(C_n'(s+||\beta||) - C_n'\sigma)$$
(9)

Corollaries.

(a) No metric g on V with $S(V, S) \ge \sigma > 0$ can be too large.

<u>Proof</u>. Take some β for which the left hand side of (9) does not vanish and observe that $s \longrightarrow 0$ and $||\beta|| \longrightarrow 0$ as g is getting large. If n is odd, apply the above to $V \times S^1$ for a long circle S^1 .

(b) Let (V, g) be a closed oriented manifold, such that, for a fixed metric g_0 on V, one has $g \wedge g \geq g_0 \wedge g_0$, that is the identity map $(V, g) \longrightarrow (V, g_0)$ decrease areas of the surfaces in V. Then the Laplace operator on (V, g) satisfies for all $\lambda \geq 0$

$$N^{2/n}(\lambda) \ge C_n \lambda + C_n' \sigma - C'', \qquad (9')$$

where $\sigma = \inf S(V, g)$ and where the constant C" depends on (V, g_0) . Furthermore, if V is spin, then

$$N^{2/n}(\lambda) \geq C_n \lambda + C_n \sigma - C_n \rho^{-2},$$

where $\rho = HS \operatorname{Rad}_{2}(V, g)$.

Proof. Apply (9) with appropriate β and γ .

Remarks.

(1) The inequalities (9') and (9") can be applied to the universal covering of V where the dimension $N(\lambda)$ is understood in the sense of Von Neumann algebras. (2) The best constants C" in (9') seems an interesting invariant of (V, g_0) .

The norm of an appropriate β (as well as of s(V)) can be often made arbitrary small by passing to the universal covering \tilde{V} of V where some version of (9) still holds true (see [GL]). This is so, for instance, if \tilde{V} is a hyperspherical manifold with $w_2(\tilde{V}) = 0$. In this case (9) implies inf $S(V) \leq 0$ for every metric on V. Furthermore, the norm $||\beta||^+$ also becomes arbitrary small in the hyperspherical case. Thus, by combining [GL]-twisting with [VW]-untwisting (see [VW]), one gets the following result. 4.B.

Let the universal covering \tilde{V} of a compact manifold V be spin and hyperspherical. Then the spectrum of the Dirac operator on \tilde{V} contains zero.

<u>Remark</u>. A similar argument applies to the Laplace operator on <u>forms</u> on \tilde{V} . However, the Laplace on functions on \tilde{V} contains zero in the spectrum iff $sh_n\tilde{V} = 0$.

<u>Question</u>. Let V be a "large" manifold, e.g. V is contractible and covers a compact manifold V'. Does the spectra of Dirac and Laplace (on forms!) contain zero? This is likely if $\pi_1(V')$ satisfies the strong Novikov conjecture.

4.C. Symplectic Forms.

Let ω be a symplectic (i.e. closed and nonsingular) 2-form on a closed manifold V. Write $g \geq \omega$ if the L_{∞} -norm of ω with respect to (the metric) g is ≤ 1 and set

$$\|\omega\|_{S} = \sup_{g \ge \omega} \sigma_{g}$$

for $\sigma_{g} = \inf S(V, g)$. If V is spin and if some real multiple of ω represents an <u>integral</u> class in H*(V; **R**) then (9) implies $||\omega||_{S} < \infty$. Furthermore all metrics $g > \omega$ on V satisfy

$$N^{2/n}(\lambda) \ge C_n \lambda + C'_n \sigma_y - C''$$
(10)

for some (interesting ?) constant $C^* = C^*(V, \omega)$ (compare (9')).

Question. Are the spin and the integrality conditions essential ?

How can one evaluate $\left|\left|\omega\right|\right|_{S}$ for known examples of symplectic manifolds ?

Observe the following useful property of the L_{∞} -norm on the image I* = f*(H*(K; R)) < H*(V; R) for an arbitrary continuous map f: V $\longrightarrow K$ where K = K($\Gamma/1$) for a residually finite group Γ . For every $\alpha \in I^*$ and every $\varepsilon > 0$, there exists a finite covering $\tilde{V} \longrightarrow V$ and some integral classes $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_p$ in $H^*(\tilde{V}; 2) \subset H^*(V; \mathbb{R})$ such that $||\alpha_i|| \le \varepsilon$ for $i = 1, \ldots, p$ and the pull-back $\tilde{\alpha} \subset H^*(\tilde{V}; \mathbb{R})$ of α is representible by some real combination of $\tilde{\alpha}_i$.

4.C". Corollary.

If a closed even dimensional spin manifold V possesses a 2-dimensional class $\alpha \in I^*$, such that $\alpha^{n/2} \neq 0$ (for $n = \dim V$), then V admits no metric with S > 0, provided the implied group Γ is residually finite.

<u>Proof</u>. Apply (9) to some line bundles $\tilde{\beta}_i$ on \tilde{V} with $c_1(\tilde{\beta}_i) = \tilde{\alpha}_i$.

Probably, one can drop the residual finiteness condition by elaborating on non-compact thechniques in [GL]. It also would be interesting to eliminate spin by Schoen-Yau minimal manifolds techniques (see [S] and references therein).

References

- [G]1 M. Gromov, Volume and bounded cohomology, Publ. Math. IHES, #56, P.P.213~307 (1983).
- [G]₂ M. Gromov, Filling Riemannian manifolds, J. of Differential Geometry, #18, P.P.1-147 (1983).
- [GL] M. Gromov and B. Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. IHES, #58, P.P.295-408 (1983).
- [K] M. Katz, The filling radius of two point homogeneous spaces, J. of Differential Geometry, #18, P.P.505-511 (1983).
- [S] R. Schoen, Minimal manifolds and positive scalar curvature, Proc. ICM 1982, Warsaw, P.P.575-579, North Holland 1984.
- [VW] C. Vafa and E. Witten, Eigenvalues inequalities for fermions in Gauge theories, Comm. Math. Physics 95:3 P.P.257-277 (1984).