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We want to discuss here several unsolved problems concerning metric 

invariants of a Riemannian manifold V = (V, g) which mediate between 

the curvature and topology of V. 

1. VOLUME OF BALLS B ($) IN LARGE MANIFOLDS V. 
v 

Assume V is complete and define for all p > 0. 

sup Vol(V; p) = sup Vol B (p) 
v 

v{V 

for the balls Bv(P ) c V. If V has bounded geometry (e.g. compact), 

then the behavior of sup Vol(V; p) for p ) 0 is controlled by 

the lower bound of the scalar curvature of V, called 

inf S(V) = inf S(V, v). 
vEV 

On the other hand, the asymptotic behaviour of sup Vol for p > ~ 

has a topological meaning if, for example, V is metrically covers some 

compact manifold. 

I.A. Vague Conjectur e . 

If V is large compared to ~n for n : dim V, then 

sup Vol(V; p) ~ sup Vol(~n; p) = An pn, 

where A n is the volume of the unit ball in ~n. Furthermore ' 

inf S(V) = 0 for large manifolds V (compare [GL] and [S]). 
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To make sense of I.A, we give several precise notions of largeness. 

~i" Contractible almost homogeneous manifolds (CAH). 

This means that V is contractible and that the action of the 

isometry group Is(V) is cocompact on V. For example the universal 

coverings of compact aspherical manifolds are CAH. 

~2" Geometrically contractible manifolds (GC). 

Define GCk(V, p) for all P ~ 0 to be the lower bound of the 

numbers r ~ P ~ 0, such that the inclusion of the concentric balls 

in V 

Bv(P) ~ ~ By(r) 

is a k-contractible map for all v { V. 

Recall, that a continuous map f: X .... > Y is called k-degenerate, if 

there exist a k-dimensional polyhedron P and continuous maps 

fl: X > P and f2: P > Y' such that f : f2 o fl" Then, f is 

called k-contractible if it is homotopic to a k-degenerate map. 

A manifold V is called GC if GC0(V, p) < ~ for all p ~ 0. 

Obviously, CAH ---~ GC. (Compare [G]2 P.43.) 

~3" Manifolds with Diamn_ 1 : ~. 

Define DiamkV to be the lower bound of those 6 > 0 for which 

there exists a continuous map of V into some k-dimensional polyhedron, 

say f: V ---> P, such that 

-i 
Diam f (p) < 6, 

for all p { P (compare [G] 2 P.127). 

It is not hard to prove the following relation between Diam k and 

GC for k + ~ = n - 1 = dim V - 1 (compare [G] 2 P.143). 

There exists a function pn(@) for 6 ~ 0, such that 

DiamkV £ 6 ~ GCz(V , p) = ~ for P h Pn (6)- 



In particular, GC >Diamn_ 1 = '~. 
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~4" Manifolds with Contn_iRad : ~. 

Imbed V into the space of functions L (V) by v I • dist(v, *). 

If V is compact, define COntkRad V to be the lower bound of the 

numbers g > 0, such that the inclusion map of V into the g-neighbor- 

hood Ug(V) c L (V) is k-contractible, where the function space L (V) 

is equipped with the L -norm: 

(compare [G]2 P.P.41, 138). 

llf(v)ll: suplf(v)l 
v~V 

If V is noncompact, one modifies this definition by restricting to 

proper k-contracting homotopies which keep pull-backs of bounded subsets 

in U (V) bounded in V. g 

It is easy to see that 

and that 

1 
ContkRad V <_ ~ DiamkV 

GC -----~ Contn_iRad = ~. 

Furthermore, (see [G]2 P.138). 

Contn_iRad V ~ Cn(VOl V) I/n 

for some universal constant C > 0. In particular 
n 

CG ~ vol V = 

~5" Manifolds with Fill Rad = ~ 

Define Fill Rad V to be the minimal E for which V is ~2- 

homologous to zero in the g-neighborhood U (V) c L (V) (compare [G]2 c 
P.41). Clearly, Filling Rad ~ Contn_iRad. Yet Fill Rad > 0 for all 

manifolds V. (See [G] 2 for applications of Fill Rad and [K] for 

a computation of Fill Rad of some symmetric spaces). It is also clear 

that 
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GC ----~ Fill Rad = 

Also notice that Fill Rad decreases under proper distance decreasing 

maps V1 ---~V 2 of degree one (mod 2) (see [G] 2 P.8). 

~6" Hyperspherical manifolds. 

Assume V is oriented and define HS RadkV to be the upper bound 
k 

of those numbers R ~ 0 for which there exists a proper A -contractlng 

map of V onto the sphere Sn(R) c ~n+l of radius R, say 

f: V ..... > Sn(R), 

such that deg f ~ 0. Here "proper" means that the complement of some 

compact subset in V goes to a single point in S n and "Ak-contract - 

ing" signifies that f decreases the k-dimensional volumes of all k- 

dimensional submanifolds in V (compare [GL]). One says that V is 

HS if HS RadlV = ~. 

Remark. One can modify the definition of HS Rad by restricting to 

maps f with deg f H 1 (mod 2). Then modified HS clearly implies 

Fill Rad = ~. 

Stable classes ~+i and ~i 

Given a class ~ of n-dimensional manifolds. One defines V 

~+ iff V admits a proper distance decreasing map of degree one 

onto some manifold V' E ~. One also defines V ~ ~- iff the exist- 

ence of a proper distance decreasing map V' > V of degree one 

implies V' c ~. The stabilization ~+ looks interesting for the 

classes ~2' ~3 and ~4" Furthermore, it is logical to allow an 

arbitrary pseudo-manifold V' in the definition of ~ 3 and ~4 

and to stabilize (in an obvious way) the invariants Diam k and 

COntkRad in order to match the classes ~3 and ~4. Following this 

line of reasoning, one can define Diamkh and Contkh for an arbitrary 

homology class h in V by representing h by distance decreasing 

maps V' > V for dim V' = dim h. 
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I.B. On the Vague Conjecture. 

There is no solid evidence for I.A for manifolds in the classes ~. 
1 

and ~!. One even does not know if 
1 

sup Vol(V; p) > ~@ 

for CAH surfaces. However it is easy to see that 

sup Vol(V; p) > 3p 

for GC surfaces (compare [G]2 P.40). This suggests relaxing I.A to 

the inequality 

n 
sup Vol(V; @ ) _> CnP (i) 

for some universal constant in the interval 0 < C < A . In fact, (a 
n n 

quantitative version of) (i) is proven on P.130 in [G] 2 for manifolds 

with Diamn_iV = ~, provided Ricci V ~ -i. 

Finally, a non-sharp version of 1.A is known to be true asymptoticly 

for p ~ ~ for CAH manifolds. Namely, the polynomial growth theo- 

rem for abstract groups reduces the problem to the universal covering 

V > T n of the homotopy n-torus T n and the argument on P.100 in 

[G] 2 yields the bound 

lim inf P-n Vol B(p ) > C > 0 
-- n 

for the concentric balls B(P ) in the universal covering of T n. 

Now, we turn to the inequality inf S(V) ~ 0 for large manifolds V. 

One is able to prove (see [GL] and [G] 2 P.129) that 

inf S(V) ~ (n6/~)/DiamlV)2 (2) 

for complete simply connected 3-manifolds. In particular DiamlV = 

implies inf S(V) ~ 0 for these V. Next one believes that 

-2 
inf S(V) ~ Cn(HS Rad2V) (3) 



113 

This is proven for spin manifold V in [GL] and a similar inequality 

is anounced in [S] for the general case. Yet, one does not know the 

best constant C in (3). For example, let a metric g on S n sat- 
n 

isfy g ~ go for the standard metric go on S n. One does not know 

if inf S(g) ~ S(g0). 

Many CAH manifolds V are shown to be HS (see [GL] and references 

therein) and no counterexample to CAH -----~HS is known. More general- 

ly, let V' be a closed manifold whose classifying map to the Eilenberg 

Maclain space K(~, i) for ~ = Zl(V') sends the fundamental class IV] 

(here, V is assumed oriented) to a non-zero class in Hn(K(~, i); ~). 

Then, one asks if the universal covering V of V' is HS. (The HS 

property of V does not depend on the metric in V'). If so, the mani- 

fold V' admits no metric with S(V) > 0 as it follows from (3). 

If V c ~i' i = i, .... 6, then, clearly, V x RN ~ ~i for all N. In 

particular, if V is HS then V x R N also is HS. The converse 

is unlikely to be true but no counter example is known. On the other 

hand, the largeness of V × ~N has roughly the same effect on S(V) 

as that of V itself. Namely, 

! inf S(V) < Cn+N(HS Rad2V x RN) -2, (3') 

provided V is spin (compare IS] for non-spin manifolds). 

2. MANIFOLDS WITH K > 0. 

Let V be a complete connected manifold with non-negative sectional 

curvature. Then one can show that the largeness conditions ~i are 

equivalent for i = 3,4,5,6, and V is ~ -large for i = 3,...,6 
1 

if and only if 

sup Vol(V; p ) = sup Vol(~n; p ) = Anpn (4) 

for all p > 0. Furthermore, if 

sup Vol(V; I) _< A' < A n , 

then 
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sup Vol(V; p ) < Cp n-I (5 

for all p > 1 and for some universal constant C = C(n, A'). 

If in addition to 

strengthen (5) by 

K(V) > 0 one assumes S(V) > 0 2 > 0, then one can 

n-2 I 
sup VoI(V; P) < Cn,o@ (5' 

and show that 

ii 

Diamn_2V < C n£]/ ~. (6 

2.A. Open Questions. 

(a) It seems likely, that complete hyperspherical manifolds with K(V) 

> 0 are geometrically contractible. 

(b) The relating (4), (5) and (5') may generalize to the case Ricci V 

0. This seems quite realistic if IK(V) I ~ 1 and Inj Rad V ~ i. 

(c) It is unknown if (6) holds true for all complete manifolds with 
2 

S(V) > o 

2.B. Idea of the Proof of (4) - (6). 

For certain sequences of points v 6 V the sequences of the pointed 
1 

metric spaces (V, v i) converge in the Hausdorff topology to isometric 

products pd x V' for (possibly singular) spaces V' with K ~ 0. 

If d is the largest possible, then V' with is compact and DiamdV 

const sup diam V' In particular, if V is large, then (the maximal) 
V' 

n This proves (4); the inequalities d = n and lim Vol BV (g) = AnP . 

(5), (5') and (6) follow by a similar argument. 

2.C. 

To grasp the geometric meaning of the invariants diamkV , consider the 

Euclidean solid 
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V' = {(x 0 ..... x n _ i) I IXkl ~ DiamkV, k = 0 ..... n-l} c Rn 

One believes that every compact manifold V with (possibly empty) con- 

vex boundary and with K(V) ~ 0 roughly looks like V'. For example, 

the volume of V' seems a good approximation to Vol V and the spec- 

trum of the Laplace operator on V' might approximate that on V. 

Namely, the corresponding numbers of eigenvalues ~ I are conjectured 

to satisfy, 

N' (Cnl) > N(1) _> N' (Cnll). 

A similar rough approximation is expected for small balls in manifolds 

with K(V) < i. Here the case IK(V) I < 1 looks easy. 

2.D. Manifolds with Sk(V) ~ ~ and Rk(V) ~ ~" 

Write Sk(V) ~ e if the average of the sectional curvatures over the 

2-planes in every tangent k-dimensional surface in T(V) is ~ ~. 

Write Rk(V) ~ e if the sum of the first k eigenvalues of Ricci 

on Tv(V) is ~ ~ for all v e V. One does not know the geometric 

significanse of the inequalites S k > 0 for 3 ~ k ~ n - 1 and R k 

> 0 for 2 < k < n - i, unless some additional conditions are imposed 

on V. What one wishes is an upper bound like Diam i ~ C/0 for Si+ 2 

0 2 Here is a simple fact supporting this conjecture • • 

Le___~t V be a complete manifold wit b Ricci _> 0 and, R k ~ 0 2 for some 

fixed k J n. Then sup VoI(V; p) ~ cpk-i/o ~rovided IK(V)I ~ const 

< ~ and Inj Rad V > ~ > 0. 

This is shown by a limit argument as in 2.B. 

Observe, that the inequality R k ~ ~ defines a convex subset in the 

space of the curvature tensors on every space Tv(V). This insures 

the stability of this inequality under certain (weak) limits of metrics. 
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3. VERY LARGE MANIFOLDS. 

Define VOlk(V) as the lower bound of those s ~ 0 for which there 

exists a simplicial map f: V - ) P for some smooth triangulation of 

V and some (n-k)-dimensional polyhedron P, such that the k-dimension- 

al volume of the pull-back f-l(p) c V is < s for all p ~ P. It 

is known that 

(VOlkV)i/k ~ C n Fill Rad V, 

for all complete manifolds V 

ty with C k instead of C n 

(see [G] 2 P.134), but a similar inequali- 

(here n = dim V) is unknown. 

Next, let 

hk(V; p ) = inf log VOlkBv(P) 
veV 

for the ball Bv(P) c V and define the entropy hk(V) by 

hk(V) = lim inf p-lhk(V, p). 

The most interesting is the entropy of the universal coverings V of 

compact manifolds V. Here one expect the ratios such as 

hk(V)/(Vol V) I/n or as hk(V)/Dia~V to bound some topological invari- 

ants of V. It is known, for instance, that 

(hn(V))n/Vol V ~ CnilVll (7) 

where ]~V]] denotes the simplicial volume of V, that is, roughly speak- 

ing, the minimal number of simplices needed to trianglate the fundamen- 

tal classes of V (see [G]I P.245). 

If Q is contractible, then one expects a similar bound for Pontryagin 

numbers and for the L2-Betti numbers of V (see [G] 1 P.293 for related 

results). 

A complementary problem is to bound h k by some curvature condition 
2 

on V. For example, does the inequality S(V) ~ -~ implies h2(V) 

< C~ ~ Here is a closely related. 
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3.A. Conjecture. 

Every closed manifold V with S(V) > 
i 

2 
satisfies 

Ilvll < c n v o ~  v .  ( 8 )  
i n 

Remarks. 

(A) The inequality (8) for Ricci V > ~ 2 follows from (7), but the 

best constant C is unknown for n > 3. 
n 

(B) One can imagine a stronger version of (8), namely 

IIVtl <_ CnSvIS;(V)In/2dV (8') 

where S = min(0, S ). But this is unknown even with K(V) in place 
v v 

of S(V). In fact, the only known lower bound for the total curvature 
b 

/ IKl~/2dv- comes from characteristic numbers of V. One does not know, 
v 

v 
for example, if every hyperbolic 3-manifold admits a sequence of met- 

such that S ISvl3/2dv )0, even if one insists on K rics < 0 for 
V 

these metrics. 

3.B. Specific Entropy ShkV. 

Let Shk(V; P) be the upper bound of the numbers Z ~ 0 with the fol- 

lowing property. There exists a cl-map f: V > V, such that 

dist(f, Id) < p and every k-dimensional submanifold V' in V 

satisfies 

log Vol k V' - log VOlkf(V') ~ i. 

Then set 

-i 
ShkV = lim inf p Shk(V; p)- 

p+oo 

Observe, for the universal covering 9 of a compact manifold V, that 

ShkV : 0 iff the fundamental group ~I(V) is amenable and that 

sh2V > 0 iff z I(V) is hyperbolic (e.g. V admits a metric with 

K < 0). Furthermore, every symmetric space with K ~ 0 and rank = 2 

has h k > 0 and sh k > 0 if and only if k > 2. 
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Conjecture. Let 
2 

with S(V) > -o 

V be a complete geometrically contractible manifold 

Then 

sh2V < C n I ~ I • 

A related question is as follows. Let V be a compact manifold with 

S(V) ~ a2. Does there exist a (possibly singular) 2-dimensional sur- 

face (or a varifold) V' c V, such that Area V' ~ C ~-2 ? In fact, 
n 

one expects that 

-2 
VoI2V < Cn~ 

4. NORMS ON THE COHOMOLOGY AND ON THE K-FUNCTOR. 

The L -norm on H*(V; ~) is obtained by minimizing the L -norm 
co , 

: supll~l] v of closed forms ~ representing classes in H* (see §7.4 
vEV 

in [G]2 for details and references). Next, for an isomorphism class 

of an orthogonal or unitary vector bundle X > V we define llall 

by minimizing the L -norm of the curvature forms of (orthogonal or 

unitary) connections on X. An alternative "norm", called H~II +, is 

obtained by minimizing the Lipschitz constant of classifying maps of 

V into the pertinent Grassmann manifold G. Clearly 

II~II < cll~ll + 

for C = C(n, dim a). Furthermore, if ~ is the class of a complex 

line bundle, then I[~II : llCl(~)II for the first Chern class Cl(~). 

fact, every closed 2-form ~ on V in an integral cohomology class 

is the curvature form of some line bundle with curvature = ~. 

In 

4.A. Theorem (see [GILl, [G] 1 P.294 and references therein). 

Denote by s : s(V) the minimal norm I]YII for all ortho~onal bundles 

with w2(Y) : w2(V) for the second Stiefel Whitney class w 2. Then 

every unitary B satisfies 

l{ch ~'i(v)}Ev][ ! CnW(m~(s+l]~11) - Ci~) (9) 
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where o = inf S(V), where V is assumed compact and oriented, and 

where C n, C' and C" are some universal positive constants. (Recall 
, n " n 

that N( I ) denotes the number of eigenvalues < i of the Laplace 

operators on functions on V). 

Corollaries. 

(a) No metric g on V with S(V, S) > ~ > 0 can be too large. 

Proof. Take some 8 for which the left hand side of (9) does not 

vanish and observe that s ~ 0 and I1811 >0 as g is getting 

large. If n is odd, apply the above to V × S 1 for a long circle 

S 1 . 

(b) Let (V, g) be a closed oriented manifold, such that, for a fixed 

~etric go o__~n v, one has g A g ~ go ^ go' that is the identity map 

(V, g) > (V, go ) decrease areas of the surfaces in V. Then the 

Laplace operator on (V, g) satisfies for all I > 0 

N2/n(1) > C I + C'c - C", (9') 
-- n n 

where o : inf S(V, g) and where the constant C" 

Furthermore, if V is spin, then 

N 2 ,@ _ C~p -2  /n(1) h Cnl + Cn n 

depends on (V, go ) . 

where p = HS Rad2(v, g). 

Proof. Apply (9) with appropriate ~ and y. 

Remarks. 

(i) The inequalities (9') and (9") can be applied to the universal 

covering of V where the dimension N( I ) is understood in the sense 

of Von Neumann algebras. 

(2) The best constants C" in (9') seems an interesting invariant of 

(V, go ) . 

The norm of an appropriate B (as well as of s(V)) can be often made 

arbitrary small by passing to the universal covering 9 of V where 

some version of (9) still holds true (see [GL]). This is so, for 

instance, if 9 is a hyperspherical manifold with w2(V) : 0. In this 

case (9) implies inf S(V) < 0 for every metric on V. Furthermore, 

the norm IIBII + also becomes arbitrary small in the hyperspherical case. 

Thus, by combining [GL]-twisting with [VW]-untwisting (see [VW]), one 

gets the following result. 
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4.B. 

Let the universal covering V of a compact manifold V be spin and 

hyperspherical. Then the spectrum of the Dirac operator on 9 contains 

zero. 

Remark. A similar argument applies to the Laplace operator on forms 

on V. However, the Laplace on functions on V contains zero in the 

spectrum iff sh V = 0. 
n 

Question. Let V be a "large" manifold, e.g. V is contractible and 

covers a compact manifold V'. Does the spectra of Dirac and Laplace 

(on forms!) contain zero ? This is likely if ~l(V') satisfies the 

strong Novikov conjecture. 

4.C. Symplectic Forms. 

Let w be a symplectic (i.e. closed and nonsingular) 2-form on a 

closed manifold V. Write g > ~ if the L -norm of w with respect 

to (the metric) g is < 1 and set 

= sup 

for o = inf S(V, g). If V is spin and if some real multiple of 
g 

class in H*(V; ~) then (9) implies Iiwll S represents an integral 

< ~. Furthermore all metrics g > ~ on V satisfy 

N2/n(l ) i  > C i + C'o - C" (i0) 
-- n ny 

for some (interesting ?) constant C" : C"(V, ~) (compare (9')). 

Question. Are the spin and the integrality conditions essential ? 

How can one evaluate Ilwll s for known examples of symplectic mani- 

folds ? 

Observe the following useful property of the L -norm on the image I* 

= f*(H*(K; ~)) c H*(V; ~) for an arbitrary continuous map f: V m K 

where K = K(£/I) for a residually finite group ~. 
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4 .C ~ 

For every ~ ~ I* and every s > 0, there exists a finite covering 

V and some integral classes ~i ..... ~p inn H*(V; ~) c H*(V; ~) 

such that ll~il I ! s for i : 1 ..... p and the pull-back ~ < H*(V; ~) 

of ~ is representible by some real combination of ~ . 
1 

4.C". Corollary. 

If a closed even dimensional spin manifold V possesses a 2-dimensional 

class ~ c I*, such that n/2 ~ 0 (for n : dim V), then V admits no 

metric with S > 0, provided the implied grou~ r is residually finite. 

Proof. Apply (9) to some line bundles ~i on 9 with Cl(~i) : ~i" 

Probably, one can drop the residual finiteness condition by elaborating 

on non-compact thechniques i n [GL]. It also would be interesting to 

eliminate spin by Schoen-Yau minimal manifolds techniques (see IS] and 

references therein). 
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