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Abstract These notes cover some of the main results of Gromov’s paper Filling
Riemannian manifolds. The goal of these notes is to make the results and proofs
accessible to more people. The main result is that if (M, g) is a Riemannian manifold
of dimension n, then there is a non-contractible curve in (M, g) of length at most Cn
Vol(M, g)1/n.
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These notes are an exposition of Gromov’s systolic estimate, which first appeared in
the long paper Filling Riemannian manifolds [4]. Gromov’s paper is one of the most
important in metric geometry—that part of geometry in which distance, length, area,
and volume are the main characters.

The systole of a Riemannian manifold (M, g) is defined to be the smallest length of
a non-contractible curve in M. We recall that a manifold M is aspherical if πi(M) = 0
for all i ≥ 2. For example, the torus Tn is aspherical.

Theorem For any n-dimensional closed aspherical Riemannian manifold (M, g), the
systole is bounded in terms of the volume by the following formula.

Systole(M, g) ≤ C(n)Volume(M, g)1/n.

In order to prove the theorem, Gromov invented a new geometric invariant,
called the filling radius. Roughly speaking, the filling radius measures how “thick” a
Riemannian manifold is. For example, the filling radius of the cylinder S1 × R (with
the standard product metric) is π/3, but the filling radius of R

2 (with the Euclidean
metric) is infinite. We will define the filling radius below.

Using the filling radius, the proof of the theorem breaks into two pieces.
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Fig. 1 Surfaces with different filling radii

Theorem A If M is a closed aspherical manifold, then the systole of (M, g) is bounded
in terms of the filling radius by the formula Systole(M,g)≤ 6 Fill Rad(M,g).

Theorem B For any closed manifold M, the filling radius is bounded in terms of the
volume by the formula Fill Rad(M,g)≤ C(n)Volume(M, g)1/n.

In Sect. 1, we define the filling radius. In Sect. 2, we prove Theorem A. In Sect.
3, we prove Theorem B. The sections are rather unequal though. The third section
contains most of the work. In an appendix afterwards, we extend the systolic estimate
to a few more manifolds, such as RP

n.

1 The definition of filling radius

The filling radius of a Riemannian manifold is defined by analogy with an invariant
defined for submanifolds of Euclidean space. Suppose that Mn ⊂ R

N is a closed sub-
manifold. By a filling of M, we mean an (n+1)-chain C with ∂C = M. The filling radius
of M is defined to be the smallest number R so that there exists a filling of M inside
the R-neighborhood of M.

(Technical detail: we need to specify what coefficients to allow for the chain C.
Gromov makes the convention to use integral coefficients for oriented manifolds and
mod 2 coefficients for non-oriented manifolds.)

We give a few examples. The filling radius of an ellipse is equal to its smallest
principal axis. The filling radius of the cylinder S1 × R ⊂ R

3 is equal to 1. (I have
in mind the cylinder defined by the equation x2 + y2 = 1.) In Fig. 1, there are some
examples of surfaces with different filling radii.

Gromov gave an analogous definition for a closed Riemannian manifold (M, g).
At first sight, a Riemannian metric g on M is a completely different thing from
an embedding of M into Euclidean space. At this point, Gromov used a construc-
tion of Kuratowski. Using the metric g on M, Kuratowski constructed a canonical
embedding from M into the Banach space L∞(M). Kuratowski’s embedding sends
a point x ∈ M to the function distx. (The function distx is a bounded function on
M because M is closed.) We call this embedding K, for Kuratowski, and so we can
write K(x) = distx. This embedding is an exact isometry according to the following
lemma.
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Lemma 1 ‖distx − disty‖L∞ = dist(x, y).

Proof For any point z ∈ M, the triangle inequality gives |distx(z) − disty(z)| =
|dist(x, z)−dist(y, z)| ≤ dist(x, y). Therefore, ‖distx−disty‖L∞ ≤ dist(x, y). Moreoever,
if we take z = y, then |distx(z) − disty(z)| = |dist(x, y) − 0| = dist(x, y). Therefore,
‖distx − disty‖L∞ = dist(x, y). ��

For each metric g, we get a canonical embedding K: M → L∞(M). Gromov then
defined the filling radius of (M, g) to be the infimal R so that the embedded submani-
fold K(M) bounds a chain inside its R-neighborhood.

When I first saw it, this definition seemed very abstract to me. One thing that I
found intimidating was the presence of an infinite-dimensional space L∞(M). We can
also formulate the definition of filling radius in terms of finite-dimensional spaces with
very large dimensions. The resulting construction is not as canonical but it is easier to
work with.

Suppose that S is a set of points, x1, . . . , xN ∈ M. We can then define a map KS from
M to the N-dimensional Banach space lN∞. (This is the space of vectors v = (v1, . . . , vN)

with the norm |v| = sup |vi|.) The map KS sends a point x to a vector with ith compo-
nent KS(x)i = distxi(x). By taking xi sufficiently dense, we can arrange that this map
is an embedding and that it is almost an isometry.

Lemma 2 Given a closed manifold (M, g), for each ε > 0, we can choose a finite set of
points S sufficiently densely so that the following inequality holds for any x, y ∈ M.

(1 − ε)dist(x, y) ≤ |KS(x) − KS(y)|∞ ≤ dist(x, y). (∗)

Proof (sketch) First note that the upper bound |KS(x) − KS(y)|∞ ≤ dist(x, y) holds
for any set S.

We will pick a small number δ > 0, and take S to be any δ-net in (M, g). If
dist(x, y) >> δ, then the lower bound follows by choosing a point xi ∈ S with
dist(x, xi) < δ.

Since the problem is scale-invariant, we may assume that we first scaled (M, g) so
that its injectivity radius is at least 10 and its curvature is at most δ2. Suppose for a
moment that every unit ball in (M, g) was Euclidean. Then we could prove the lower
bound as follows. Look at the line segment from x to y, and then extend it past y a
distance (1/10). Let z denote the end of the extension. Then dist(x, z) = dist(x, y) +
dist(y, z). If the point z were in our set S, this equation would imply the lower bound
|KS(x) − KS(y)|∞ ≥ dist(x, y). Most likely, z is not in S, but we can choose xi ∈ S
with dist(xi, z) < δ. Then it follows from trigonometry that dist(xi, x) − dist(xi, y) >

(1 − ε)dist(x, y).
Finally, we can generalize the trigonometry argument to almost flat manifolds using

the Toponogov comparison theorem. ��

We now fix a set S so that (1/2)dist(x, y) ≤ |KS(x)− KS(y)| ≤ dist(x, y). We will use
this finite set for the rest of the paper. The map KS is as useful for our purposes as the
full Kuratowski embedding, and the filling radius of KS(M) is as useful as the official
filling radius of M.

For context, we include one more fact about the Banach spaces lN∞ and L∞. This
fact allows us to show that if KS is nearly isometric, then the filling radius of KS(M)

is nearly equal to the filling radius of M. The rest of the results in this section are not
needed to prove the systolic estimate.
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Lemma 3 (Extension property) Let B denote the Banach space lN∞ or L∞. Given a
metric space X with and a subset Y ⊂ X, and a function f : Y → B with Lipschitz
constant 1, there exists an extension F of f to X with the same Lipschitz constant.

Proof We work up through a sequence of cases. First we take B = l1∞ = R. We define
F(x) to be supy∈Y

[
f (y) − dist(x, y)

]
. Any extension G of f with Lipschitz constant 1

must have G(x) ≥ f (y)−dist(x, y) for every y in Y. Hence the formula for F was moti-
vated by putting down the minimal plausible value for F(x). The graph of F somewhat
resembles a sheet or string that has been pinned in place over Y and hangs down from
the pins over the rest of X.

If x ∈ Y, then we can take y = x, and we get F(x) ≥ f (x) − dist(x, x) = f (x).
Also F(x)= supy f (y)−dist(x, y)≤ f (x) because f has Lipschitz constant 1. Therefore,
F restricted to Y is f . If x1, x2 are two points in X, then the difference of functions[
f (y) − dist(x1, y)

] − [
f (y) − dist(x2, y)

] = dist(x2, y) − dist(x1, y) has norm at most
dist(x1, x2) at every point. Therefore, the difference between the suprema of the two
functions is bounded by dist(x1, x2). In other words, |F(x1)− F(x2)| ≤ dist(x1, x2), and
F has Lipschitz constant 1.

Next we take B = lN∞ for a finite N. In this case, we use the last argument on
each component of the vector-valued function f . More precisely, we define Fi(x) =
supy∈Y [fi(y) − dist(x, y)]. The argument above shows that F|Y = f and that |F(x1) −
F(x2)|lN∞ = sup |Fi(x1) − Fi(x2)| ≤ dist(x1, x2).

Finally, we take B = L∞(M). In this case, we still use essentially the same formula,
F(x) = supy∈Y

[
f (y) − dist(x, y)

]
, but interpreted in a slightly more complicated way.

In this case, f (y) is a function in L∞, and dist(x, y) is interpreted as a constant function
in L∞. The sup denotes a (pointwise) supremum of functions. This case is morally
the same as the vector-valued case that we just did, except that instead of indexing
F(x) by a number i ∈ 1, . . . , N, we index it by a point p in the space M where our
measurable functions are defined. The proof is the same as for vectors, except that
we need to check that F(x) is a bounded measurable function. Since each function
f (y) − dist(x, y) is measurable, the supremum is also measurable. Next we check that
F(x) is bounded. Fix a point y0 ∈ Y. The function F(x) is greater than or equal to
the function f (y0) − dist(x, y0), which is bounded below. Next we check that F(x) is
bounded above. We note that sup f (y)≤ sup(f (y0)) + |f (y) − f (y0)|∞ ≤ sup(f (y0)) +
dist(y, y0) ≤ sup(f (y0)) + dist(y0, x) + dist(x, y). Hence f (y) − dist(x, y) is bounded
above by sup(f (y0)) + dist(x, y0), and so our function F(x) is bounded above. ��

As a corollary to this lemma, we see that if KS obeys the quasi-isometric esti-
mate (∗), then the filling radius of KS(M) is pinched between (1 − ε)FillRad(M, g)

and FillRad(M, g). As another corollary, we see that if (M, g) and (N, h) are closed
Riemannian manifolds of dimension n, and if φ is a degree 1 map from (M, g) to (N, h)

with Lipschitz constant 1, then FillRad(M, g) ≥ FillRad(N, h).

2 Systoles and fillings

In this Section, we establish a relationship between the systole of M and the filling
radius of KS(M).

Lemma 4 Suppose that M is a closed aspherical manifold, and that g is a Riemannian
metric on M. Let KS be an embedding from (M, g) to lN∞ that obeys the following
quasi-isometric estimate for any pair of points x, y ∈ M.
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(1/2)dist(x, y) ≤ |KS(x) − KS(y)|∞ ≤ dist(x, y).

Then the filling radius of KS(M) is at least Systole(M, g)/12.

Proof The proof is by contradiction. We assume that KS(M) bounds a chain C
inside its R-neighborhood, for R < Systole(M)/12. We will get our contradiction by
constructing a map φ: C → M with φ|∂C equal to the identity.

We pick a fine triangulation of the chain C so that each edge has length at most
δ > 0, a small number we can choose later. We have already defined φ|∂C. We will
define φ on the rest of C one skeleton at a time. We begin by defining φ on the vertices
of the triangulation. Let v be a vertex. Since C lies inside the R-neighborhood of
KS(M), we can pick a point w ∈ KS(M) within a distance R of v. We define φ(v) = w.

Next we define φ on the edges of the triangulation. Suppose that E is an edge of
the triangulation and that E has boundary vertices v1 and v2. The map φ moved each
boundary vertex at most R. Since the triangulation was δ-fine, the distance from φ(v1)

to φ(v2) in lN∞ is at most 2R + δ. Now φ(v1) and φ(v2) are each points in KS(M).
Because of the quasi-isometric estimate for KS, we know that the distance between
the points in (M, g) is at most 4R + 2δ. We map E onto a minimal path in (M, g)

between the two points.
Next we define φ on the 2-simplices of the triangulation. Suppose that � is a 2-sim-

plex. We have already defined φ on the boundary of the 2-simplex, mapping the bound-
ary to a circle in (M, g) of length at most 12R+6δ. By assumption, R < Systole(M, g)/12.
We can choose δ > 0 sufficiently small so that 12R + 6δ < Systole(M, g). Therefore,
the map of the boundary of � into M is contractible. We pick a contraction and use it
to define φ on �.

Finally, we define φ on the higher-dimensional simplices of the triangulation, work-
ing one skeleton at a time. Suppose we have extended φ to the (k − 1)-skeleton, and
consider a k-simplex �. The restriction of φ to the boundary of � is null-homotopic,
because M is aspherical. Therefore, φ can be extended to �. We pick any extension.

This finishes the construction of a retraction φ: C → KS(M). Since the fundamental
class [M] is non-trivial in M, this retraction is a contradiction. We may conclude that
R ≥ Systole(M, g)/12. ��

Exercise: Using the same argument in the infinite-dimensional space L∞, check
that Fill Rad(M, g) ≥ Systole(M, g)/6. This argument proves Theorem A.

3 Filling radius inequality and isoperimetric inequality

We now turn to the main estimate in the proof of our theorem.

Theorem B Let C be any n-cycle in lN∞. Then the filling radius of C is controlled in
terms of its volume by the following formula.

FillRad(C) ≤ CnVol(C)1/n.

This estimate is slightly more general than the filling radius inequality in the
introduction. At the end of the section, we explain how it implies the original version
of Theorem B. Here, we explain how this version of Theorem B implies our main
theorem.
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Let M be a closed aspherical manifold of dimension n with a Riemannian met-
ric g. Using Lemma 2, we pick a finite set of points S ⊂ M so that KS : M → lN∞
is quasi-isometric with the bound (1/2)dist(x, y) ≤ |KS(x) − KS(y)|lN∞ ≤ dist(x, y).
The image KS(M) is a cycle C with volume at most Vol(M, g). Applying Theorem B

above, we see that the filling radius of KS(M) is at most CnVol(M, g)
1
n . According

to Lemma 4, the systole of (M, g) is at most 12 times the filling radius of KS(M).

Therefore, Systole(M, g) ≤ CnVol(M, g)
1
n .

The proof of Theorem B is fairly substantial. To get some perspective, we recall
some facts about the analogous question for cycles in Euclidean space. The first work
on this problem was done by Federer and Fleming [3]. They gave an elegant construc-
tion which shows the following bound.

Theorem (Federer and Fleming) For any n-cycle C in Euclidean space R
N, the

following inequality holds.

FillRad(C) ≤ CNVol(C)1/n.

We will give the proof of this estimate below. The proof generalizes easily to the
Banach space lN∞. But the result is weaker than the lemma we want to prove, because
the constant CN depends on the ambient dimension N, whereas the constant in our
lemma depends only on n. This point is crucial to the systolic estimate, because we
have no control over N, the number of points we need to get a good approximation
of the Kuratowski embedding.

For cycles in Euclidean space, the sharp constant was found by Simon and Bombieri
[2]. It occurs when the cycle C is a round n-sphere, and it does not depend on N. The
proof is based on examining the minimal-volume filling of C and using minimal surface
theory. Their argument does not generalize to Banach spaces (at least not easily).

The filling radius estimate is in the same spirit as a more famous result: the isoperi-
metric inequality. We recall the isoperimetric inequality for cycles in Euclidean space.

Theorem (Federer–Fleming, Michael–Simon, Almgren) Suppose that C is an n-cycle
in Euclidean space R

N. Then C bounds a chain F obeying the following estimate.

Vol(F) ≤ CnVol(C)
n+1

n .

In [3], Federer and Fleming proved this inequality with a constant CN depending on
the ambient dimension. Then in [5], Michael and Simon proved the inequality with a
non-sharp constant Cn depending only on the dimension of C. Finally, in [1], Almgren
proved the inequality with a sharp constant. (The sharp constant occurs when C is
a round sphere.) As with the filling radius, the Federer–Fleming argument adapts to
Banach spaces, but the other arguments don’t (at least not easily).

In analogy with the term filling radius, we will call the smallest volume of any chain
F with ∂F = C the filling volume of C.

We now begin to discuss filling estimates in lN∞. First of all, we have to deal with a
technical point. What do we mean by the volume of a cycle or a chain in lN∞? There
are several different definitions that seem reasonable. Fortunately, all the definitions
that I’ve seen agree up to a factor Cn. In this paper, we define the volume to be the
n-dimensional Hausdorff measure, because this definition is familiar to most people.
The main fact about volume that we will use is the coarea inequality. We first recall
the version in Euclidean space.
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Proposition (The coarea inequality) Let C be an n-dimensional chain in Euclidean
space R

N. Let f be a function on R
N with Lipschitz constant 1. Then the following

inequality holds.

Voln (C ∩ {x|a ≤ f (x) ≤ b}) ≥
∫ b

a
Voln−1 (C ∩ {x|f (x) = t}) dt.

With our definition of volume, I don’t see why the coarea formula should hold
for chains in lN∞, but it does hold with a fudge-factor. The proof is that the chain C
is bilipschitz to a piecewise Riemannian chain with bilipschitz constant at most Cn.
Therefore, we get the following coarea inequality in lN∞.

Proposition (The coarea inequality in Banach space) There is a constant Cn > 0 so
that the following estimate holds. If C is any n-dimensional chain in the Banach space
lN∞, and f is any function on R

N with Lipschitz constant 1, then

Voln (C ∩ {x|a ≤ f (x) ≤ b}) ≥ Cn

∫ b

a
Voln−1 (C ∩ {x|f (x) = t}) dt.

This constant Cn in the coarea formula is a penalty that we pay for using the most
well-known definition of volume. In Filling Riemannian manifolds, Gromov surveys
several definitions of volume, including one where the coarea formula holds on the
nose. The constants in Theorem B are not sharp anyway, so this penalty is not too
important.

Throughout this section, it is crucial to distinguish between constants that depend
only on the dimension n of the chain C and constants that depend on the dimension
N of the ambient space. We use C to denote an absolute constant, Cn to denote a
constant that depends only on n, and CN to denote a constant that depends on N. All
constants are positive, but their exact value may change from line to line.

We now give Federer and Fleming’s construction, leading to bounds for the fill-
ing radius and the filling volume. Although the bounds of Federer and Fleming are
weaker than the ones in Theorem B, their estimate is a necessary part of the proof of
the theorem.

Theorem (Federer and Fleming) Suppose that z is an n-cycle in R
N. Then there is a

chain A with ∂A = z, obeying the following estimates.

1. The volume of A is at most CNVol(z)
n+1

n .
2. The distance from any point x ∈ A to z is at most CNVol(z)1/n.

Proof By a scaling argument, it suffices to prove the theorem when Vol(z) = 1.
We consider the cubical lattice with side length S, for a constant S that we will

choose later. We will construct a sequence of cycles z = zN ∼ zN−1 ∼ · · · ∼ zn with zk
contained in the k-skeleton of the lattice. To get from zk to zk−1 we use the following
lemma.

Lemma 5 (Pushing a cycle to the boundary of a cube) Suppose that z is a relative
n-cycle inside a k-dimensional cube Q with side length S, k > n. Then there is an
n-chain z′ ⊂ ∂Q with ∂z′ = ∂z and vol(z′) ≤ Ckvol(z). Moreover, z − z′ = ∂A, for an
(n+1)-chain A in Q with volume at most CkSvol(z).
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Fig. 2 The retraction �p

p

A retraction to the boundary of the cube

Proof By a scaling argument, it suffices to prove the result when Q is a unit cube.
Let p be a point in Q which does not lie in z. There is a radial retraction �p from

Q − p to ∂Q, which maps each ray r leaving p to the point on r ∩ ∂Q. See Fig. 2 for an
illustration of this map.

The image �p(z) is a chain z′ in ∂Q with ∂z′ = ∂z, since �p|∂z is the identity. The
volume of �p(z) could possibly be very large, because any piece of z that lies close to
p will be stretched by the map �p(z).

The next step in the proof is to estimate the average value of the volume of �p(z),
averaging as we consider various points p ∈ Q. First we upper bound the volume of
�p(z).

Vol[�p(z)] ≤ C
∫

z
[dist(p, x)]−ndx.

This formula follows because the derivative of the map �p at the point x is at most
Cdist(p, x)−1.

Therefore, the average volume of �p(z) is controlled by the following expression.

C
∫

Q

∫

z
[dist(p, x)]−ndx dp.

We estimate this integral by changing the order of integration.

= C
∫

z

(∫

Q
[dist(p, x)]−ndp

)
dx.

The interior integral converges because Q has dimension k > n. Its value depends
on x, but it can be bounded uniformly by

∫
B(0,10

√
N)

dist(0, p)−ndp.

≤
∫

z
Ckdx ≤ CkVol(z).

We choose a point p so that the volume of �p(z) is at most average and define
z′ = �p(z).

We take A to be the difference Conep(z′)−Conep(z), where Cone(p, z) is defined to
be the cone over z with apex p. The chain A has volume at most Ckvol(z′)+Ckvol(z) ≤
Ckvol(z). ��
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Using this lemma repeatedly, we construct cobordisms from zk to zk−1. Pick an
open k-face F of our lattice and consider zk ∩ F, which is a relative n-cycle in F. Using
the last lemma, we push zk ∩ F to the boundary of F, and doing this on each k-face F
we arrive at a cycle zk−1 in the (k − 1)-skeleton of our lattice. The volume of zk−1 is at
most Ck times the volume of zk. Also, by adding together the chains A from each face
F, we get a chain Ak with boundary zk − zk−1 and with volume at most CkSvol(zk).
Finally we end up with a chain zn in the n-skeleton of the cubical lattice with volume
at most CNvol(z) = CN .

The estimate for the volume of zn did not depend on the choice of lattice scale S.
We now choose S so that SN is greater than the upper bound for vol(zn). Therefore,
for each n-face F, we can choose a point x ∈ F disjoint from zn. Using the point x to
push out from, it follows that zn is homologous to a cycle zn−1 in the (n − 1)-skeleton
of our lattice, via a cobordism with zero (n + 1)-dimensional volume. In other words,
we can construct an (n+1)-chain An in the n-skeleton of our lattice with ∂An = zn and
with zero (n+1)-dimensional volume.

We define A to be the sum
∑N

k=n An. The boundary of A is our original cycle
z = zN . The volume of A is at most CN . Therefore, the filling obeys estimate 1. Also,
the chain A intersects a given closed N-cube of our lattice only if z itself intersects
that N-cube. Therefore, the filling A lies within S

√
N of the cycle z. The choice of S

depended only on N, and so the filling obeys estimate 2. ��
This finishes the proof of the Federer–Fleming isoperimetric inequality. I believe

that it was the first isoperimetric inequality for surfaces with codimension greater
than 1. I think it is one of the most fundamental results in metric geometry. Later
proofs have improved the constant in the inequality, but I think that they are all more
complicated than this one.

The Banach norm lN∞ given by |(v1, . . . , vN)|∞ = max |vi| and the Euclidean norm
given by |(v1, . . . , vN)|2 = (

∑
v2

i )
1/2 agree up to a factor of

√
N. Therefore, the above

theorem applies equally well to cycles in lN∞ after modifying the constants CN . We
state this as a corollary.

Corollary Suppose that z is an n-cycle in lN∞. Then there is a chain A with ∂A = z,
obeying the following estimates.

1. The volume of A is at most CNVol(z)
n+1

n .
2. The distance from any point x ∈ A to z is at most CNVol(z)1/n.

We are not satisfied with estimates 1 and 2 because the constants in the estimates
depend on N. Ideally we would like to know the sharp constants. At this point, we
give the sharp constants names.

1. We use IN to denote the supremal filling volume of any n-cycle in lN∞ of volume 1.
2. We use JN to denote the supremal filling radius of any n-cycle in lN∞ of volume 1.

Our goal is to prove that JN is bounded above independent of N. According to the
following lemma, it is enough to show that IN is bounded above independent of N.

Lemma 6 The filling radius constant JN is controlled in terms of the isoperimetric
constant IN by the formula JN ≤ CnIN.

Proof Fix an n-dimensional cycle C in our Banach space. For any ε > 0, we need to
find a filling D lying in the CnINVol(C)1/n neighborhood of C.
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Suppose that there is a chain D of minimal volume filling C. In Euclidean space,
it is an important result of geometric measure theory that such a chain exists. If the
chain D exists, we show that it obeys the estimate we want. We will not assume that a
minimizing chain actually exists. Instead, we will then modify the proof so that it uses
an almost-minimizing chain.

For now, suppose that D is a minimal chain filling C. Because D is minimal, it obeys
the following isoperimetric inequality.

Isoperimetric inequality: let U ⊂ D be any open set that does not border on C.

Vol(U) ≤ INVol(∂U)
n+1

n . (∗)

This isoperimetric inequality holds because otherwise we could reduce the volume
of D by removing U and replacing it with a new chain filling ∂U with smaller volume.

Next, let V(R) denote the volume of the open set {x ∈ D|dist(x, C) > R}. Let A(R)

denote the area of {x ∈ D|dist(x, C) = R}. As R increases, V(R) decreases. By the
coarea inequality, it follows that V′(R) ≤ −CnA(R). But the area A(R) is bounded
below in terms of V(R) by the isoperimetric inequality (∗), giving the following
inequality.

V′(R) ≤ −CnA(R) ≤ −CnI
− n

n+1
N V(R)

n
n+1 .

As long as V(R) > 0, we can rearrange this to give the following.

d
dR

[V(R)
1

n+1 ] = 1
n + 1

V(R)
− n

n+1 V′(R) ≤ −CnI
− n

n+1
N .

Hence V(R) = 0 for some R at most CnVol(D)
1

n+1 I
n

n+1
N . Since the volume of D is in

turn bounded by INVol(C)
n+1

n , we can conclude that D lies in the R-neighborhood of
C for R = CnINVol(C)1/n. This is the estimate we want to prove.

We are not finished because we do not know that there is any chain D of minimal
volume. For each δ > 0, we do know that there is a chain with volume within δ of the
infimal volume. In other words, we can find a chain D so that vol(D)≤ vol(D′) + δ

for any chain D′ with ∂D′ = C. This chain D obeys a slightly weaker version of the
isoperimetric inequality (∗).

Isoperimetric inequality: let U ⊂ D be any open set that does not border on C.

Vol(U) ≤ INVol(∂U)
n+1

n + δ. (∗′)

This isoperimetric inequality holds because otherwise we could reduce the volume
of D by more than δ by removing U and replacing it with a new chain filling ∂U.

Next, let V(R) denote the volume of the open set {x ∈ D|dist(x, C)> R}. Let A(R)

denote the area of {x ∈ D|dist(x, C) = R}. As R increases, V(R) decreases, and
V′(R) ≤ −CnA(R). But the area A(R) is bounded below in terms of V(R) by the
isoperimetric inequality (∗′), giving the following inequality.

V′(R) ≤ −CnA(R) ≤ −CnI
− n

n+1
N [V(R) − δ] n

n+1 .

We rewrite this equation as

d
dR

[V(R) − δ] ≤ −CnI
n

n+1 [V(R) − δ] n
n+1 .
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As long as V(R) − δ > 0, we can rearrange this to give the following.

d
dR

(
[V(R) − δ] 1

n+1

)
≤ −CnI

− n
n+1

N .

Hence V(R)≤ δ for some R at most CnI
n

n+1
N Vol(D)

1
n+1 . Since the volume of D is in

turn bounded by INVol(C)
n+1

n , V(R) ≤ δ for some R at most CnINVol(C)1/n.
In other words, if D is δ-almost minimal, then it lies in the R-neighborhood of C

except for a piece of volume at most δ. This piece resembles an appendix of small
volume that may stretch arbitrarily far from C. Our next step is to cut it off.

Since V′(R)≤ − CnA(R), we can find a radius R0 ≤ CnINVol(C)1/n + √
δ where

A(R)≤ Cn
√

δ. Next, we cut D along the hypersurface dist(x, C)= R0, creating a
new boundary of area at most Cn

√
δ. Now we fill in this new boundary using the

Federer-Fleming construction. The filling of the this boundary has filling radius at
most CN(

√
δ)1/n. Therefore, the entire chain that we have constructed lies inside of

the [CnINVol(C)1/n +√
δ + CN(

√
δ)1/n]-neighborhood of C. Since this estimate holds

for every δ > 0, we are done.

Our last task is to prove that the isoperimetric constant IN is bounded by a constant
Cn depending only on n. The proof has many similarities to the one we have just used,
but it is one level deeper.

Lemma 7 Any n-cycle C in lN∞ has a filling D with volume at most CnVol(C)
n+1

n .

Proof The proof is by induction on the dimension n. The base case for the induction
is n = 1. In this case, C is a union of circles. We can assume that there are k circles
with lengths L1, . . . , Lk. Now to fill each circle, we pick a point x in that circle, and use
the cone over the circle with vertex x. Since the diameter of a circle is bounded by its
length, the cones have total area at most C(L2

1 + · · · + L2
k) ≤ C(L1 + · · · + Lk)2.

Now we come to the inductive step. This step is probably the heart of the whole
proof. By a scaling argument, it suffices to consider the case vol(C)= 1. Among all
of the possible cycles with volume 1, we want to pick the one with the largest filling
volume. Suppose for a moment that such a cycle exists. Somewhat paradoxically, this
cycle would have special properties that make its filling volume easier to bound above
than the filling volume of a general cycle. Using those properties, we could prove that
its filling volume is at most Cn. Since we assumed that it had the largest filling volume
of any cycle with volume 1, it would follow that every cycle of volume 1 had filling
volume at most Cn. There is a technical problem, though, because it looks hard to
prove that a cycle with maximal filling volume exists. We do not prove that such a
cycle exists. As in the proof of the last lemma, we choose a cycle with almost maximal
filling volume, and modify our argument to work for it.

Suppose for now that C is an n-cycle in lN∞ with volume 1, and with maximal filling
volume IN among all n-cycles of volume 1 in lN∞. Using the inductive hypothesis, we will
show that C obeys an isoperimetric inequality with a constant depending only on n.
Algebraically, the proof is a little tedious, but geometrically it is quite straightforward.

Suppose that A ⊂ C is a subset with boundary ∂A. By induction, we can assume
that any (n − 1)-cycle z in lN∞ bounds an n-chain y with volume at most Cn|z| n

n−1 . We
apply this assumption to ∂A, and we conclude that it bounds a chain B with volume at
most Cn|∂A| n

n−1 . Now we view C as a sum of two cycles C1 = A+B, and C2 = −B+Ac.
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(Here Ac denotes the complement of A in C.) The volumes of C1 and C2 are controlled
as follows.

|C1| ≤ |A| + Cn|∂A| n
n−1 ,

|C2| ≤ (1 − |A|) + Cn|∂A| n
n−1 .

Now by assumption we can find a filling D1 of C1 with volume at most IN |C1| n+1
n

and we can find a filling D2 of C2 with volume at most IN |C2| n+1
n . The sum D1 + D2

constitutes a filling of C, and therefore must have volume at least IN . Therefore,

|C1| n+1
n + |C2| n+1

n ≥ 1. Plugging in our upper bounds on |C1| and |C2|, we get the
following inequality.

[
|A| + Cn|∂A| n

n−1

] n+1
n +

[
(1 − |A|) + Cn|∂A| n

n−1

] n+1
n ≥ 1. (1)

Now we claim that this inequality implies an isoperimetric inequality of the form
min(|A|, 1 − |A|) ≤ Cn|∂A| n

n−1 . This claim is only a matter of elementary algebra, but
it is a nasty mess. I think the computation of this step is one of the harder parts to
read in [4]. Here we give a geometric explanation of this step.

Consider the quadrant x ≥ 0, y ≥ 0 in R
2. In this quadrant, we look at the graph G

defined by the equation x
n+1

n + y
n+1

n = 1. The graph meets the coordinate axes at right
angles at the two points (1, 0) and (0, 1). The line segment L given by x + y = 1 joins
the two points. The situation is illustrated below (Fig. 3).

Lemma 8 Suppose that x, y > 0 and x + y = 1, and that (x + d)
n+1

n + (y + d)
n+1

n ≥ 1.
Then min(x, y) ≤ Cnd.

Proof If (x + d)
n+1

n + (y + d)
n+1

n > 1, then we can decrease d until (x + d)
n+1

n + (y +
d)

n+1
n = 1. It suffices to check that in this case min(x, y) ≤ Cnd. By a compactness argu-

ment, it suffices to check this inequality as (x, y) approaches either of the endpoints
of L. Since G is perpendicular to the coordinate axes at each endpoint, it follows that
when (x, y) is very close to one of the endpoints, then min(x, y) ≤ (1 + ε)d. ��

Fig. 3 The functions in
Lemma 8

(1,0)

G

L

d

(0,1)

(x,y)

The functions in Lemma 8
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We apply this lemma to Eq. 1. (To do this, we make the substitutions x = |A|,
y = 1 − |A|, and d = Cn|∂A| n

n−1 .)

min[|A|, 1 − |A|] ≤ Cn[Cn|∂A| n
n−1 ].

This is the inequality we were trying to prove.
Armed with this isoperimetric inequality, we next prove an upper bound on the

diameter of the cycle C. We pick a coordinate function xi on lN∞. We translate C so
that the plane xi = 0 bisects the volume of C. Then we let V(h) denote the volume
of C ∩ {x|xi ≥ h} and we let A(h) denote the area of C ∩ {x|xi = h}. For now, we
consider the range h ≥ 0. Since the plane xi = 0 bisects C, we know that V(0) = 1/2.
By the coarea inequality, we know that V′(h) ≤ −CnA(h). On the other hand, the

isoperimetric inequality tells us that A(h) ≥ CnV(h)
n−1

n . Assembling these formulas,
we get the following.

V′(h) ≤ −CnV(h)
n−1

n .

As long as V(h)> 0, we can divide by a power of V(h) to get the following inequality.

[V(h)1/n]′ = (1/n)V′(h)V(h)−
n−1

n ≤ − Cn.

Therefore, we must have V(h)= 0 before Cn. In other words, C lies below the plane
xi = Cn. By a symmetric argument, it lies above the plane xi = −Cn. Repeating this
argument for all coordinate functions, we see that C lies in the box [−Cn, Cn]N . Since
we are in the Banach space lN∞, this box has bounded diameter Cn.

Finally, we construct a filling of C by taking the cone through C with apex at the
origin. Since the distance from any point of C to the origin is at most Cn, the volume
of this cone is at most Cn. On the other hand, the filling volume of C is equal to IN .
Therefore, IN is bounded by a dimensional constant Cn.

This argument would prove our lemma except for one snag. We assumed that we
could find a cycle of volume 1 with filling volume equal to IN—the supremal filling
volume of any cycle with volume 1. It’s not at all clear that this supremum is realized.
What is clear is that for any δ > 0, we can find a cycle C with volume 1 and filling
volume at least (1 − δ)IN . Our last task is to adapt the above argument to an almost
maximizing cycle instead of an exactly maximizing cycle.

Let δ > 0 be a small number that we will choose later. Suppose that C is a cycle
in lN∞ with volume 1 and filling volume at least (1 − δ)IN . By imitating the argument
above, we will prove that C can be cut into two pieces, one of them having diameter
at most Cn and the other having small volume.

Suppose that A ⊂ C is a subset with boundary ∂A. By induction, we can assume
that any (n − 1)-cycle z in lN∞ bounds an n-chain y with volume at most Cn|z| n

n−1 .
We apply this assumption to ∂A, and we conclude that it bounds a chain B with
volume at most Cn|∂A| n

n−1 . Now we view C as a sum of two cycles C1 = A + B, and
C2 = −B + Ac. (Here Ac denotes the complement of A in C.) The volumes of C1 and
C2 are controlled as follows.

|C1| ≤ |A| + Cn|∂A| n
n−1 .

|C2| ≤ (1 − |A|) + Cn|∂A| n
n−1 .
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Now by assumption we can find a filling D1 of C1 with volume at most IN |C1| n+1
n

and we can find a filling D2 of C2 with volume at most IN |C2| n+1
n . The sum D1 + D2

constitutes a filling of C, and therefore must have volume at least (1−δ)IN . Therefore,

|C1| n+1
n + |C2| n+1

n ≥ (1 − δ). Plugging in our upper bounds on |C1| and |C2|, we get
the following inequality.

[
|A| + Cn|∂A| n

n−1

] n+1
n +

[
(1 − |A|) + Cn|∂A| n

n−1

] n+1
n ≥ (1 − δ) ≥ (1 − δ)

n+1
n . (2)

Now we claim that this inequality implies a conditional isoperimetric inequality of
the following form.

Conditional Isoperimetric Inequality: there is a constant Cn > 0 so that the follow-
ing estimate holds. If A ⊂ C with |A| > Cnδ and 1 − |A| > Cnδ, then the following
inequality holds.

min(|A|, 1 − |A|) ≤ Cn|∂A| n
n−1 .

Lemma 9 Suppose that x, y > 0 and x + y = 1 − δ, and that (x + d)
n+1

n + (y + d)
n+1

n ≥
(1 − δ)

n+1
n . Then min(x, y) ≤ Cnd.

Proof This result follows from the last lemma by scaling. More precisely, x′ =
(1−δ)−1x, y′ = (1−δ)−1y, and d′ = (1−δ)−1d. Then x′, y′, and d′ obey the hypotheses of
the last lemma, and hence min(x′, y′) ≤ Cnd′, which implies that min(x, y) ≤ Cnd. ��

We apply this lemma to Eq. 2. To do the application, we take x = |A| − δ/2,
y = 1 − |A| − δ/2, and d = δ/2 + Cn|∂A| n

n−1 .

min[|A| − δ/2, 1 − |A| − δ/2] ≤ Cn[δ/2 + Cn|∂A| n
n−1 ].

Therefore, if |A| > Cnδ and if 1−|A| > Cnδ, then we have the isoperimetric inequal-
ity |A| < Cn|∂A| n

n−1 .
Armed with this conditional isoperimetric inequality, we next prove that most of

the cycle C lies in a box of controlled diameter. We pick a coordinate function xi on
lN∞. We translate C so that the plane xi = 0 bisects the volume of C. Then we let V(h)

denote the volume of C ∩{x|xi ≥ h} and we let A(h) denote the area of C ∩{x|xi = h}.
For the time being, we consider the range h ≥ 0. Since the plane xi = 0 bisects C, we
know that V(0)= 1/2. By the coarea formula, we know that V′(h) ≤ −CnA(h). On

the other hand, the isoperimetric inequality tells us that A(h) ≥ CnV(h)
n−1

n , as long
as V(h) > Cnδ. Assembling these formulas, we get the following inequality.

V′(h) ≤ −CnV(h)
n−1

n if V(h) > Cnδ.

We can divide by a power of V(h) to get the following inequality.

[V(h)1/n]′ = (1/n)V′(h)V(h)−
n−1

n ≤ −Cn if V(h) > Cnδ.

Therefore, we must have V(h) = Cnδ before h reaches Cn. In other words, the part
of C lying above the plane xi = Cn has volume at most Cnδ. Similarly, the part of C
lying below the plane xi = −Cn has volume at most Cnδ. Repeating the same argument
for each coordinate function, we find that the part of C outside of the box [−Cn, Cn]N

has volume at most NCnδ. By choosing δ, we can make this volume as small as we like.
Next, we let A(R) denote the volume of C intersected with the edge of the box

[−Cn−R, Cn+R]N . By the coarea formula, we can choose 0 ≤ R0 ≤ 1 so that A(R0) ≤
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NCnδ. We let A denote the intersection of C with the box [−Cn − R0, Cn + R0]N .
By the Federer–Fleming lemma, we can fill ∂A by a chain B with volume at most

CN[NCnδ] n
n−1 , lying inside a box with sides of length Cn + CNδ

1
n . Now we view C as a

sum of two cycles, C1 = A+B, and C2 = −B+Ac, where Ac denotes the complement
of A in C. By choosing δ > 0 sufficiently small, we can arrange that C1 has volume
at most (1 + ε) and that C2 has volume at most ε, for any ε > 0, and that C1 lies in
a cube of diameter at most Cn. Since C1 lies in a cube of diameter Cn, it can be filled
by a cone with of volume at most (1 + ε)Cn. Using the Federer–Fleming construction,

it follows that C2 can be filled by a chain with volume at most CNε
n+1

n . By choosing
ε sufficiently small, it follows that C can be filled by a cycle with volume at most Cn.
Now, the filling volume of C is at least (1 − δ)IN . Therefore, we can conclude that IN
is bounded by a constant Cn, independent of the ambient dimension N. ��

This finishes the proof of the filling radius estimate in lN∞ and also the proof of the
systolic estimate.

To conclude this section, we prove the filling radius estimate given in the
introduction.

Theorem B For any closed manifold M, the filling radius is bounded in terms of the
volume by the formula FillRad(M, g) ≤ C(n)Volume(M, g)1/n.

Proof Let (M, g) be a closed Riemannian manifold of dimension n. By Lemma 2, we
can find a finite set of points S ⊂ M so that KS: M → lN∞ is an embedding obeying the
following quasi-isometric estimate for any pair of points x, y in M.

(1/2)dist(x, y) ≤ |KS(x) − KS(y)| ≤ dist(x, y).

The image KS(M) is a subset of lN∞. We can map this subset to L∞(M) by sending
KS(x) to K(x). Because of the quasi-isometric bound for KS, this map has Lipschitz
constant 2. By Lemma 3, we can extend this map to a map F from KS(M) to all of lN∞
with the same Lipschitz constant 2. According to the main theorem of this section,
KS(M) bounds some chain A in its CnVol(M, g)1/n—neighborhood in lN∞. Now F(A)

is a chain in L∞(M), with boundary K(M). Because the map F stretches distances
by at most a factor of 2, the image F(A) lies in the 2CnVol(M, g)1/n neighborhood of
K(M). Therefore, Fill Rad(M, g) ≤ CnVol(M, g)1/n. ��

Appendix: essential manifolds

The systolic estimate Systole(M, g) ≤ CnVol(M, g)1/n requires a topological assump-
tion about the manifold M. The simplest topological assumption is that M is a closed
aspherical manifold, but the theorem remains true for a broader class of manifolds
called essential manifolds. For example, the real projective space RP

n is essential but
not aspherical.

A closed n-dimensional manifold M is called essential if there is an aspherical space
X and a map f from M to X so that f∗([M]) �= 0 in Hn(X). (If M is oriented, we use the
integral fundamental class and integral homology groups, and if M is not orientable,
we use the mod 2 fundamental class and mod 2 homology groups.) The manifold RP

n

is essential, because the linear inclusion RP
n ⊂ RP

∞ sends [RP
n] to the non-zero class

in Hn(RP
∞, Z2), and because RP

∞ is aspherical.
Lemma 4 can be extended to essential manifolds by slightly modifying the proof

as follows.
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Lemma 10 Suppose that M is a closed essential manifold, and that g is a Riemannian
metric on M. Let KS be an embedding from (M, g) to lN∞ that obeys the following
quasi-isometric estimate for any pair of points x, y ∈ M.

(1/2)dist(x, y) ≤ |KS(x) − KS(y)|∞ ≤ dist(x, y).

Then the filling radius of KS(M) is at least Systole(M, g)/12.

Proof Since M is essential, we know that there is an aspherical space X and a map f
from M to X that does not kill the fundamental homology class [M].

The proof is by contradiction. We assume that KS(M) bounds a chain C inside its
R-neighborhood, for R < Systole(M)/12. We will get our contradiction by construct-
ing a map φ: C → X with φ|∂C equal to the map f .

We pick a fine triangulation of the chain C so that each edge has length at most
δ > 0, a small number we can choose later. We have already defined φ|∂C. We will
define φ on the rest of C one skeleton at a time. We begin by defining φ on the verti-
ces of the triangulation. Let v be a vertex. Since C lies inside the R-neighborhood of
KS(M), we can pick a point w ∈ KS(M) within a distance R of v. We define φ(v) = f (w).

Next we define φ on the edges of the triangulation. Suppose that E is an edge of
the triangulation and that E has boundary vertices v1 and v2. We know that there
is a point w1 within R of v1 and that φ(v1) = f (w1), and similarly for v2. Since the
triangulation was δ-fine, the distance from w1 to w2 in lN∞ is at most 2R + δ. Now w1
and w2 are each points in KS(M). Because of the quasi-isometric estimate for KS, we
know that the distance between the corresponding points in (M, g) is at most 4R + 2δ.
Let P be a path from w1 to w2 in (M, g) of length at most 4R + 2δ. We have already
defined φ on the endpoints of E, mapping them to the endpoints of f (P). Now we
extend φ so that it maps E onto f (P).

Next we define φ on the 2-simplices of the triangulation. Suppose that � is a 2-sim-
plex. We have already defined φ on the boundary of the 2-simplex. Let E1, E2, and
E3 be the three edges of �. For each edge Ei of �, we chose a path Pi in (M, g) so
that φ(Ei) is equal to f (Pi). The total length of the three paths Pi is at most 12R + 6δ.
By assumption, R < Systole(M, g)/12. We can choose δ > 0 sufficiently small so that
12R + 6δ < Systole(M, g). Therefore, the union of the paths Pi is a contractible loop
in (M, g), and so φ maps the boundary of � to a contractible loop in X. We pick a
contraction and use it to define φ on �.

Finally, we define φ on the higher-dimensional simplices of the triangulation, work-
ing one skeleton at a time. Suppose we have extended φ to the (k − 1)-skeleton, and
consider a k-simplex �. The restriction of φ to the boundary of � is null-homotopic,
because X is aspherical. Therefore, φ can be extended to �. We pick any extension.

This finishes the construction of a map φ: C → X, with φ|∂C = f . Since the homol-
ogy class f∗([M]) is non-trivial in X, this map is a contradiction. We may conclude that
R ≥ Systole(M, g)/12. ��

Using this lemma in place of Lemma 4, we get a systolic estimate for essential
manifolds.

Theorem For any n-dimensional closed essential Riemannian manifold (M, g), the
systole is bounded in terms of the volume by the following formula.

Systole(M, g) ≤ C(n)Volume(M, g)1/n.
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