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Abstract. If F is a family of mod 2 k-cycles in the unit n-ball, we lower
bound the maximal volume of any cycle in F in terms of the homology
class of F in the space of all cycles. We give examples to show that these
lower bounds are fairly sharp.

This paper is about minimax estimates for the volumes of cycles in
complicated families. The simplest example of a minimax problem is a
classical result about curves in the unit disk. First consider the family of
vertical lines in the unit disk. The longest line in the family has length 2.
Then consider any other family of curves that sweeps out the unit disk.
One of the curves in the other family must still have length at least 2. We
illustrate the situation in Figure 1.

Figure 1
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We can write this result in the following form, which explains why it is
called a minimax estimate:

inf
F∈F

sup
C∈F

length(C) = 2 .

In this equation, F denotes the set of all 1-parameter families of curves in
the unit disk which sweep out the disk. The letter F denotes a particular
1-parameter family of curves in F, and the letter C denotes a curve in the
family F .

In this paper, we study more general minimax problems that may in-
volve very high-parameter families. For example, we will study a minimax
problem for p-parameter families of planar curves for any integer p and
compute the asymptotic behavior as p tends to infinity. More generally, we
will study analogous questions for k-dimensional surfaces in the unit n-ball
for any k < n.

We let Z(k, n) denote the space of mod 2 relative k-cycles in the unit
n-ball. (More precisely, we use the space of flat k-cycles. In section 1, we
give a self-contained definition of this space.)

By a family of k-cycles, we mean a continuous map F from a simplicial
complex to Z(k, n). If α is a cohomology class in H∗(Z(k, n), Z2), we say
that F detects α if F ∗(α) ̸= 0. Then we define F(α) to be the set of all
families of cycles that detect the cohomology class α. We define a minimax
volume for the cohomology class α by the following formula:

V(α) := inf
F∈F(α)

sup
C∈F

Volume(C) .

This formula defines infinitely many minimax volumes V(α), and we
will investigate how the minimax volume depends on the cohomology class.

The first cohomology class that we will use measures whether a family
of cycles sweeps out the ball. In section 1, we will define precisely what
it means for a family of cycles to sweep out the ball. Suppose that z is
a mod 2 (n − k)-cycle in the space Z(k, n). There is a cohomology class
a(k, n) in Hn−k(Z(k, n), Z2) whose pairing ⟨a(k, n), [z]⟩ is equal to 1 if the
family z sweeps out the unit ball (mod 2) and is equal to 0 if it doesn’t.
We call a(k, n) the fundamental cohomology class of Z(k, n). Determining
V(a(k, n)) is the classical minimax problem for families of k-cycles that
sweep out the unit n-ball. For this problem, there are good results due to
Almgren [A2] and Gromov [G1,3], which we describe in detail in section 2.

We get other cohomology classes by applying cohomology operations to
the fundamental cohomology class a(k, n). The next simplest cohomology
classes are cup powers of a(k, n). Recently, Gromov studied the problem
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of estimating V(a(k, n)p) in section 8 of [G3]. He proved the following
theorem.

Theorem 1 (Gromov). There are constants 0 < c(n) < C(n) so that the

following estimate holds:

c(n)p
n−k

n ≤ V
(

a(k, n)p
)

≤ C(n)p
n−k

n .

In this paper, we will reprove Theorem 1 in detail. We will construct an
explicit family of cycles that detects a(k, n)p, check that each cycle in the

family has volume at most C(n)p
n−k

n , and prove that this value is nearly
optimal.

The main goal of the paper is to extend this analysis from cup pow-
ers to towers of Steenrod squares. Recall that Sqi denotes the Steenrod
square cohomology operation that maps HN (X, Z2) to HN+i(X, Z2) for
any space X. For background on Steenrod squares, see the chapter on them
in [H]. If α is a cohomology class in HN (X, Z2), we write Sqiα to denote
SqN−iα ∈ H2N−i(X, Z2). We write Sq2

i α to denote Sqi[Sqiα], and in a sim-
ilar way we define Sqp

i and SqiSqj. Our second theorem estimates the mini-

max volume for any cohomology class of the form SqQ0
0 · · · Sq

Qn−k−1

n−k−1 a(k, n),
where Q0, . . . , Qn−k−1 are any non-negative integers.

Theorem 2. For each ϵ > 0, there is a constant c(n, ϵ) > 0, and there is a

constant C(n) independent of ϵ, so that the following estimate holds:

c(n, ϵ)
n−k−1
∏

i=0

(2− ϵ)
n−k−i

n−i
Qi ≤ V

(

SqQ0
0 · · ·Sq

Qn−k−1

n−k−1 a(k, n)
)

≤ C(n)
n−k−1
∏

i=0

2
n−k−i

n−i
Qi .

These formulas are pretty complicated, so we make a few comments

about them. Let α be a cohomology class SqQ0
0 · · ·Sq

Qn−k−1

n−k−1 a(k, n) lying in

Hd(Z(k, n), Z2). At first, we might hope to estimate V (α) in terms of the
dimension d. The formula in Theorem 2 implies that V (α) may be as large

as d
n−k

n or as small as d
1

k+1 depending on the values of Q0, . . . , Qn−k−1.
Knowing d gives us some idea of V(α), but our best guess would be subject
to an error that is polynomial in d. Theorem 2 gives us an estimate for
V(α) which is accurate up to an error of order dϵ for any ϵ > 0.

The reader may want to know what fraction of the cohomology ring
of Z(k, n) is covered by Theorem 2. The homotopy groups of spaces of
cycles were studied by Almgren in his thesis [A1]. Almgren proved that the
space of relative integral k-cycles in the unit n-ball has homotopy groups
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πn−k = Z and all other homotopy groups zero. I believe that Almgren’s
argument should apply to the space Z(k, n) of mod 2 flat cycles. The ar-
gument should prove that πi(Z(k, n)) is equal to Z2 for i = n− k and zero
otherwise. Unfortunately, this argument is not written down anywhere as
far as I know. I hope to write an exposition of it in the future. If Almgren’s
argument applies, then Z(k, n) is weak homotopic to the Eilenberg–Maclane
space K(Z2, n− k). The mod2 cohomology ring of the space K(Z2, n− k)
was determined by Serre in [S]. The smallest non-zero cohomology group
is Hn−k which is equal to Z2. We call the generator of this group a. The
entire cohomology ring of K(Z2, n − k) is a free Z2 algebra with genera-

tors SqQ1
1 · · ·Sq

Qn−k−1

n−k−1 a, where Qi ≥ 0 are any numbers. (See [H] for more
information.)

To get a sense of what it means for a family of cycles to detect a certain
cohomology class, consider the following topological properties. First sup-
pose that a family of cycles detects a(k, n). In other words, the family of
cycles sweeps out the unit n-ball. This implies that one of the cycles must
go through the center of the ball. More generally, if we pick any point x
in the unit ball, one of the cycles must go through x. Next suppose that a
family of cycles detects a(k, n)p. If we pick any p points x1, . . . , xp in the
unit n-ball, then one of the cycles in the family must go through all p points.
The lower bounds in Theorem 1 exploit this property. The analogue of this
property for Steenrod squares is a little bit more complicated. Suppose
that a family of cycles detects Sqia(k, n). If we pick two particular points,
x1 and x2, then our family may not contain a cycle that goes through them
both. But if we pick a continuous map f from Si to the unit ball, then we
can find a point θ ∈ Si so that a cycle from our family goes through both
f(θ) and f(−θ). There is an analogous property for a family of cycles that
detects SqQ

i a(k, n), but it becomes pretty complicated. Roughly speaking,
the lower bounds in Theorem 2 exploit this property.

To give some context for our theorems, we consider some examples of
families of cycles. The most interesting examples are families of algebraic
varieties. These examples are discussed more in section 6 of the paper,
where we prove the claims made in the discussion below. The one thing
we don’t prove is that the complex algebraic hypersurfaces are an honest
family of flat cycles – therefore, Example 5 below is not completely rigorous.

Example 1. Vertical lines in the unit disk. This is the example that
began the paper. The family F is parametrized by [−1, 1], with F (t) being
the line x = t intersected with the unit disk. Since F (−1) and F (1) are
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both the empty cycle, we can think of the family as a map from the circle to
Z(1, 2). Because the vertical lines sweep out the disk, the class F ∗(a(1, 2))
is the non-zero class in H1(S1, Z2). Since each vertical line has length at
most 2, it follows that V(a(1, 2)) ≤ 2, and this inequality is sharp.

Example 2. Sets of p vertical lines in the disk. Start with the open p-
simplex −1 < t1 < · · · < tp < 1. Define F on the open simplex by taking
F (t1, . . . , tp) to be the union of vertical lines x = ti for 1 ≤ i ≤ p. By
continuity, F extends to map the closed simplex into Z(1, 2). The image
of this map turns out to be a p-cycle in Z(1, 2) that detects a(1, 2)p. Every
p-tuple of vertical lines has total length at most 2p, and so this example
shows that V(a(1, 2)p) ≤ 2p.

According to Theorem 1, V(a(1, 2)p) ∼ p1/2. For large p, this family
of cycles has much longer curves than necessary. Our next example shows
how to improve it.

Example 3. Planar real algebraic curves. Let P (x, y) be a real polynomial
of degree at most d. If P is not uniformly zero, then we define F (P ) to
be the intersection of the real algebraic curve {(x, y)|P (x, y) = 0} with the
unit disk.

We should mention that some of these polynomials have no solutions.
For example, P (x, y) could be 1, or it could be 1 + x2 + y2. In these
cases, F (P ) is the empty cycle. Some of the curves in our family have one
connected component, but some have more than one connected component,
while others are empty. In spite of the changing topology, the family of real
algebraic curves is continuous in the flat topology. (We prove this statement
in section 6.)

The space of all real polynomials of degree at most d is a real vector
space of dimension

(d+2
2

)

. Two polynomials define the same curve if one
is a constant multiple of the other. Therefore, we can think of the space
of degree d curves as a family parameterized by RPD(d), where D(d) =
(d+2

2

)

− 1 = (1/2)(d2 + 3d). This family detects the class a(1, 2)p for any
p ≤ D(d). Also, the length of a degree d algebraic curve in the unit disk is
less than 4d. Therefore, V(a(1, 2)D(d)) < 4d. Since D(d) is roughly d2, it
follows that V(a(1, 2)p) < 10p1/2.

According to Theorem 1, V(a(1, 2)p) ∼ p1/2, and so the family of degree
d curves is roughly the optimal way of detecting a(1, 2)p.

Example 4. Real algebraic hypersurfaces. The last construction general-
izes to real algebraic hypersurfaces in any dimension. The space of degree d
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real algebraic hypersurfaces in the unit n-ball can be parametrized by
RPD(d,n) for a dimension D(d, n) on the order of dn. It detects a(n− 1, n)p

for any p ≤ D(d, n). Each degree d hypersurface in the unit ball has vol-
ume at most C(n)d. These examples show that V(a(n−1, n)p) ≤ C(n)p1/n,
which is roughly optimal according to Theorem 1.

Example 5. Complex algebraic hypersurfaces. The same construction
applies to complex algebraic hypersurfaces. If n is even, then we can think
of the unit n-ball as the unit ball in Cn/2, and we can look at the degree
d complex hypersurfaces. These are parametrized by CP D(d,n/2), where
the dimension D(d, n/2) is on the order of dn/2. Each degree d complex
hypersurface in the unit n-ball has volume at most C(n)d. Therefore, we
get an upper bound on minimax volumes V(a(n − 2, n)p) ≤ C(n)p2/n for
even n. This upper bound is roughly optimal according to Theorem 1.

We can also think of complex hypersurfaces as integral cycles. We
discuss the situation for integral cycles in Appendix 2.

Example 6. Translates of real algebraic planar curves in R3. This example
is a modification of the family of degree d real algebraic planar curves. Re-
call that the degree d curves formed a family F (d, 2) : RPD(d,2) → Z(1, 2),
detecting the cohomology class a(1, 2)D(d,2). Now we define a new family
of 1-cycles in the 3-ball by using translates of the degree d curves. The new
family is parametrized by RPD(d,2) × [−1, 1]. Our new family F is defined
by taking F (p, t) to be the restriction to the unit 3-ball of the product
F (d, 2)(p) × {t} ⊂ B2(1) × [−1, 1]. If t = ±1, then F (p, t) is the empty
cycle, so F extends to a continuous family parametrized by RPD(d,2) × S1.
The family F detects SqQ

1 a(1, 3) for any Q with 2Q ≤ D(d, 2). Each 1-
cycle in F has length at most Cd. Since D(d, 2) is roughly d2, this example
shows that V(SqQ

1 a(1, 3)) ≤ C2Q/2. According to Theorem 2, this example
is approximately sharp in the sense that for any ϵ, we can choose a constant
c(n, ϵ) > 0 so that V(SqQ

1 a(1, 3)) ≥ c(n, ϵ)(2 − ϵ)Q/2.

Example 7. Products of previous examples. We can also take prod-
ucts of previous examples. For example, we can look at the product
F (d, 2) × F (d, 2), which defines a family of 2-cycles in the unit 4-ball para-
metrized by RPD(d,2) × RPD(d,2). This family detects the class a(2, 4)p for
any p ≤ D(d, 2). Each surface in the family has area at most Cd2. This
example shows that V(a(2, 4)p) ≤ Cp. According to Theorem 1, the ac-
tual value of V(a(2, 4)p) is much smaller, on the order of p1/2, which can
be achieved by looking at complex hypersurfaces. Similarly, most other



Vol. 18, 2008 MINIMAX PROBLEMS AND STEENROD SQUARES 1923

products lead to families of cycles that are far from optimal with respect
to our minimax problem.

Now that we have seen some examples of families of cycles, we discuss
the proofs of the lower bounds in Theorems 1 and 2.

Lower bounds for V(a(k, n)) for general k were first proven by Almgren
using his version of Morse theory on the space of cycles [A2]. He proved that
a family of k-cycles sweeping out the unit n-sphere must contain a cycle
with volume at least equal to that of the unit k-sphere. This statement
implies a lower bound for V(a(k, n)). Almgren’s argument involves a lot
of geometric measure theory. In [G1], Gromov gave a lower bound for
V(a(k, n)) by using the isoperimetric inequality repeatedly. We include
Gromov’s argument in section 2.

The lower bounds in Theorem 1 are proven by combining a lower bound
for V(a(k, n)) with Lusternik–Schnirelmann theory. To give the idea, we
explain how to bound V(a(1, 2)p). Let B1, . . . , Bp be disjoint disks inside
the unit disk, each with radius r ∼ p−1/2.

Let S(i) ⊂ Z(1, 2) be the subset of 1-cycles z ∈ Z(1, 2) so that z ∩ Bi

has length at most r. (We use the letters S(i) as an abbreviation for “cycles
which are small in Bi”.) The dashed curve in Figure 2 illustrates a cycle
in S(1). This cycle does not belong to S(2) or S(3).

B 1 B 2

B 3

Figure 2

Any family of curves that sweeps out the unit disk must also sweep out
each Bi. By scaling the classical result at the beginning of this introduction,
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we know that any family of curves that sweeps out Bi must contain a curve
of length at least 2r. Therefore, the set S(i) does not contain a family of
curves sweeping out the unit disk. In other words, the restriction of a(1, 2)
to S(i) vanishes.

According to Lusternik–Schnirelmann theory, the class a(1, 2)p vanishes
on the union ∪p

i=1S(i). (For a reference on Lusternik–Schnirelmann theory,
see the first chapter of [CLOT]. The result about the cup powers is proven
on pages 2-3.) Therefore, if F is a family of cycles that detects a(1, 2)p,
then F must contain a cycle C which is not in any S(i). In other words,
for each i, C ∩Bi has length at least r. Since the disks Bi are disjoint, the
total length of C must be at least pr ∼ p1/2.

To prove the lower bounds in Theorem 2, we need an analogue of
Lusternik–Schnirelmann theory involving Steenrod squares instead of cup
powers. The fundamental topological fact about cup squares that we ex-
ploited is the following vanishing result. If α is a cohomology class in
H∗(X), and V1, V2 are open sets in X with the property that α|V1 = 0 and
α|V2 = 0, then the cup square α2 vanishes on the union V1 ∪ V2. We prove
a generalization of this vanishing result for Steenrod squares.

Vanishing Lemma. Let X be a simplicial complex, and let α be a co-

homology class in Hp(X, Z2). Let π : Si × X → X be the projection

onto the second factor. Suppose that V ⊂ Si × X is an open subset.

For any θ ∈ Si, let V (θ) ⊂ X be the set {x ∈ X | (θ, x) ∈ V }. Let

P [V ] = ∩θ∈Si[V (θ) ∪ V (−θ)]. Under these assumptions, if π∗(α) vanishes

on V , then Sqiα vanishes on P [V ].

We now try to describe the proof of the lower bounds in Theorem 2,
comparing each step to what happened in Theorem 1. Suppose first that
we have a family of cycles that detects a(k, n)2. Suppose that P is any hy-
perplane through the origin, and let B1 and B2 denote the two components
of Bn(1)−P . By using Lusternik–Schnirelmann theory, we can find a cycle
in our family that meets both B1 and B2 in a substantial volume. Now
suppose instead that we have a family of cycles that detects Sq1a(k, n). If
we take a hyperplane P through the origin, the corresponding statement
is false. Instead, we have to take a 1-parameter family of hyperplanes
through the origin, parametrized by a copy of RP1 ⊂ RPn−1. For one of
these hyperplanes P , we can find a cycle in our family that meets each half
of Bn(1) − P in a substantial volume.

To deal with a class like SqP
i a(k, n), we have to iterate the procedure

above. As a warmup, suppose that a family detects a(k, n)4. Then we
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cut the ball up into 4 pieces in a 2-step process as follows. First we pick a
hyperplane P that cuts the ball into two pieces, B1 and B2. Then we pick a
hyperplane P1 that cuts B1 into two pieces, B11 and B12. Similarly, we pick
a hyperplane P2 that cuts B2 into two pieces. We end up with four pieces:
B11, B12, B21, and B22. Using Lusternik–Schnirelmann theory, we can find
a cycle in our family that meets each of the four pieces in a substantial
volume. Using this argument, we get a lower bound for V(a(k, n)4). The
lower bound that we get depends on our choice of planes. To get the best
lower bound, we want the pieces Bij to be as thick as possible.

Finally suppose a family detects Sq2
1a(k, n). We cut the ball into 4 pieces

in a 2-step process. First, we pick a 1-parameter family of hyperplanes
making a linear copy of RP1 ⊂ RPn−1. Then the ball is cut into two pieces,
B1 and B2, along one of these hyperplanes, but we don’t get to choose
which hyperplane. Now, for B1, we get to choose a (possibly different)
1-parameter family of hyperplanes, RP1 ⊂ RPn−1. Then the set B1 is cut
into two pieces, B11 and B12, along one of the hyperplanes in the family, but
again we don’t get to control which one. Then we do the same for B2. At
the end of the cutting process we have divided the ball into four convex sets.
Using the Steenrod square vanishing lemma, we can prove that our family
contains a cycle that meets each of the four convex sets in a substantial
volume. Notice that we didn’t get to choose the four sets, as we did in the
case of a(k, n)4; we only got to choose the sequence of 1-parameter families
of hyperplanes. Applying the Steenrod vanishing lemma, we get a lower
bound for V(Sq2

1a(k, n)), depending on the shapes of the four pieces. In
order to get the best lower bound, we want to choose our sequence of 1-
parameter families of hyperplanes in order to guarantee that the four pieces
are as thick as possible.

The proof of the lower bounds in Theorem 2 combines a topology argu-
ment based on the Steenrod vanishing lemma with a geometry argument
estimating the sizes of the pieces that appear in the above construction.
This proof is the longest and hardest part of the paper.

We now return to the upper bounds in Theorems 1 and 2. Some of the
upper bounds can be proven using families of real algebraic cycles, as we
discussed above. For example, the real algebraic hypersurfaces can be used
to prove the upper bounds in Theorem 1 when k = n − 1. In general, to
prove the upper bounds, we construct some new families of cycles.

In order to explain the idea, we illustrate the construction in the case
k = 1, n = 2. We recall Example 2 above, the family of sets of p vertical



1926 L. GUTH GAFA

lines. This family of cycles detects the class a(1, 2)p, but it has maximal
length on the order of p. Our construction is a way to modify the family
in Example 2, cutting out excess length to produce a new family of curves
with length on the order of p1/2.

Let L be a lattice in R2 with side-length p−1/2. We define a map Ψ
which squeezes most of R2 into the 1-skeleton of L. Our map Ψ is periodic,
so it suffices to define it on a single square Q of the lattice L. The boundary
of Q is contained in the 1-skeleton of L, and our map is the identity on the
boundary of Q. Let Q(ϵ) denote a square with the same center as Q but
with side-length ϵp−1/2. The map Ψ takes Q(ϵ) linearly onto Q. Finally,
the map Ψ retracts Q−Q(ϵ) into the boundary of Q.

We now use the map Ψ to “bend” the cycles in Example 2. First we
rotate Example 2, so that each cycle consists of p parallel lines at a generic
angle. We then apply the map Ψ to get a new family. Each cycle in the
new family is a union of at most p 1-cycles Ψ(L1) + . . . + Ψ(Lp), where
Li is a line at our generic angle. The effect of the map Ψ on a line L is
illustrated below.

Figure 3

On the left side of Figure 3, we see the intersection of the unit disk with
a line L. On the right side, we see the intersection of the unit disk with
Ψ(L). The scale of the lattice in Figure 3 corresponds to p ∼ 30, so the
reader should imagine performing the operation above on 30 parallel lines.

The point of replacing Li by Ψ(Li) is that the curve Ψ(Li) is contained
mainly in the 1-skeleton of the lattice L. Each cycle Ψ(Li) lies in the 1-
skeleton of L except possibly for one segment of length at most 2p−1/2. The
cycles Ψ(Li), (i = 1, . . . , p) overlap a great deal. Because we are working
with mod 2 cycles, we can cancel the overlaps and reduce the total length.
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The sum
∑p

i=1 Ψ(Li) lies inside of the 1-skeleton of L except for at
most p segments of length at most 2p−1/2. The total length of all these
short segments is at most 2p1/2. On the other hand, after cancelling all the
overlaps, the portion of our sum inside the 1-skeleton of L has length at
most the length of the 1-skeleton, which is on the order of p1/2.

By modifying this bend-and-cancel construction, we prove all the upper
bounds in Theorems 1 and 2. To prove Theorem 2, we need to use a
sequence of mappings like Ψ with lattices at different scales.

To finish the introduction, we mention some open questions connected
with families of real algebraic cycles. There is a general principle in geom-
etry/topology that algebraic varieties do a good job of minimizing various
things. A number of examples are given in Arnold’s expository essay [Ar].
It would be interesting to know whether the optimal minimax volumes are
realized by families of real algebraic cycles.

For example, we know that the family F (d) of all degree d real alge-
braic planar curves detects the cohomology class a(1, 2)D(d) for D(d) =
(1/2)(d2 + 3d). Is it true that the minimax volume V(a(1, 2)D(d)) is the
maximal length of a degree d curve intersected with the unit disk?

It would also be interesting to know whether we could prove all the
upper bounds in Theorems 1 and 2 using families of real algebraic cycles.
By work of Lawson and Lam, the topology of the space of real algebraic
k-cycles in Rn is known. (The complex case was done by Lawson in [La1].
The real case was done by Lam in his thesis [L]. The work is also described
in Lawson’s expository article [La2, p. 93].) The space of real algebraic k-
cycles in Rn has πi equal to Z2 for i = n−k and πi equal to zero otherwise.
In particular, their work implies that every cohomology class of the form

a(k, n)p or of the form SqQ0
0 · · ·Sq

Qn−k−1

n−k−1 a(k, n) can be detected by a family
of real algebraic cycles. It would be interesting to know the smallest degree
d so that a given cohomology class can be detected by a family of algebraic
cycles of degree at most d. We call this degree D(α).

An algebraic k-cycle of degree d meets the unit n-ball in volume at
most C(k, n)d. Therefore we get a lower bound D(α) ≥ c(k, n)V(α). (Ap-
plying Theorem 1 and 2, we then get lower bounds for D(a(k, n)p) and
D(SqQa(k, n)).) It would be interesting to know if there is a converse
bound D(α) ≤ C(k, n)V(α). If it exists, such a bound would verify the phi-
losophy that algebraic objects are efficient at solving geometric problems.
Our results show that this converse inequality holds in a couple of cases
including the case α = a(n− 1, n)p.
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The paper is organized as follows. In section 1, we state the problem
precisely. In section 2, we give Gromov’s lower bound for V(a(k, n)) us-
ing the isoperimetric inequality. In section 3, we prove lower bounds for
V(a(k, n)p) by combining Lusternik–Schnirelmann theory with the result
in section 2. In section 4, we prove lower bounds for V(SqQa(k, n)) using
our vanishing lemma for Steenrod squares. In section 5, we construct fami-
lies of cycles using the bend-and-cancel construction, proving all the upper
bounds in Theorems 1 and 2. In section 6, for context, we discuss families
of algebraic cycles.

The paper ends with three appendices. In Appendix 1 we give a more
standard definition of the space of flat cycles. In Appendix 2, we describe
the limited known results for families of integral cycles. In Appendix 3, we
discuss the analogous problem in Riemannian manifolds.

Notation. Unless otherwise indicated, all homology and cohomology
groups have coefficient group Z2.
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1 The Space of Flat Cycles

In this section, we set up our problem precisely. In particular, we define the
space of mod 2 flat cycles Z(k, n) and the fundamental cohomology class
a(k, n).

(Our definition is different from the standard definition of the space of
flat cycles. In Appendix 1, we recall the standard definition and prove that
they agree.)

A mod2 Lipschitz k-chain in the unit n-ball is a finite sum
∑

aifi,
where ai ∈ Z2, and fi is a Lipschitz map from the standard k-simplex to
the closed unit n-ball. We let IB(k, n) denote the space of mod 2 Lipschitz
k-chains in the unit n-ball. We let I∂B(k, n) denote the space of mod 2
Lipschitz k-chains in the boundary of the unit ball. (Each map fi is a
Lipschitz map from the k-simplex to ∂B.) Each of these spaces is a vector
space over Z2. We define the space of relative k-chains, Irel(k, n), to be the
quotient IB(k, n)/I∂B(k, n).
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Next we define boundaries. The boundary of a Lipschitz k-chain is de-
fined in the usual way from singular homology theory. It gives a boundary
map ∂ : IB(k, n) → IB(k − 1, n), and a boundary map ∂ : I∂B(k, n) →
I∂B(k − 1, n). Hence we get a boundary map between the quotients,
Irel(k, n) → Irel(k − 1, n). This map makes the relative Lipschitz k-chains
into a complex. The cycles in this complex are called relative k-cycles.
The set of relative k-cycles is denoted by Zrel(k, n). A relative k-cycle
can be represented by a k-chain whose boundary lies in ∂B. The homol-
ogy of the chain complex Irel is the relative homology of the unit n-ball:
Hk(B, ∂B, Z2).

Next we define volume. For any k-chain C ∈ IB(k, n), we define the
volume of C =

∑

aifi to be
∑

|ai|Vol(f∗
i Euc). Here |ai| is equal to 1 if

ai = 1 mod 2 and zero otherwise; and f∗
i (Euc) is the induced metric on

the k-simplex. Because fi is Lipschitz, this metric is well defined almost
everywhere and belongs to L∞, which is enough to define its volume. Now
we define the volume of a relative k-chain C ∈ Irel(k, n) to be the infimal
volume of any absolute k-chain C ′ ∈ IB(k, n) whose projection to Irel(k, n)
is C.

We define a metric on Zrel(k, n) which measures how much area it takes
to span the difference of two cycles. If C1 and C2 are two relative cycles,
we define the area-distance between C1 and C2 to be the infimal volume of
any relative (k + 1)-chain D ∈ Irel(k + 1, n) with ∂D = C1 − C2.

The following figure illustrates two 1-cycles that are close together in
terms of the area-distance. The solid line and the dashed line each represent

Figure 4

a relative 1-cycle in the unit disk. The solid cycle has two components and
the dashed cycle has only one component. One component of the solid
cycle lies far from the dashed cycle, so the two cycles are far apart in the
Hausdorff topology. Nevertheless, the region between them, consisting of a
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strip and a small ellipse, has small area, and so the cycles are close together
in the area-distance.

The area-distance from C1 to C2 can be zero. This happens if C1 and
C2 are the same geometric object parametrized in different ways, or if C2 is
obtained from C1 by adding a degenerate map fi which takes the k-simplex
into a (k − 1)-dimensional surface.

We say that two relative cycles C1 and C2 are equivalent if the area-
distance between them is zero. The set of equivalence classes of relative
cycles is a metric space, where the metric is the area-distance. We define
Z(k, n) to be the completion of this metric space. We say that the volume
of a cycle C ∈ Z(k, n) is less than V if there is a sequence of relative
Lipschitz cycles Ci with Ci → C and the volume of each Ci less than V .
We sometimes denote the volume of C by |C|.

By a family F of k-cycles parametrized by a space X, we mean a con-
tinuous map F : X → Z(k, n). In this paper, we will always assume that
X is a simplicial complex. We say that a family F detects a cohomology
class α ∈ H∗(Z(k, n)) if F ∗(α) is non-zero in H∗(X). We let F(α) denote
the set of all families of cycles that detect α. We will say that a cycle
C ∈ Z(k, n) belongs to F if C = F (x) for some x ∈ X. If C belongs to F ,
we will write C ∈ F . We define the maximal volume of the family F to be
supC∈F Volume(C).

Now we formally define the minimax volumes. Let α be a cohomology
class in H∗(Z(k, n)). We define V(α) by the following minimax formula:

V(α) = inf
F∈F(α)

sup
C∈F

Volume(C) .

Next we construct the fundamental cohomology class a(k, n) ∈
Hn−k(Z(k, n), Z2). The construction follows Almgren’s original construc-
tion in [A1]. Informally, our task is to define what it means for a family
of relative k-cycles to sweep out the unit ball. Morally, an i-dimensional
family of k-cycles can be glued together to form a (k + i)-cycle, but this is
not literally true. We now give a construction that takes an i-dimensional
family of cycles and gives a (k + i)-cycle that, in some sense, is a small
perturbation of the family.

The basic object that we introduce to do the construction is called a
complex of cycles. A complex of cycles is a discrete approximation to a con-
tinuous family of cycles. A complex of k-cycles is parametrized by a poly-
hedral complex X. For each i-face A of X, the complex associates a (k + i)-
dimensional mod 2 Lipschitz relative chain C(A). These chains have to fit
together in the following sense. If ∂A =

∑

Bi, then ∂C(A) =
∑

C(Bi).
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In particular, this formula implies that for each vertex v of X, C(v) is a
relative k-cycle.

We include a figure illustrating a complex of 1-cycles in the unit disk.
In the left half of the figure is the parameter space of our complex. It
consists of three 0-simplices, p, q, and r, together with two 1-simplices, E
and F . In the right half of the figure, we see the corresponding cycles and
chains. For each 0-simplex, there is a corresponding 1-cycle in the unit disk.
For each 1-simplex there is a corresponding 2-chain in the unit disk. The
figure is supposed to show geometrically the way these cycles and chains
fit together.

p qE F r

C(p)

C(q) C(r)

C(E)

C(F)

Figure 5

We can think of C algebraically as a chain map between two chain
complexes. The first chain complex is associated to X. It has i-chains
consisting of sums ciAi, where ci ∈ Z2 and Ai is an i-face of X. The second
chain complex is the complex of relative Lipschitz chains in the unit n-ball,
Irel(k, n). A complex of k-cycles C is a chain map from the first chain
complex to the second one with shift k. (We remark that Irel(k, n) makes
perfectly good sense for k > n.)

The chain map C induces a map from the simplicial homology of X to
the homology of Irel(k, n), which is the relative homology of the unit n-ball.
Since the chain map has shift k, we get a map from Hi(X) to Hk+i(B, ∂B).
We call this map the gluing homomorphism G.

There is a version of homotopy for complexes of cycles. If C is a complex
of cycles parametrized by X× [0, 1] (with the natural polyhedral structure),
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then we call C a homotopy. If C restricted to X × {0} is C0 and if C
restricted to X×{1} is C1, then we say that C is a homotopy from C0 to C1.
The gluing homomorphism is homotopy invariant. From the algebraic point
of view, C is a chain homotopy between the chain maps C0 and C1.

Following Almgren, we next explain how to approximate a continuous
family of k-cycles by a discrete complex of cycles. The main tool in the
construction is the Federer–Fleming isoperimetric inequality.

Theorem (Federer, Fleming). There is a constant C(n) so that the fol-

lowing holds. Suppose that k < n, and that C is a mod 2 relative Lipschitz

k-cycle in the unit n-ball. Then C is the boundary of a (k + 1)-chain D,

with |D| < C(n)|C|
k+1

k .

In addition to the isoperimetric inequality, we also use the following
basic facts. If C is a mod 2 Lipschitz relative n-cycle in the unit n-ball, and
if the volume of C is less than the volume of the unit ball, then C bounds
an (n+1)-chain D. Any k-cycle of dimension greater than n automatically
bounds a (k + 1)-chain.

Let F be a family of k-cycles parametrized by X. We take a fine tri-
angulation of X. We pick a small number δ > 0. For each vertex v of
the triangulation, we choose a mod 2 Lipschitz cycle C(v) so that the area-
distance from C(v) to F (v) is at most δ and so that the volume of C(v) is
at most |F (v)| + δ.

Now, since the triangulation is fine, we may assume that if v1 and v2

are neighboring vertices, then the area-distance between C(v1) and C(v2)
is less than 3δ. By definition, this means that there is a mod 2 relative
Lipschitz (k + 1)-chain D with boundary C1 − C2, and with |D| < 3δ.

Let E denote the edge from v1 to v2, so that ∂E = v1 − v2. We define
C(E) = D. We repeat this operation for every edge of the triangulation
of X. For each edge E with boundary v1− v2, C(E) is a (k +1)-chain with
boundary C(v1)− C(v2) and volume at most 3δ.

We continue this procedure inductively. For each i-dimensional simplex
∆i in X, we define a (k + i)-chain C(∆i) with the following properties. If
the boundary of the simplex ∆i is equal to

∑

j ∆i−1
j , then the boundary of

C(∆i) is equal to
∑

j C(∆i−1
j ) in Irel(k, n). Moreover, C(∆i) has volume

less than C(n)δ. If i ≤ n − k, we can choose such chains by using the
isoperimetric inequality. Provided that δ is sufficiently small, we can also
choose such a chain for i = n−k+1, because the boundary we are trying to
fill has n-volume less than C(n)δ. For i > n− k + 1, we can automatically
find such a chain.
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The complex of cycles C was not canonical. If δ > 0 is sufficiently
small, however, the complex of cycles C is well defined up to homotopy.
To see this, let C0 and C1 be two possible choices of chain map follow-
ing the construction above. Divide X × [0, 1] into cells given by ∆ × {0},
∆ × {1}, and ∆ × [0, 1], where ∆ varies over the triangulation
of X. Now define C(∆ × {0}) = C0(∆) and C(∆ × {1}) = C1(∆).
Suppose that ∆i is an i-simplex in X, and that the boundary of
∆i × [0, 1] is equal to ∆i × {1}−∆i × {0} +

∑

j ∆i−1
j × [0, 1]. We have

to define C(∆i × [0, 1]) to be a (k + i + 1)-chain with boundary
C(∆i × {1}) − C(∆i × {0}) +

∑

j C(∆i−1
j × [0, 1]). We proceed inductively,

beginning with i = 0. In this case, we have to find a (k +1)-chain spanning
C(v, 1) − C(v, 0). But both C(v, 1) and C(v, 0) are within δ of F (v), and
so the area-distance between them is less than 2δ. Hence we can choose
a (k + 1)-chain with the given boundary and with volume less than 2δ. If
i < n − k, we define these chains using the isoperimetric inequality. Pro-
vided that δ is sufficiently small, we can define the chains for i = n − k
since we are trying to fill a boundary with n-volume less than C(n)δ. When
i > n− k, we can define the chains automatically.

A similar argument shows that if C0 is a complex of cycles chosen with
respect to a triangulation T0 of X, and if C1 is a complex of cycles chosen
with respect to a refined triangulation T1, then the gluing maps of C0 and
C1 agree.

The gluing map of the complex C is therefore defined canonically. The
gluing map gives a homomorphism G : Hi(X) → Hk+i(B, ∂B). In par-
ticular, taking i = n − k, we get a homomorphism G : Hn−k(X) → Z2.
The gluing homomorphism makes precise the idea of a family of cycles
“sweeping out” the unit ball: we say that F sweeps out the unit ball if the
corresponding gluing homomorphism G : Hn−k → Z2 is non-trivial.

The gluing map gives a homomorphism from Hn−k(Z(k, n))→ Z2. Let
z be an (n − k)-cycle in Z(k, n). We can think of z as a family of cycles,
and then consider G([z]) in Hn(B, ∂B) = Z2. If z′ is homologous to z,
then let y be an (n − k + 1)-chain with boundary z − z′. The gluing
map G extends to a map from Hi(y) → Hk+i(B, ∂B) and so G([z]) =
G([z′]). Hence G gives a homomorphism from Hn−k(Z(k, n)) to Z2. By the
universal coefficient theorem, this homomorphism determines a cohomology
class a(k, n) ∈ Hn−k(Z(k, n)).

For example, suppose that F is the family of parallel k-planes para-
metrized by t ∈ [−1, 1]n−k, with F (t) equal to the intersection of the unit
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n-ball with the plane Rk × {t}. For each t in the boundary of [−1, 1]n−k,
F (t) is equal to the empty cycle in Z(k, n). Therefore, we can think of
F as a map of pairs (In−k, ∂In−k) → (Z(k, n), ∗), where In−k denotes
[−1, 1]n−k and ∗ denotes the empty cycle in Z(k, n). We can pick a fine
triangulation of [−1, 1]n−k and define C(∆) to be Rk ×∆ intersected with
the unit n-ball. The fundamental homology class h of [−1, 1]n−k relative
to its boundary is given by the sum of all top-dimensional simplices of our
triangulation. Following the definition, we see that G(h) is equal to the
fundamental homology class of (B, ∂B). Therefore, F ∗(a(k, n)) is equal to
the fundamental cohomology class of (In−k, ∂In−k).

2 Lower Bounds Based on the Isoperimetric Inequality

In this section we give a lower bound for V(a(k, n)). This result is due to
Almgren and later Gromov gave a simpler proof which we copy here. The
lower bound for V(a(k, n)) is the basis for all the other lower bounds in the
paper. In fact, for technical reasons, the later lower bounds are based on a
slightly modified minimax volume V+(a(k, n)) which we introduce below.

First we give Gromov’s elementary lower bound for V(a(k, n)). (Gro-
mov’s argument appears on page 134 of [G1].)

Proposition 2.1 (Gromov). The minimax volume V(a(k, n)) ≥ c(n), for

a dimensional constant c(n) > 0.

Proof. Suppose that F : X → Z(k, n) is a family of k-cycles in the unit
n-ball, and that each cycle in F has volume less than ϵ, a small number that
we will choose later. We have to prove that F does not detect the class
a(k, n). Equivalently, we have to prove that the gluing homomorphism
G : Hn−k(X)→ Hn(B, ∂B) is zero.

The gluing homomorphism is induced by a complex of cycles C. We first
recall the construction of C. We pick a fine triangulation of X. For each
vertex v of the triangulation, we pick a Lipschitz cycle C(v) with distance
at most δ from F (v) and with volume at most ϵ + δ. Next for each edge
E with boundary v1 − v2, we choose a (k + 1)-chain C(E) with volume at
most 3δ and with boundary C(v1) − C(v2). Here δ is a number smaller
than ϵ which we can make as small as we like by choosing a sufficiently fine
triangulation of X. Then we proceed to define C(∆i) with volume at most
C(n)δ for each i-simplex ∆i in our triangulation.

We will prove that our complex of cycles is homotopic to the zero com-
plex. By definition, that means that we will construct a complex of cycles C̄
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defined on the product X× [0, 1], with C̄(∆×{0}) = C(∆) and C̄(∆×{1})
equal to the empty cycle. Because of the homotopy, the gluing homomor-
phism associated to C is equal to zero.

Now we do the construction. We have already defined C̄ on each face
of the form ∆× {0} and ∆× {1}, so it remains to define our complex C̄ on
faces of the form ∆× (0, 1). We do this inductively, beginning with 1-faces
of the form v × (0, 1), where v is a vertex in our triangulation of X.

Using the isoperimetric inequality, each cycle C(v) can be filled by a
(k + 1)-chain of volume less than C(n)ϵ. For each vertex v of the triangu-
lation, we define C̄(v× (0, 1)) to be such a filling. We have ∂C̄(v× (0, 1)) =
C(v) = C̄(v× {0})− C̄(v× 1), so this choice obeys the boundary equation
for complexes of cycles.

Now we inductively define C̄(∆i×(0, 1)) for i ≥ 1, so that it has volume
at most C(n)ϵ. By induction, we can assume that we have already defined
C̄ on all lower-dimensional skeleta. In particular, we have already defined
C̄ on the boundary of our cell C̄(∆i × (0, 1)). The boundary is associated
to a (k + i)-dimensional cycle of total volume at most C(n)ϵ. Now by the
isoperimetric inequality, we can find a filling of this cycle with total volume
at most C(n)ϵ, and we define C̄(∆i × (0, 1)) to be this filling. The special
case that i = n−k deserves a further remark. In this case, the boundary of
∆i × (0, 1) is associated to an n-cycle in the unit n-ball of total volume at
most C(n)ϵ. Because ϵ is sufficiently small, this n-cycle must have degree 0.
Because it has degree zero, it admits a filling. The filling is an (n+1)-chain,
which automatically has zero volume. !

The key step in the proof above was to find a chain C̄(v × (0, 1)) with
boundary C(v) and with (k+1)-volume at most C(n)ϵ. Therefore, our proof
shows that a family of cycles detecting a(k, n) must contain a cycle of large
filling volume. We recall that the filling volume of a Lipschitz k-cycle C
is the smallest (k + 1)-volume of any relative chain D with ∂D = C. The
filling volume is clearly continuous in the area-distance, and so it defines a
continuous function on Z(k, n).

Proposition 2.2. Let F be a family of cycles that detects a(k, n). Then

F contains a cycle with filling volume at least c(n).

Proof. The proof is essentially the same. We proceed by contradiction,
assuming that each F (v) has filling volume at most ϵ. Then each C(v)
has filling volume at most ϵ+ δ. Then we can construct C̄(v × (0, 1)) with
volume at most ϵ+ δ. The rest of the proof goes as above. !
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For technical reasons, we now introduce a minor variant of the minimax
volume V(α). We say that V+(α) is at least V if, for any family of cycles
F : X → Z(k, n), if we let S ⊂ X denote the subset of cycles with volume
at most V , then F ∗(α) vanishes on an open neighborhood of S.

The difference between V and V+ is as follows. If V < V(α), and if
S ⊂ X denotes the subset of cycles with volume at most V , then F ∗(α)
vanishes on S, but it’s not obvious whether it vanishes on a neighborhood
of S. The set S is compact. If it happens to have a neighborhood that
retracts onto it, then F ∗(α) vanishes on that neighborhood, but the set S
may be a very nasty compact set. We will need to use open sets later in
the paper because we use theorems from algebraic topology that hold for
open covers but which don’t hold for covers by arbitrary compact sets.

It follows from the definition that V+(α) ≤ V(α). We will prove lower
bounds for V+(α), and these bounds immediately imply lower bounds for
V(α). Gromov’s method also gives a lower bound for V+(a(k, n)).

Proposition 2.3 (Gromov). The minimax volume V+(a(k, n)) ≥ c(n),
for a dimensional constant c(n) > 0.

Proof. Let F : X → Z(k, n) be a family of k-cycles. Let S ⊂ X be the
subset of cycles with volume at most V . If V is sufficiently small, we need
to prove that F ∗(a(k, n)) vanishes on a neighborhood of S.

Even though every cycle in S has volume at most V , we have no way to
bound the volumes of cycles in any neighborhood of S, because the volume
function is not continuous. The situation improves by looking at the filling
volume. Because of the Federer–Fleming isoperimetric inequality, every

cycle in S has filling volume at most C(n)V
k+1

k . But the filling volume is a
continuous function on Z(k, n). Therefore, we can choose a neighborhood

of S in which every cycle has filling volume at most 2C(n)V
k+1

k . Now if
V is sufficiently small, then we can apply Proposition 2.2 to conclude that
F ∗(a(k, n)) vanishes on this neighborhood. !

To finish this section, we make some historical and expository remarks
about the lower bound for V(a(k, n)). This material is not needed in the
proofs of the theorems.

The minimax volume V(a(n − 1, n)) can be bounded below using the
isoperimetric inequality. If we have a 1-parameter family of hypersurfaces
sweeping out the unit n-ball, then one of these surfaces must divide the
ball in half by volume. (This remains true even if the surfaces are not
embedded.) In other words, we can choose a surface C in our family so
that B − C = U1 ∪ U2, where Ui is a union of connected components of



Vol. 18, 2008 MINIMAX PROBLEMS AND STEENROD SQUARES 1937

B − C, and |U1| = |U2| = (1/2)|B|. We can then divide the boundary of
B into two pieces ∂B1, ∂B2, according to which open set they border. We
reorder the sets so that |∂B1| ≤ (1/2)|∂B|. Now the boundary of U1 is
contained in ∂B1 ∪ C, and so it has total volume at most (1/2)|∂B| + |C|.
By the isoperimetric inequality, (1/2)

n−1
n |B|

n−1
n = |U1|

n−1
n ≤ C(n)|∂U1| ≤

C(n)[(1/2)|∂B| + |C|]. In the isoperimetric inequality, the sharp constant

is given by B, so C(n)|∂B| = |B|
n−1

n . Rearranging we get the following
inequality:

|C| ≥
[

(1/2)
n−1

n − (1/2)
]

|∂B| .
This approach can be made sharp by using the sharp isoperimetric inequal-
ity for relative cycles in the unit n-ball.

To my knowledge, the first person to consider the analogous problem
with k < n−1 was Almgren. In [A2], he proved the following sharp theorem
for families of cycles sweeping out the n-sphere.

Theorem (Almgren). Let F be a family of k-cycles sweeping out the unit

n-sphere. Then the maximal volume of F is at least the volume of the unit

k-sphere.

Taking a bilipschitz embedding of the unit n-ball into the unit n-sphere,
Almgren’s theorem implies a non-sharp lower bound for V(a(k, n)). Alm-
gren’s lower bound is still better than the one in Proposition 2.1. Since
the bilipschitz constant of the embedding can be taken independent of n it
follows that V(a(k, n)) ≥ c(k), independent of n.

Almgren’s proof involves the theory of varifolds, which he invented more
or less for this purpose. Unfortunately, the proof was never published,
but similar arguments appear in Pitts’ book [P]. We might expect to get
better estimates for V(a(k, n)) by applying Almgren’s method instead of
by applying his theorem about spheres. In [G1, p. 135], Gromov mentions
that Almgren’s techniques imply V(a(k, n)) = ωk.

Recently, in [G3], Gromov gave a sharp estimate for the k-dimensional
waist of the unit n-sphere. This result is similar to Almgren’s theorem,
but the technical details of the statement are different. The paper uses
topological methods instead of minimal surfaces.

3 Lower Bounds Based on Lusternik–Schnirelmann Theory

We now estimate the minimax volume of the cohomology class a(k, n)p,
proving the lower bounds from Theorem 1. The results in this section are
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due to Gromov, and they appeared (with different notation) in section 8 of
[G3].

Theorem 1 (Lower bounds). The minimax volume V(a(k, n)p) is greater

than c(n)p
n−k

n .

Proof. The proof is based on Lusternik–Schnirelmann theory. Let B1, . . . , Bp

be disjoint balls inside the unit ball, each with radius r = (1/4)p−1/n. (It
is not hard to find disjoint balls with this radius. A detailed argument is
given in the proof of the cup product theorem below.)

Let F : X → Z(k, n) be a family of k-cycles that detects a(k, n)p.
Let S(i) ⊂ X be the subset of cycles x ∈ X so that F (x) ∩ Bi has vol-
ume at most (1/2)V+(a(k, n))rk. By the definition of V+(a(k, n)) and a
scaling argument, F ∗(a(k, n)) vanishes on an open neighborhood of S(i).
By Lusternik–Schnirelmann theory, the cohomology class F ∗(a(k, n))p van-
ishes on a neighborhood of ∪p

i=1S(i). (For a proof, see pages 2-3 of [CLOT].)
Since F detects a(k, n)p, there must be a cycle C in F that does not lie in
S(i) for any i.

By the definition of S(i), the intersection C∩Bi has volume greater than
(1/2)V+(a(k, n))rk. Since the balls Bi are disjoint, the cycle C has total
volume greater than (1/2)pV+(a(k, n))rk. According to Proposition 2.3,
V+(a(k, n)) ≥ c(n), and r was defined to be (1/4)p−1/n. Plugging in, we

see that the volume of C is at least c(n)p
n−k

n . !

The proof of Theorem 1 allows us to estimate the minimax volume
V+(α) for a cup product α = α1∪ · · ·∪αp in terms of the minimax volumes
V+(αi).

Cup Product Theorem. Suppose that α = α1∪ · · ·∪αP is a cohomology

class in H∗(Z(k, n)). Then the minimax volume of α obeys the following

inequality:

V+(α) ≥ 4−k

[ P
∑

i=1

V+(αi)
n

n−k

]
n−k

n

.

Proof. Suppose that B1, . . . , BP are disjoint balls inside the unit ball, with
radii r1, . . . , rP . We will choose particular balls later.

Let F : X → Z(k, n) be a family of k-cycles. Let ϵ > 0 be any small
number. Let S ⊂ X be the subset of cycles with volume at most V =

(1 − ϵ)4−k
[
∑P

i=1 V+(αi)
n

n−k
]

n−k
n . We have to prove that F ∗(α) vanishes

on a neighborhood of S.
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We define S(i) ⊂ X to be the subset of cycles x ∈ X so that F (x) ∩Bi

has volume at most (1− ϵ)rk
i V+(αi). By scaling and the definition of V+,

it follows that F ∗(αi) vanishes on a neighborhood of S(i). By Lusternik–
Schnirelmann theory, the class F ∗(α) vanishes on a neighborhood of ∪P

i=1S(i).
Since the balls Bi are disjoint, it follows that this union contains every cycle
of volume at most

∑P
i=1(1− ϵ)rk

i V+(αi).
In order to finish the proof, we have to choose disjoint balls Bi so that

V =
∑

(1−ϵ)rk
i V+(αi). We claim that we can find disjoint balls in the unit

ball with radii ri provided that
∑P

i=1 rn
i ≤ 4−n. To find the disjoint balls,

we order the radii so that r1 ≥ · · · ≥ rP . Then we choose a point p1 inside
the ball of radius 1/2 around the origin. Since

∑

rn
i ≤ 4−n, r1 ≤ 1/4,

and so the ball B(p1, r1) is contained in the unit ball. Now we proceed
inductively. We suppose that we have chosen p1, . . . , pj−1 in B(0, 1/2) so
that the balls B(pi, ri) are disjoint. If ωn denotes the volume of the unit n-
ball, then the volume of B(0, 1/2) is 2−nωn. On the other hand, the volume
of ∪j−1

i=1B(pi, 2ri) is
∑j−1

i=1 (2ri)nωn < 2−nωn. Therefore, we can choose a

point pj in B(0, 1/2) but not in the union ∪j−1
i=1B(pi, 2ri). Since rj ≤ ri

for i < j, the ball B(pj, rj) is disjoint from ∪j−1
i=1B(pi, ri). Continuing to

choose balls in this way proves the claim.
Finally, we choose ri subject to

∑

rn
i ≤ 4−n in order to maximize

∑

(1−
ϵ)rk

i V+(αi). The maximum value is V = (1− ϵ)4−k[
∑

i V+(αi)
n

n−k ]
n−k

n . It
is obtained by using the following values of ri:

ri = (1/4)V+(αi)
1

n−k

[ P
∑

i=1

V+(αi)
n

n−k

]−1/n

. !

Remark. The cup product theorem holds for cohomology with any
coefficients, i.e. if we consider cohomology classes in H∗(Z(k, n), A) for
any coefficient group A. It also holds if we replace Z(k, n) by the space
of integral Lipschitz cycles. For more comments on integral cycles, see
Appendix 2.

4 Lower Bounds Based on Steenrod Squares

In this section, we prove the lower bounds in Theorem 2. These lower
bounds involve Steenrod squares. For background on Steenrod squares,
consult [H]. We use one piece of notation which is not in [H]. We define Sqi :
Hp → H2p−i to be Sqp−i. We define Sq2

i α to be Sqi[Sqiα]. In a similar way,

we inductively define cohomology classes of the form SqQ0
0 · · ·Sq

Qn−k−1

n−k−1 α.
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The topological input to the proof is a vanishing lemma for Steenrod
squares. This lemma will generalize the fact that if V1, V2 are open sets
with α|V1 = 0 and α|V2 = 0, then the cup square α2 vanishes on V1 ∪ V2.

In order to state our lemma, we set up some vocabulary. Let X be
a simplicial complex. Let π : Si × X → X denote the projection onto
the second factor. Let V be a subset of Si × X. We let V (θ) denote the
set {x ∈ X | (θ, x) ∈ V }. The main definition that we need to state our
vanishing lemma is the following:

P [V ] := ∩θ∈Si

[

V (θ) ∪ V (−θ)
]

.

We say a few words to describe P [V ]. First of all, P [V ] is a subset of X.
For each x ∈ X, we examine the intersection of V with Si× {x}. Roughly,
we include x in P [V ] if this intersection is sufficiently large. Let V (x)
denote the set {θ ∈ Si | (θ, x) ∈ V }. We include x in P [V ] if, for each θ,
either θ or −θ belongs to V (x). In other words, we map V (x) to RPi using
the standard covering Si → RPi, and we include x in P [V ] if the map is
surjective.

Vanishing Lemma. Suppose V is an open subset of Si ×X, and that α
is a cohomology class in H∗(X). If π∗α vanishes on V , then Sqiα vanishes

on P [V ]. Incidentally, P [V ] is open.

Proof. The main part of the proof concerns Steenrod squares and the
construction of a homotopy. The final result also requires a little point-
set topology, which we put at the end. Therefore, we begin by proving a
slightly weaker statement. Suppose that K is any compact subset of V .
We will first prove that Sqiα vanishes on a neighborhood of P [K].

We begin by recalling a construction of Steenrod squares given in [H,
p. 502-504].

We can assume that X is connected. Let x0 be a basepoint of X. Let
X ∧X denote the smash product of X with itself. The group Z2 acts on
Si×X∧X by sending (θ, x1, x2) to (−θ, x2, x1). We call the quotient space
ΓiX.

By abuse of notation, we use x0 to denote the basepoint of X ∧ X as
well as the basepoint of X. The action of Z2 on Si×X ∧X sends (θ, x0) to
(−θ, x0). Therefore, the image of Si × {x0} in the quotient ΓiX is a copy
of RPi. We let ΛiX denote the quotient of ΓiX obtained by collapsing this
RPi to a point.

Let ∆0 : Si×X → Si×X ∧X be the diagonal map ∆0(θ, x) = (θ, x, x).
There is an action of Z2 on each of these spaces. The action on Si×X sends
(θ, x) to (−θ, x). The action on Si×X ∧X is the one we mentioned above,
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which sends (θ, x1, x2) to (−θ, x2, x1). The map ∆0 is equivariant with
respect to this action, and so it descends to a map between the quotients.
If we then collapse ΓiX to ΛiX, we get a map ∆ : RPi ×X → ΛiX.

Let p be the dimension of the cohomology class α. Then the cohomology
class α can be represented by a map f from X to the Eilenberg–Maclane
space K(Z2, p). We abbreviate this space as K(p). The construction of
ΛiX is functorial, so we get a map Λif : ΛiX → ΛiK(p). The definition of
Steenrod squares uses a certain cohomology class λ ∈ H2p(ΛiK(p)). The
class λ is defined in [H, p. 504].

The Steenrod squares of α can now be defined in terms of λ,Λif , and ∆.
Recall that by the Kunneth theorem, H∗(RPi ×X) is the tensor product
H∗(RPi)⊗H∗(X). Let ω be the generator of H1(RPi). Then the following
formula can be taken as a definition of Steenrod squares:

∆∗(Λif∗λ) =
i

∑

j=0

ωj ⊗ Sqjα .

To prove our vanishing theorem, we will construct a homotopy of Λif ◦∆
which maps a neighborhood of RPi×P [K] to the basepoint of ΛiK(p). From
this homotopy, it follows that

∑i
j=0 ω

j ⊗Sqjα vanishes on a neighborhood

of RP i × P [K]. The Kunneth theorem then implies that Sqiα vanishes on
a neighborhood of P [K].

Recall that π : Si × X → X is the projection onto the second factor.
The map f ◦ π from Si × X to K(p) induces the cohomology class π∗α.
We know by hypothesis that π∗α vanishes on an open set V containing
the compact set K ⊂ Si ×X. Therefore, the map f ◦ π, restricted to V ,
is null-homotopic. By the homotopy extension theorem, we can homotope
f ◦ π to a map that sends a smaller neighborhood U ⊃ K to the basepoint
of K(p). More formally, we have a continuous family Ft : Si ×X → K(p)
where F0(θ, x) = f(x) and where F1 maps U to the basepoint of K(p).

Using this homotopy of f , we now construct a homotopy of Λif ◦ ∆.
We define a family of maps Gt from Si × X to Si × K(p) ∧ K(p) by the
following formula:

Gt(θ, x) =
(

θ, Ft(θ, x), Ft(−θ, x)
)

.

The maps Gt are equivariant with respect to the Z2 actions defined
above. At time 0, we have G0(θ, x) = (θ, f(x), f(x)). Let ∗ denote the
basepoint of K(p) ∧K(p). At time 1, we have G1(θ, x) ∈ Si × {∗} if either
(θ, x) or (−θ, x) is in U . Because Gt is equivariant, it descends to a family
of maps from RPi×X to ΓiK(p). Composing with the quotient map from
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ΓiK(p) to ΛiK(p), we get a family of maps Ht from RPi×X to ΛiK(p). The
map H0 is equal to Λif ◦∆. The map H1 sends a point (±θ, x) ∈ RPi×X
to the basepoint of ΛiK(p) if either (θ, x) or (−θ, x) lies in U . In particular,
H1 maps RPi × P [U ] to the basepoint of ΛiK(p).

We know that U is an open neighborhood of K. Since K is compact, it
follows that U contains the ϵ-neighborhood of K for some ϵ > 0. Therefore,
U(θ) contains the ϵ neighborhood of K(θ) for every θ. Hence U(θ)∪U(−θ)
contains the ϵ-neighborhood of K(θ) ∪ K(−θ). We conclude that P [U ]
contains the ϵ-neighborhood of P [K]. In particular, the map H1 sends a
neighborhood of RPi×P [K] to the basepoint of ΛiK(p). We conclude that
Sqiα vanishes on a neighborhood of P [K].

Now let K1 ⊂ K2 ⊂ · · · be an exhaustion of V by compact sets.
Let Vj be an open neighborhood of Kj contained in Kj+1. Clearly
P [K1] ⊂ P [K2] ⊂ . . . We will check that the union of P [Kj ] is equal to P [V ].
Suppose that x ∈ P [V ]. Let τ : Si → RPi denote the standard cover-
ing, and recall that V (x) = {θ ∈ Si | (θ, x) ∈ V }. Since x ∈ P [V ],
τ(V (x)) = RPi. Since V is equal to the union of Vj, V (x) is equal to the
union of the open sets Vj(x). Hence τ(Vj(x)) is an open covering of RPi

by infinitely many sets. Since RPi is compact, there is a finite subcovering,
and we conclude that one of the sets τ(Vj(x)) covers RPi. In other words,
x lies in P [Vj ], which lies in P [Kj+1]. Therefore P [V ] = ∪P [Kj ] and so
Sqiα vanishes on P [V ].

Incidentally, the argument above implies that P [V ] is open. Suppose
that x lies in P [V ]. By the last paragraph, we know that τ(Kj(x)) is equal
to RPi if j is big enough. Let Br(x) denote the ball around x in X of radius
r. Since Kj is a compact subset of V , the set Kj(x) × Br(x) ⊂ V for a
small positive r > 0. It follows that Br(x) is contained in P [V ]. Hence
P [V ] is open. !

Using this vanishing lemma in place of the Lusternik–Schnirelmann
theory, we will prove lower bounds for V+(β) for cohomology classes
β ∈ H∗(Z(k, n)) defined using Steenrod squares.

Steenrod Tower Theorem. For each ϵ > 0, there is a constant c(n, ϵ) > 0
that makes the following estimate hold. If α ∈ H∗(Z(k, n)) is a cohomology

class, i is an integer in the range 0 ≤ i ≤ n−k−1, and P > 0 is an integer,

then V+(SqP
i α) obeys the lower bound below:

V+(SqP
i α) ≥ c(n, ϵ)(2 − ϵ)

n−i−k
n−i

P V+(α) .

I believe that this theorem should also hold with ϵ = 0, but I don’t
know how to prove it. When i = 0, the theorem follows immediately from
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the cup product theorem. We have V+(SqP
0 α) = V+(α2P

). By the cup

product theorem, V+(α2P
) ≥ c(n)[2P ]

n−k
n V+(α) = c(n)2

n−k
n

P V+(α). So
we see that when i = 0, the theorem holds even when ϵ = 0.

Given the Steenrod tower theorem, we can quickly prove the lower
bounds in Theorem 2.

Theorem 2 (Lower bounds). For each ϵ > 0, there is a constant c(n, ϵ) > 0
so that the following estimate holds:

c(n, ϵ)
n−k−1
∏

i=0

(2− ϵ)
n−k−i

n−i
Qi ≤ V

(

SqQ0
0 · · · Sq

Qn−k−1

n−k−1 a(k, n)
)

.

Proof. By the definition of V+, we know the following inequality:

V
(

SqQ0
0 · · · Sq

Qn−k−1

n−k−1 a(k, n)
)

≥ V+
(

SqQ0
0 · · ·Sq

Qn−k−1

n−k−1 a(k, n)
)

.

As described above, we apply the cup product theorem to deal with the
Sq0 term:

V+
(

SqQ0
0 · · ·Sq

Qn−k−1

n−k−1 a(k, n)
)

≥ c(n)[2Q0 ]
n−k

n V+
(

SqQ1
1 · · ·Sq

Qn−k−1

n−k−1 a(k, n)
)

.

Now we apply the Steenrod tower theorem n− k− 1 times to deal with
the other Steenrod squares:

≥ c(n, ϵ)2
n−k

n
Q0

n−k−1
∏

i=1

(2− ϵ)
n−i−k

n−i
QiV+

(

a(k, n)
)

.

Finally, we use Proposition 2.3 to bound V+(a(k, n)) ≥ c(n):

≥ c(n, ϵ)2
n−k

n
Q0

n−k−1
∏

i=1

(2− ϵ)
n−i−k

n−i
Qi .

This inequality is slightly stronger than the one we had to prove. !

Now we take up the proof of the Steenrod Tower Theorem.

Proof. Throughout the proof, we fix i, k, and n. The case i = 0 was proven
above, so we assume i ≥ 1.

The main idea of the proof is to inductively use the vanishing lemma
from the beginning of this section. In the proof of the cup product theorem,
in order to lower bound V+(αp), we cut the unit ball into p disjoint pieces.
To adapt that argument to Steenrod squares, we again need to cut the ball
into pieces. But this time, instead of cutting the ball into pieces in one way,
we need a high-dimensional family of different ways of cutting the ball into
pieces. We formalize this idea as a “pyramid of subsets of the unit ball”.

We let O be the set of open sets in Rn equipped with the Hausdorff
topology.
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An i-pyramid of open sets of height P consists of the following data.
For each integer 0 ≤ p ≤ P , we have a map Up from (Si)P−p to O. (By
convention, the space (Si)0 is a single point.) The maps Up must obey two
rules:

Rule 1 . Up(θ1, . . . , θP−p) ⊂ Up+1(θ1, . . . , θP−p−1).

Rule 2 . Up(θ1, . . . , θP−p−1, θP−p) and Up(θ1, . . . , θP−p−1,−θP−p) are
disjoint.

We call UP the top level of the i-pyramid. It consists of one large open
set, UP (∗), where ∗ denotes the one point in the space (Si)0. We say that
U is an i-pyramid of open sets in the unit ball if UP (∗) is contained in the
unit ball. We call the family of sets U0 the bottom level of the pyramid.

Rule 1 describes how the various levels of an i-pyramid are related to
each other. Roughly it says that the open sets in the top levels are the
largest and that the open sets in the bottom levels are the smallest. Rule 2
forces various open sets in an i-pyramid to be disjoint. For example, it
implies that the 2P subsets U0(±θ1, . . . ,±θP ) are disjoint. In Figure 6, we
illustrate some of the sets in an i-pyramid of open sets with height P = 2.

Figure 6

The largest circle is U2(∗), the unit ball in R2. The medium-sized ellipse
on the left is U1(θ) and the medium ellipse on the right is U1(−θ), for some
point θ ∈ Si. The two small thin ellipses on the left are U0(θ,±φ) for some
point φ ∈ Si. The two small round ellipses on the right are U0(−θ,±ψ) for
some point ψ ∈ Si.
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Let U be an i-pyramid of open sets in the unit ball. We are going to
define a measure of the thickness of various sets in U . If A is any open set,
we define Rad[A] to be the largest radius R of any ball B(x,R) ⊂ A. For
any θ ∈ (Si)P , we define T0(θ) = (1/2)Rad[U0(θ)]k. Notice that T0 depends
on the value of k. Roughly speaking, T0 is measuring the k-dimensional
thickness of the set U0(θ). Our function T0 is defined on the bottom layer
of the pyramid. We inductively define thickness functions on higher layers
of the pyramid, Tp : (Si)P−p → R, by the following formula:

Tp(θ1, . . . , θP−p) = inf
φ∈Si

Tp−1(θ1, . . . , θP−p,φ) + Tp−1(θ1, . . . , θP−p,−φ) .

Following the induction, we ultimately define a function TP : (Si)0 → R.
The space (Si)0 consists of a single point ∗, and so TP has a single value
TP (∗), which we abbreviate as T . We call T the k-thickness of the
i-pyramid U .

We can control minimax volumes of Steenrod squares in terms of the
thickness of pyramids according to the following lemma. This lemma makes
up the first half of the proof of the Steenrod tower theorem.

Main Lemma 1. As above, we fix n and 1 ≤ k ≤ n− 1 and i in the range

1 ≤ i ≤ n − k − 1. Suppose that there is an i-pyramid U of open sets in

the unit ball with height P and k-thickness T . Suppose further that every

set U0(θ) is convex. Then for every class α ∈ H∗(Z(k, n)), the following

inequality holds:
V+(SqP

i α) ≥ TV+(α) .

Proof. We will make an inductive argument using the vanishing lemma
from the beginning of this section. The base for our induction is given by
the following lemma.

Lemma 4.1. Let F : X → Z(k, n) be a family of cycles. We define a

subset of small cycles S0 ⊂ (Si)P × X, by saying that (θ, x) ∈ S0 if the

restriction of F (x) to U0(θ) has volume at most T0(θ)V
+(α). Let π0 be the

projection from (Si)P ×X to the second factor. Then π∗0(F
∗α) vanishes on

a neighborhood of S0.

Proof. We can find a ball B(θ) ⊂ U0(θ) with radius Rad[U0(θ)]. We
would like these balls to vary continuously with θ. Because the sets U0(θ)
are convex, we can arrange this for slightly smaller balls. If δ > 0, we
can find a continuous family of balls B(θ) ⊂ U0(θ), where B(θ) has ra-
dius at least (1 − δ)Rad[U0(θ)]. We pick a fine triangulation of (Si)P .
For each vertex of the triangulation, we choose a center c(v) ⊂ U0(v),
so that the ball of radius Rad[U0(v)] around c(v) is contained in U0(v).
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Now we extend c to a piecewise-linear function on (Si)P . For a suffi-
ciently fine triangulation, we claim that the ball around c(θ) of radius
(1− δ)Rad[U0(θ)] lies in U0(θ) for every θ. This last step uses the convex-
ity of U0(θ). The point θ lies in some simplex of our triangulation with
vertices v1, . . . , vN . Since the triangulation is fine, we can assume that
U0(θ) is close to U0(vi) in the Hausdorff topology, and so the ball around
c(vi) of radius (1− δ)Rad[U0(θ)] lies in U0(θ). Now, the set of all points
c so that the ball of radius (1− δ)Rad[U0(θ)] lies in U0(θ) is a convex set.
Since c(θ) is a convex combination of c(vi), it follows that the ball around
c(θ) of radius (1− δ)Rad[U0(θ)] lies in U0(θ).

We now define a map F0 from (Si)P ×X to Z(k, n). The cycle F (θ, x)
is defined by taking the cycle F (x), restricting it to the ball B(θ), and then
rescaling the ball to get a cycle in the unit ball. If (θ, x) ∈ S0, then the
rescaled cycle has volume at most (1 − δ)−k(1/2)V+(α) < V+(α). By the
definition of V+, the cohomology class F ∗

0α vanishes on a neighborhood
of S0.

Finally, we check that F0 is homotopic to F ◦π0. We construct a homo-
topy of our family of balls B(θ, t) so that B(θ, 0) = B(θ), B(θ, 1) is the unit
ball, and each ball B(θ, t) is contained in the unit ball. To construct the
family, we first move all the centers c(θ) to the center of the unit ball, and
then we rescale the balls so that all the radii are 1. Now we define Ft(θ, x)
by taking the cycle F (x), restricting to the ball B(θ, t), and rescaling to get
a cycle in Z(k, n). At t = 1, we have Ft = F ◦ π0, since the restriction and
rescaling are both the identity. Therefore, Ft gives a homotopy from F0 to
F ◦ π0. We conclude that π∗0[F

∗α] vanishes on a neighborhood of S0. !

Now we turn to the inductive step in the proof. We consider the spaces
SP−p×X for p from 0 to P . Inside each space, we define a subset of ”small
cycles” Sp ⊂ SP−p ×X. We say that (θ, x) ∈ Sp if the intersection of F (x)
with Up(θ) has volume at most Tp(θ)V

+(α). Let πp : (Si)P−p × X → X
denote the projection onto the second factor. We will show inductively
that the cohomology class π∗p(F

∗Sqp
i α) vanishes on a neighborhood of Sp.

Lemma 4.1 proves the base case p = 0.

We have to set up the problem in such a way that we can apply the
vanishing lemma. By induction, we assume that π∗p−1(F

∗Sqp−1
i α) vanishes

on a neighborhood of Sp−1. We let Y = (Si)P−p × X so that Si × Y =
(Si)P−(p−1) × X. We let π : Si × Y → Y denote the projection onto the
second factor. We let β = π∗p(F

∗Sqp−1
i α), a cohomology class in H∗(Y ).

Our inductive hypothesis tells us that π∗β vanishes on a neighborhood of
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Sp−1 ⊂ Si × Y . The vanishing lemma then implies that Sqiβ vanishes on
a neighborhood of P [Sp−1]. Plugging in the definition of β, we see that
Sqiβ = π∗p(F

∗Sqp
i α). To complete the induction, we only have to show

that Sp is contained in P [Sp−1].
Suppose that (θ, x) is contained in Sp, where θ = (θ1, . . . , θP−p). By

definition, the volume of F (x)∩Up(θ) is at most Tp(θ)V
+(α). Now let φ be

any point in Si. By the definition of an i-pyramid of convex sets, we know
that Up−1(θ,φ) and Up−1(θ,−φ) are disjoint subsets of Up(θ). Therefore,
we get the following formula:

∣

∣F (x) ∩ Up−1(θ,φ)
∣

∣ +
∣

∣F (x) ∩ Up−1(θ,−φ)
∣

∣ ≤ Tp(θ)V
+(α) .

But by the definition of the thickness function Tp, we know that Tp(θ) ≤
Tp−1(θ,φ) + Tp−1(θ,−φ):
∣

∣F (x)∩Up−1(θ,φ)
∣

∣+
∣

∣F (x)∩Up−1(θ,−φ)
∣

∣≤
[

Tp−1(θ,φ)+Tp−1(θ,−φ)
]

V+(α) .

We see that either |F (x) ∩ Up−1(θ,φ)| ≤ Tp−1(θ,φ)V+(α) or
|F (x) ∩ Up−1(θ,−φ)| ≤ Tp−1(θ,−φ)V+(α). In other words, either (θ,φ, x)
is in Sp−1 or else (θ,−φ, x) is in Sp−1. Since this analysis applies to every
φ ∈ Si, we conclude that Sp is contained in P [Sp−1]. This argument proves
the inductive step.

We conclude that π∗P (F ∗SqP
i α) vanishes on a neighborhood of

SP ⊂ (Si)P−P ×X. But the space (Si)P−P × X is just X, and the pro-
jection πP is just the identity. In other words, F ∗SqP

i α vanishes on a
neighborhood of SP . The set SP is just the subset of X where F (x) has
volume at most TV+(α). Since this analysis applies to any family F , we
conclude that V+(SqP

i α) ≥ TV+(α). !

In order to use Main Lemma 1, we need to construct an i-pyramid of
open sets with height P and estimate its k-thickness. Ideally we would like
to know the largest possible k-thickness for an i-pyramid of open sets of
height P (where the bottom layer consists of convex sets). This problem
is a kind of max-min problem, because for each i-pyramid the k-thickness
is defined by taking a sequence of infima, and we are then looking for the
supremum over all the pyramids. The best estimate I know how to prove
is contained in the following lemma.

Main Lemma 2. As above, we fix a dimension n, and 1 ≤ k ≤ n− 1, and

1 ≤ i ≤ n − k − 1. For every P we will construct an i-pyramid of open

sets in the unit n-ball of height P. Each open set in each pyramid will be

convex. For any ϵ > 0, there is a constant c(n, ϵ) > 0 so that for every P ,

the pyramid of height P has k-thickness at least c(n, ϵ)(2 − ϵ)
n−i−k

n−i
P .
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The Steenrod tower theorem follows immediately by combining the two
main lemmas. I believe that this lemma should also hold with ϵ = 0, but
I don’t know how to prove it. If this lemma did hold with ϵ = 0, then
the Steenrod tower theorem and Theorem 2 would also hold with ϵ = 0,
determining V(SqQa(k, n)) up to a dimensional constant C(n). The lemma
cannot hold if we replace (2 − ϵ) by (2 + ϵ) because the lower bound in
Theorem 2 would then become larger than the upper bound.

Proof. First we will construct an i-pyramid of open sets. Then we will
estimate its k-thickness.

We are going to talk about some sequences of unit vectors. First fix
v1−n, . . . , v−1, v0 a basis of orthonormal vectors. Then, for fixed p, con-
sider all sequences v1, . . . , vP−p of unit vectors with the property that va

is perpendicular to the previous (n − i − 1) vectors: va−1, . . . , va−n+i+1.
In other words, any string of (n − i) consecutive vectors in the list is or-
thonormal. This condition holds even if a − n + i + 1 < 1, which is why
we fixed v1−n, . . . , v0. Call the set of such sequences of vectors O(p). (We
define O(P ) to be a point.) Now there is a map O(p− 1)→ O(p) given by
forgetting the last vector. The fibers of this map are each i-spheres, and
the map is a fiber bundle.

Lemma 4.2. Each of the bundles O(p− 1)→ O(p) is trivial.

Proof. We work by induction. Clearly the map O(P −1)→ O(P ) is trivial,
as the base is a point. We suppose that O(p)→ O(p + 1) is trivial. To do
the induction, we need to show that the bundle O(p− 1)→ O(p) is trivial.
We accomplish this by showing that O(p− 1) is the pullback of the bundle
O(p) by the map O(p)→ O(p + 1). That sentence is a bit confusing, so we
illustrate it with a diagram. Let π denote the map O(p)→ O(p + 1).

π∗(O(p)) −−−−→ O(p)
⏐

⏐

,

⏐

⏐

,

π

O(p)
π−−−−→ O(p + 1)

We prove that the bundle O(p − 1) over O(p) is isomorphic to the
bundle π∗(O(p)) in the diagram above. The fiber of O(p− 1)→ O(p) over
a point (v1, . . . , vP−p) ∈ O(p) is given by the unit vectors perpendicular
to vP−p, . . . , vP−p−n+i+2. The map O(p) → O(p + 1) takes (v1, . . . , vP−p)
to (v1, . . . , vP−p−1). The fiber of O(p) → O(p + 1) over the point
(v1, . . . , vP−p−1) is the set of unit vectors perpendicular to
vP−p−1, . . . , vP−p−n+i+1. By the definition of O(p), vP−p is perpendicu-
lar to the last list, and vP−p−n+i+1 is perpendicular to the first list. The
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two fibers intersect in a cod-1 great circle which is perpendicular to both
vP−p and vP−p−n+i+1. We can map one fiber to the other by mapping
vP−p−n+i+1 to vP−p, and by using the identity map on the great circle of
intersection. This defines a bundle isomorphism, showing that O(p − 1) is
isomorphic as a bundle to π∗(O(p)). Since O(p) was a trivial bundle by
induction, it follows that O(p− 1) is also a trivial bundle. !

As a corollary, we see that O(p) is diffeomorphic to (Si)P−p. Moreover,
we can inductively define diffeomorphisms ψ(p) : (Si)P−p → O(p), so that
the following diagram is an isomorphism of bundles:

(Si)P−p ψ(p)−−−−→ O(p)
⏐

⏐

,

⏐

⏐

,

π

(Si)P−p−1 ψ(p+1)−−−−→ O(p + 1)
The left vertical arrow in this diagram is the map taking (θ1, . . . ,
θP−p−1, θP−p) to (θ1, . . . , θP−p−1). Since ψ is an isomorphism of
bundles, if ψ(p)(θ1, . . . , θP−p−1, θP−p) = (v1, . . . , vP−p−1, vP−p), then
ψ(p)(θ1, . . . , θP−p−1,−θP−p) = (v1, . . . , vP−p−1,−vP−p).

We are going to construct maps CONp associating to each point of O(p)
a convex subset of the unit ball. In particular we can think of CONp as
a map from O(p) to O, defined for each p in the range 0 ≤ p ≤ P . Our
i-pyramid of open sets will be given by the composition Up = CONp ◦ψ(p).
The two rules for the pyramid Up are equivalent to the following two rules
for the map CONp:

Rule 1 . CONp(v1, . . . , vP−p) ⊂ CONp+1(v1, . . . , vP−p−1)

Rule 2 . CONp(v1, . . . , vP−p−1,vP−p) and CONp(v1, . . . , vP−p−1,−vP−p)
are disjoint.

We will define CONp inductively. We define CONP (∗) to be the unit
ball. Suppose we have already defined CONp+1, and we want to de-
fine CONp. Let L0 be the hyperplane perpendicular to vP−p. Let L
be the translation of L0 that divides CONp+1(v1, . . . , vP−p−1) into two
halves of equal volume. We let CONp(v1, . . . , vP−p) be one of these two
halves, chosen as follows. Consider a vector vP−p starting at a point on L.
The end of the vector lies on one side of L, and CONp(v1, . . . , vP−p)
is the half of CONp+1(v1, . . . , vP−p−1) on this side of L. By definition
CONp(v1, . . . , vP−p) is contained in CONp+1(v1, . . . , vP−p−1). Therefore,
Rule 1 holds. Now if we change the sign of the last factor, then the
plane L does not change, only we take the half of CONp+1(v1, . . . , vP−p−1)
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CON_0(−v,w)

CON_1(v)

CON_0(−v,−w)

Figure 7

on the other side of this plane. Hence CONp(v1, . . . , vP−p−1, vP−p) and
CONp(v1, . . . , vP−p−1,−vP−p) are disjoint, and so Rule 2 holds.

We include a figure to help see how this construction works. Consider
the special case that i = 1, n = 2, and P = 2. In this case, O(2) is a
point ∗, O(1) is the unit circle S1, and O(0) is the torus (S1)2. The convex
set CON2(∗) is the unit disk. We let v be the unit vector (−1/

√
2, 1/
√

2),
and we let w be the unit vector (1, 0). In Figure 7, we illustrate the convex
sets CON1(v), CON0(−v,w), and CON0(−v,−w). The set CON1(−v) is
the union of CON0(−v,w) and CON0(−v,−w).

Now we have to estimate the k-thickness of this pyramid of convex sets.

We let β be a large number. Our proof will work for each (sufficiently
large) β, and it will prove the following estimate for the k-thickness T of
our i-pyramid:

T ≥ c(β, n)
[

2− ϵ(β, n)
]

n−i−k
n−i

P
.

As β → +∞, the constant ϵ(β, n) → 0, but so does c(β, n). Through-
out this section, we make the convention that ϵ = ϵ(β, n) is a constant
depending only on β and n which may change from line to line, but always
obeying the condition limβ→+∞ ϵ(β, n) = 0 for each n.

Recall that T = TP (∗) = infv∈O(P−1) TP−1(v)+TP−1(−v). The function
TP−1 is continuous, so we can choose v so that T = TP−1(v) + TP−1(−v).
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Now we proceed down. We recall that

TP−1(v) = inf
v1|(v,v1)∈O(P−2)

TP−2(v, v1) + TP−2(v,−v1) .

We choose v1 so that TP−1(v) = TP−2(v, v1) + TP−2(v,−v1). Similarly, we
choose v2 so that TP−1(−v) = TP−2(−v, v2) + TP−2(−v,−v2). Continuing
in this way, we come to the following situation. At the top level, we have
a single convex set C (equal to the unit ball). At the next level, the set
C is chopped into two sets C1 and C2 along some plane, perpendicular to
the vector v. The sets have equal volume. Then each set C1 and C2 is
chopped in two. The set C1 is chopped in two along a plane perpendicular
to v1, yielding C11 and C12. The set C2 is chopped in two along the plane
perpendicular to v2, yielding C21 and C22. This proceeds through P levels,
ending up with 2P convex sets. The chopping obeys two rules:

1. Volume bisection. Each chop cuts the given set into two sets of equal
volume. If C has volume 1, then each set at level p has volume 2−p.

2. Orthogonality. Any (n − i) consecutive cuts are orthogonal. More
precisely, if Ip+1, . . . , Ip+n−i are strings of 1’s and 2’s, with Iq of
length q, so that each string is formed from the previous by adding a
1 or 2 at the end, then the vectors vIp+1 , . . . , vIp+n−i are orthogonal.

We let {1, 2}p denote all strings of 1’s and 2’s of length p.
The k-thickness T of our pyramid of convex sets is equal to
(1/2)

∑

I∈{1,2}P Rad[CI ]k. We need to prove the estimate T ≥

c(β, n)(2 − ϵ(β, n))
n−i−k

n−i
P . In the process, we will prove the following

stronger estimate:
∑

I∈{1,2}P

Rad[CI ]
−1 ≤ C(β, n)2P (2 + ϵ)P/(n−i). (∗)

We check that inequality (∗) implies the inequality that we want to prove.

Lemma 4.3. The inequality (∗) implies the inequality

T = (1/2)
∑

I∈{1,2}P

Rad[CI ]
k ≥ c(β, n)(2 − ϵ)

n−i−k
n−i

P .

Proof. We begin with the following trivial equation.

2P =
∑

I∈{1,2}P

Rad[CI ]
k

k+1 Rad[CI ]
− k

k+1 .

Applying the Holder inequality to the right-hand side we get the follow-
ing:

2P ≤
[

∑

I∈{1,2}P

Rad[CI ]
k
]

1
k+1

[

∑

I∈{1,2}P

Rad[CI ]
−1

]
k

k+1
.
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We use inequality (∗) to estimate the last factor:

2P ≤ C(β, n)
[

∑

I∈{1,2}P

Rad[CI ]
k
]

1
k+1 [

(2 + ϵ)P/(n−i)2P
]

k
k+1 .

Rearranging the terms, we get the following:

T = (1/2)
∑

I∈{1,2}P

Rad[CI ]
k ≥ c(β, n)2P (2 + ϵ)−

kP
n−i .

We are assuming that i ≤ n − k − 1, and so n − i − k ≥ 1. Therefore,
after redefining ϵ, we get the following:

T = (1/2)
∑

I∈{1,2}P

Rad[CI ]
k ≥ c(β, n)(2 − ϵ)

n−i−k
n−i

P . !

We would like to work inductively by estimating the quantity
∑

I∈{1,2}p Rad[CI ]−1 as p increases from 0 to P . Unfortunately, I don’t
see how to control the behavior of this quantity inductively. The main
idea of the proof is to find a related quantity that behaves better from an
inductive point of view and that agrees with Rad[Ci]−1 up to a controlled
error.

For each convex set C, let πq(C) be the average q-volume of any or-
thogonal projection of C onto any q-plane. (We define π0(C) = 1 for any
convex set.) We now define the quantity that we will use in our inductive
argument:

Na,β(C) := βa Vol(C)−1/aπn−a(C)1/a.

Nβ(C) := sup
1≤a≤n

Na,β(C) .

For large β, the function Nβ behaves well in our inductive arguments.
We will prove below that Nβ(C) agrees with Rad[C]−1 up to a factor
C(β, n). In the proof, we will use the fact that any convex set can be fairly
well approximated by a rectangle, as described in the following lemma.

Lemma 4.4. There is a constant C(n) that makes the following true. For

any bounded open convex set A in Rn, there is a rectangle R so that

R ⊂ A ⊂ C(n)R. (Here C(n)R denotes the rectangle obtained by magni-

fying R by a factor C(n) around its center.)

Proof. Pick a point a0 ∈ A.
Then pick a point a1 ∈ A as far away as possible from a0. Let P1 denote

the 1-plane containing a0 and a1, and let h1 denote the distance from a0

to a1.
Then pick a point a2 ∈ A as far away as possible from P1. Let P2 denote

the 2-plane containing a0, a1, and a2, and let h2 denote the distance from
a2 to P1.
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Continuing inductively we pick points ai for 0 ≤ i ≤ n, and define Pi

to be the plane spanned by a0, . . . , ai, and hi to be the distance from ai

to Pi−1.
We now rotate and translate the coordinates of Rn so that the point

a0 is the origin and so that the plane spanned by the first i coordinates
x1, . . . , xi is the plane Pi. If necessary, we make some reflections so that
the xi coordinate of ai is hi > 0.

In these coordinates, we can write ai = (ai,1, . . . , ai,i−1, hi, 0, . . . , 0),
where |ai,j| ≤ hj . It follows by induction on the dimension that the convex
hull of the ai contains a rectangle R of the form [r1, s1]× · · ·× [rn, sn] with
0 < ri < si < hi and si − ri ≥ c(n)hi.

On the other hand, the set A is contained in the rectangle
[−h1 × h1]× · · · × [−hn, hn]. This rectangle is in turn contained in C(n)R
for an appropriate dimensional constant C(n). !

Given a convex set C we choose a rectangle R obeying the conclusion
of the lemma, and we let R1 ≤ · · · ≤ Rn be its dimensions. Then we define
Ri(C) to be Ri. Since there are many rectangles obeying the conclusion of
the lemma, Ri(C) is not uniquely defined, but it is defined up to a constant
factor C(n). The numbers Ri(C) give a rough description of the shape C.

We now describe the sizes Na,β(C) in terms of the dimensions Ri(C). We
first note that πn−a(C) ∼ Ra+1 . . . Rn. (We write A ∼ B to indicate that A
approximates B up to a factor C(n) depending only on the dimension n.)
Using this, we can describe Na,β(C) up to a constant factor C(n):

Na,β(C) ∼ βa(R1 . . . Ra)
−1/a.

Using this formula, we now check that Nβ(C) is roughly equal to
Rad[C]−1.

Lemma 4.5. For any convex set C, Nβ(C) agrees with Rad[C]−1 up to a

factor C(β, n).

Proof. The invariant Nβ(C) is at least N1,β(C), which is at least c(n)βR−1
1 .

The radius Rad[C] agrees with R1(C) up to a constant factor, and so
Nβ(C) ≥ c(n)βRad[C]−1. On the other hand, each Na,β(C) is at most
C(n)βa(R1 . . . Ra)−1/a, which is at most C(n)βnR−1

1 . Using again the fact
that R1(C) ∼ Rad[C], we conclude that Nβ(C) ≤ C(n)βnRad[C]−1. !

We need a few more definitions before we continue. If I is a string of 1’s
and 2’s, we denote the length of I by |I|. Then we define Dq(I) to be the
set of all strings of 1’s and 2’s of length |I|+ q whose first |I| entries are I.
The expression Dq(I) stands for the descendants of I after q generations.



1954 L. GUTH GAFA

We have shown that the function Nβ(C) is roughly Rad(C)−1. The
advantage of Nβ(C) is that it behaves better in inductive arguments, espe-
cially for large β. The key fact is the following lemma which implies that
Na,β(CI) behaves well inductively whenever Ra+1(CI)≫ Ra(CI).

Lemma 4.6. Suppose that CI obeys the inequality Ra+1(CI) ≥ βRa(CI).
Then the following inequality holds:

∑

J∈Dn−i(I)

πn−a(CJ) ≤ (2 + ϵ)aπn−a(CI) .

Proof. We first consider the case a ≥ n − i. In this case, the conclu-
sion of the lemma holds regardless of the dimensions of R(CI). Since
CJ ⊂ CI , πn−a(CJ) ≤ πn−a(CI). The number of CJ is 2n−i. There-
fore,

∑

J∈Dn−i(I) πn−a(CJ ) ≤ 2n−iπn−a(CI) ≤ 2aπn−a(CI). We turn to the
interesting case a < n− i.

We pick a particular rectangle R with R ⊂ CI ⊂ C(n)R and with side
lengths Ri = Ri(CI), and we let P denote the span of the subrectangle
with dimensions R1 × · · ·×Ra.

If C is any convex set, and if S is a piece of hyperplane in C cutting C
into convex sets A and B, then we have the following formula for any q:

πq(C) + πq(S) = πq(A) + πq(B) .

This formula is well known in integral geometry. It follows because
if π is a projection onto a given q-plane, π(Ā) ∪ π(B̄) is exactly π(C̄)
and π(Ā) ∩ π(B̄) is exactly π(S̄). The last formula follows because if
a ∈ π−1(q) ∩ Ā and b ∈ π−1(q) ∩ B̄, then the line segment from a to b
lies in π−1(q) and intersects S̄. Since taking closures does not affect the
volume of the image, we see that |π(A)| + |π(B)| = |π(C)| + |π(S)|. Since
this formula holds for each projection π, it also holds for the average, prov-
ing our formula.

Also, since S ⊂ C, πq(S) ≤ πq(C), and so πq(A) + πq(B) ≤ 2πq(C).
Now, we suppose that CL,1 and CL,2 are immediate descendants of CL,

which is a descendant of CI of generation at most n− i. We let SL denote
the hyperplane in CL which separates CL,1 from CL,2. Since SL is a subset
of CL, πq(SL) ≤ πq(CL), which gives us the following inequality:

πn−a(CL,1) + πn−a(CL,2) ≤ 2πn−a(CL) . (1)

If the angle between vL and P is at least c(n) > 0, then we will
prove a stronger estimate. In this case, SL is contained in an (n − 1)-
dimensional rectangle with dimensions at most C(n) times bigger than
R1×· · ·×Ra×Ra+2×· · ·×Rn. Therefore, πn−a(SL) ≤ C(n)RaRa+2 . . . Rn ≤
C(n)β−1Ra+1 . . . Rn. On the other hand, πn−a(CL) ≥ c(n)Ra+1 · · ·Rn.



Vol. 18, 2008 MINIMAX PROBLEMS AND STEENROD SQUARES 1955

Therefore, we get the following bound, provided that the angle between vL

and P is at least c(n):

πn−a(CL,1) + πn−a(CL,2) ≤
(

1 + C(n)β−1
)

πn−a(CL) . (2)

To organize this information, we define a function h(L) that counts the
number of vectors vM close to P that appear in the ancestors of L. We
define h(L) inductively as follows. First, h(I) = a. Now, we suppose we
have defined h(L), and we want to define h on the immediate descendants
of L. If the angle between the vector vL and the plane P is at most c(n),
then we define h(L, 1) = h(L, 2) = h(L) − 1. On the other hand, if the
angle is greater than c(n), then we define h(L, 1) = h(L, 2) = h(L). With
this definition, we can combine equations (1) and (2) into a single clean
inequality:

(

1 + C(n)β−1
)

2h(L)πn−a(CL) ≥ 2h(L,1)πn−a(CL,1) + 2h(L,2)πn−a(CL,2) .

Applying this inequality repeatedly, we get the following:
(

1 + C(n)β−1
)n−i

2h(I)πn−a(CI) ≥
∑

J∈Dn−i(I)

2h(J)πn−a(CJ) .

Since any sequence of (n − i) vectors is orthonormal, the number of
vectors in any sequence with angle at most c(n) from P is at most a.
Therefore, h(J) ≥ 0 for every J ∈ Dn−i(I). Since h(I) = a, we get the
following inequality:

∑

J∈Dn−i(I)

πn−a(CJ) ≤
(

1 + C(n)β−1
)n−i

2aπn−a(CI) .

This inequality proves our lemma. !

Using this lemma, we can inductively control the behavior of Na,β.

Lemma 4.7. Suppose that CI obeys the inequality Ra+1(CI) ≥ βRa(CI).
Then the following inequality holds:

∑

J∈Dn−i(I)

Na,β(CJ) ≤ (2 + ϵ)2n−iNa,β(CI) .

Proof. The left-hand side of the inequality we want to prove is
∑

J∈Dn−i(I)

βa Vol(CJ)−1/aπn−a(CJ)1/a. (a)

The volume of CJ is independent of J , and it’s equal to 2−(n−i) Vol(CI).
We apply Holder’s inequality to the term

∑

πn−a(CJ)1/a:
∑

J∈Dn−i(I)

πn−a(CJ)1/a ≤ 2(n−i)a−1
a

[

∑

J∈Dn−i(I)

πn−a(CJ)
]1/a

.
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Applying the last lemma, we get the following inequality:
∑

J∈Dn−i(I)

πn−a(CJ)1/a ≤ 2(n−i)a−1
a (2 + ϵ)πn−a(CI)

1/a.

Putting the last inequality into expression (a), we get the following:
∑

J∈Dn−i(I)

βa Vol(CJ)−
1
aπn−a(CJ)

1
a ≤ βa Vol(CI)

− 1
a 2n−i(2 + ϵ)πn−a(CI)

1
a .

Plugging in the definition of Na,β finishes the proof. !

The last key observation is that if Na,β(C) = Nβ(C), then Ra+1(C)≫
Ra(C). This observation is made precise in the following lemma.

Lemma 4.8. If Na,β(C) = Nβ(C), then the dimensions of C obey the

following inequality:

Ra+1(C) ≥ c(n)β2Ra(C) .

Proof. We abbreviate Ri(C) as Ri. Since Na,β(C) = Nβ(C), we know
that Na,β(C) ≥ Na−1,β(C) and Na,β(C) ≥ Na+1,β(C). Since Na,β(C) ∼
βa(R1 · · ·Ra)−1/a, we get the following inequalities:

βaR−1/a
1 · · ·R−1/a

a ≥ c(n)βa−1R−1/(a−1)
1 · · ·R−1/(a−1)

a−1 , (1)

βaR−1/a
1 · · ·R−1/a

a ≥ c(n)βa+1R−1/(a+1)
1 · · ·R−1/(a+1)

a+1 . (2)

In these inequalities and below, we use c(n) to denote a positive con-
stant, depending only on n, whose exact value may change from line to
line.

Taking the second equation and moving Ra+1 to the left-hand side and
everything else to the right-hand side, we get the following:

Ra+1 ≥ c(n)βa+1R1/a
1 · · ·R1/a

a . (3)

By a similar manipulation, the first equation implies the following in-
equality:

R1/a
1 · · ·R1/a

a−1 ≥ c(n)β−(a−1)R(a−1)/a
a . (4)

Plugging this inequality into equation (3), we get the following:

Ra+1 ≥ c(n)β2Ra . !

Combining Lemmas 4.7 and 4.8, we can control the inductive behavior
of Nβ(CI). We now pick a number of generations G(β, n). We choose G just
small enough so that if J is a descendant of I G generations down, then the
dimensions Ri(CI) and Ri(CJ) agree up to a factor of β1/3. The number of
generations G will be on the order of δ(n) log β for a small constant δ(n),
because in each generation the dimensions change by at most a bounded
factor C(n). We also arrange that G is an integer multiple of n − i. (We
only need to study the cases when β is large and so G is large.)
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Lemma 4.9. The following inequality holds:
∑

J∈DG(I)

Nβ(CJ) ≤ n2G(2 + ϵ)G/(n−i)Nβ(CI) .

Proof. Suppose that Na,β(CJ) = Nβ(CJ) for some J in DG(I). By Lemma
4.8, we know that Ra+1(CJ) ≥ c(n)β2Ra(CJ). By the definition of G,
we know that Ra(CI) ≤ β1/3Ra(CJ ). On the other hand, Ra+1(CI) ≥
c(n)Ra+1(CJ) because CJ ⊂ CI . Therefore, Ra+1(CI) ≥ c(n)β5/3Ra(CI).
Similarly, if K is any descendant of I at most G generations down, then
Ra+1(CK) ≥ c(n)β4/3Ra(CK).

We are now in a position to apply Lemma 4.7 repeatedly G/(n−i) times.
Assuming that Na,β(CJ) = Nβ(CJ) for some J in DG(I), we conclude the
following:

∑

J∈DG(I)

Na,β(CJ) ≤ 2G(2 + ϵ)G/(n−i)Na,β(CI) .

Let A denote the set of all a so that, for some J , Na,β(CJ ) = Nβ(CJ ),
∑

J∈DG(I)

Nβ(CJ) ≤
∑

a∈A

∑

J∈DG(I)

Na,β(CJ)

≤
∑

a∈A

2G(2 + ϵ)G/(n−i)Na,β(CI) ≤ n2G(2 + ϵ)G/(n−i)Nβ(CI) . !

Finally, we apply the last lemma repeatedly. If P is a multiple of G, we
get the following inequality:

∑

I∈{1,2}P

Nβ(CI) ≤ nP/G(2 + ϵ)P/(n−i)2P Nβ(C) .

In general, if P is not a multiple of G, then we can write P as a multiple
of G plus a remainder which is at most G. In the last G generations, the
values of Nβ(CI) change by at most a constant C(β, n), since G depends
only on β and n. So for all P we get the following inequality:

∑

I∈{1,2}P

Nβ(CI) ≤ C(β, n)nP/G(2 + ϵ)P/(n−i)2P Nβ(C) .

In this equation, C denotes the unit ball, which is the top of our pyramid
of convex sets. The term Nβ(C) is a constant depending on β and n.
More importantly, since G ∼ δ(n) log β, nP/G grows at an arbitrarily small
exponential rate in P . Therefore, we can absorb the term nP/G into the
term (2 + ϵ)P/(n−i), by changing the definition of ϵ. We get the following
inequality:

∑

I∈{1,2}P

Nβ(CI) ≤ C(β, n)(2 + ϵ)P/(n−i)2P .
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According to Lemma 4.8, Nβ(CI) agrees with Rad[CI ]−1 up to a factor
C(β, n). Making this substitution, we get inequality (∗):

∑

I∈{1,2}P

Rad(CI)
−1 ≤ C(β, n)(2 + ϵ)P/(n−i)2P . (∗)

According to Lemma 4.3, inequality (∗) implies our lower bound on the

k-thickness: T ≥ c(β, n)(2 − ϵ)
n−i−k

n−i
P . !

5 Families of Bent Overlapping Planes

In this section, we construct examples of families of cycles with small vol-
umes, proving the upper bounds in Theorem 1 and Theorem 2. Here is an
outline of the approach.

We need to construct a family of k-cycles that detects a given cohomol-
ogy class α ∈ H∗(Z(k, n)). The k-fold suspension map Σ : Z(0, n − k) →
Z(k, n) maps a 0-cycle C in the unit ball Bn−k to the product C × Rk

restricted to the unit ball Bn.
The first step is to construct a family of 0-cycles that detects Σ∗(α).

Applying Σ, we get a family of k-cycles that detects α. Each cycle in this
family is a union of parallel planes. It turns out that the cycles in this
family have volume much greater than V(α).

The second step is the bend-and-cancel construction described in the
introduction. We carefully pick a degree-1 PL map Ψ, and we apply the
map Ψ to get a new family of cycles where each cycle consists of a union
of bent planes. By choosing Ψ carefully, we arrange that the bent planes
overlap a great deal. Since we are working with families of mod 2 cycles,
we can cancel the overlapping parts, reducing the volume.

Before proving the upper bounds in Theorem 1, we gather a few tools
that we will use. The first tool is the k-fold suspension map Σ : Z(0, n−k)→
Z(k, n). The map is defined in the following way. We begin with a 0-cycle
C ∈ Z(0, n−k). Then we take the product C×Rk which is a (locally finite)
cycle in Bn−k × Rk. Finally, we restrict this cycle to the unit ball Bn.

Lemma 5.1. The pullback Σ∗a(k, n) is equal to a(0, n − k).

Proof. Suppose that F : P → Z(0, n−k) is a family of 0-cycles, and suppose
that h is a homology class in Hn−k(P ). We need to check that the pairing
⟨ΣF∗(h), a(k, n)⟩ is equal to the pairing ⟨F∗(h), a(0, n−k)⟩. To compute the
second pairing, we find a complex of cycles C based closely on the family F .
We let z ⊂ P be a simplicial (n − k)-cycle in the homology class h. Then
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the pairing ⟨F∗(h), a(0, n − k)⟩ is equal to the degree of the n-cycle C(h).
Now we define ΣC, a complex of cycles in Bn parametrized by P . For each
simplex ∆ of P , we let ΣC(∆) be the product C(∆)×Rk restricted to the
unit n-ball. The point of the proof is that we can use ΣC as the complex of
cycles approximating ΣF . Therefore, the pairing ⟨ΣF∗(h), a(k, n)⟩ is equal
to the degree of ΣC(z). Now ΣC(z) is the product C(z)×Rk restricted to
the unit n-ball, so ΣC(z) and C(z) have the same degree. !

The first step also requires a result of Nakaoka about the cohomology
ring of a symmetric product of spheres. Nakaoka completely described the
cohomology ring, but we will need only the following facts.

Theorem (Nakaoka, [N]). Let SP dSN denote the d-fold symmetric prod-

uct of the N-sphere, for N ≥ 2. The cohomology group HN (SP dSN ) is

equal to Z2. Let β denote the generator of this group. Let i denote the

inclusion of SN into SP dSN . (If ∗ denotes the base point of SN , then i(x)
is defined to be the unordered d-tuple ⟨x, ∗, . . . , ∗⟩.) Then i∗β is the gener-

ator of HN (SN ). The top-dimensional cohomology group HdN (SP dSN ) is

also isomorphic to Z2, and it is generated by βd.

The second step is based on the “bending planes around a skeleton”
construction in [Gu1]. In that paper, the following mappings were con-
structed.

Lemma [Gu1]. Let l be a dimension in the range 0 ≤ l < n, and let s > 0
be a scale. Let S denote the l-skeleton of the lattice with sidelength s. Let

T denote the dual (n− l − 1)-skeleton.

For each dimension l, each scale s and each ϵ > 0, there is a piecewise-

linear map Ψ from Rn to itself with the following properties. The map

Ψ is linear on each simplex of a certain triangulation of Rn. Each top-

dimensional simplex of this triangulation is labelled good or bad. For

each good simplex ∆, Ψ(∆) lies in S. Each bad simplex lies in the ϵ-
neighborhood of T . The triangulation and the map obey the following

bounds:

1. The number of simplices of our triangulation meeting any ball of

radius s is bounded by C(n).
2. The displacement |Ψ(x)− x| is bounded by C(n)s.
3. The diameter of each simplex is bounded by C(n)s.

We call the map Ψ a skeleton-squeezing map, since it squeezes most of
Rn into the l-skeleton S.
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Theorem 1 (Upper bounds). The minimax volume V(a(k, n)p) ≤
C(n)p

n−k
n .

Proof. The first step is to construct a family of cycles F (p) in Z(0, n − k)
that detects the cohomology class a(0, n−k)p. Roughly speaking, the family
of all p-tuples of points in Bn−k does the job. Our argument involves two
cases depending on whether n− k = 1.

If n − k = 1, then we define F (p) using the roots of polynomials. Let
V (p) be the space of all real polynomials of one variable with degree at
most p. The space V (p) is a vector space of dimension p + 1. To each non-
zero polynomial in V (p), we associate its real roots, taken with multiplicity.
This association defines a map R0 from V (d)− {0} to the space of integral
0-cycles on the real line, but the map is NOT continuous. The reason for
the discontinuity is that two real roots may approach each other, become a
double root, and then become two conjugate complex roots. Since R0 only
records the real roots, two real roots can come together and disappear. We
correct this problem by considering the roots with multiplicity modulo 2.
We define a root map R from V (d) − {0} to Z(0, 1) by taking the real
roots of a polynomial, keeping only the roots in the interval (−1, 1), and
recording the multiplicity modulo 2. The map R is continuous.

For any non-zero real number λ, the polynomials P and λP have the
same roots, and so R induces a map F (p) from RPp = [V (p)− {0}]/R∗ to
Z(0, 1). We call this the family of roots of degree-d polynomials.

For example, if p = 1, then the map F (1) sends the polynomial ax + b
to its root −b/a. If we fix a = 1, then as b goes from −∞ to +∞, the point
−b/a goes from +∞ to −∞. So the family F (1) sweeps out the unit ball
(−1, 1) with degree 1 modulo 2. Hence F (1)∗(a(0, 1)) is the generator of
H1(RP1).

Next we compute that F (p)∗(a(0, 1)) is the generator of H1(RPp). To
check this, we pick a homologically non-trivial curve c in RPp and we check
that F (c) sweeps out the unit interval. We can take the curve c given by
the projectivization of the linear polynomials, V (1) ⊂ V (p). The map F (p)
restricted to this copy of RP1 is just F (1), and so the claim follows from
the last paragraph. Therefore, the family F (p) detects a(0, 1)p.

If n− k ≥ 2, then we define F (p) using symmetric products of spheres.
First we define a family F (1) parametrized by Sn−k. We pick a homeomor-
phism of the upper hemisphere with the unit ball. Then we define F (1)(x)
for x in the upper hemisphere to be the corresponding point of the unit
ball with multiplicity 1. We define F (1) on the lower hemisphere to be the
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empty cycle. (We assume that the basepoint is in the lower hemisphere,
so it maps to the empty cycle.) The family F (1) sweeps out the unit ball
and so it detects a(0, n−k). Next we define a family F (p) parametrized by
the symmetric product SP pSn−k. We define F (p) of an unordered p-tuple
⟨x1, . . . , xp⟩ to be the sum

∑

i F (1)(xi). Using Nakaoka’s theorem, we can
check that F (p) detects a(0, n− k)p. First we compute F (p)∗(a(0, n− k)).
The group Hn−k(SP pSn−k) is equal to Z2 and is generated by the class β,
and the inclusion i : Sn−k → SP pSn−k induces an isomorphism in Hn−k.
Therefore, it suffices to compute i∗F (p)∗(a(0, n− k)). Unwinding the defi-
nitions, the map F (p) ◦ i is just F (1), which detects a(0, n− k). Therefore,
F (p)∗(a(0, n− k)) is equal to β, and F (p)∗(a(0, n− k)p) is equal to βp. By
Nakaoka’s theorem, βp is non-zero, and so F (p) detects a(0, n − k)p.

In either case, we have constructed a family F (p) in Z(0, n−k) detecting
a(0, n − k)p where each cycle in the family consists of at most p points.

(Remark: The case n − k = 1 is separate because the symmetric
product SP pS1 is not a cycle. We could have used the truncated symmetric
product TP pS1 as in [M].)

Next we consider the suspension map Σ : Z(0, n − k) → Z(k, n). Let
P (p) denote the parameter space of the map F (p) above. (If n − k > 1,
then P (p) = SP pSn−k. If n−k = 1, then P (p) = RPp.) We define Fk(p) to
be Σ ◦ F (p) : P (p)→ Z(k, n). By Lemma 5.1, Σ∗(a(k, n)p) = a(0, n − k)p.
Therefore, Fk(p) detects a(k, n)p. Each cycle in Fk(p) consists of a union
of at most p k-planes parallel to the (xn−k+1, . . . , xn)-plane.

Now we turn to the second step, which is to bend the planes so that
they overlap and cancel the overlaps. First we scale the family Fk(p) to get
a family of cycles in the ball B(R) for a radius R that we will choose later.
Then we rotate the family slightly, so that all the k-planes are parallel to a
plane P0 at a generic angle with respect to the coordinate axes. We call the
scaled rotated family F . If we restrict F to the unit ball, we get a family
in Z(k, n) that detects a(k, n)p.

Next we bend the cycles using a skeleton-squeezing map Ψ as described
above. The map Ψ depends on three parameters: a dimension l, a scale s,
and a small number ϵ > 0. We choose the dimension l of the skeleton to
be k, and we choose the scale s to be p−1/n. (Later we will choose ϵ > 0
sufficiently small.) The family we are trying to construct will be Ψ ◦ F
restricted to the unit ball.

The displacement of Ψ is at most C(n)s ≤ C(n). We choose R suffi-
ciently large that the displacement is less than R − 1. Therefore, Ψ maps
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the sphere S(R) to the exterior of the unit ball. Hence, if z is a relative
cycle in B(R), then Ψ(z) can be restricted to a relative cycle in the unit
ball. So Ψ ◦ F defines a family of cycles in the unit ball.

Now define Ψt to be the family of maps Ψt(x) = (1 − t)x + tΨ(x).
We have Ψ0 equal to the identity and Ψ1 equal to Ψ. Each map Ψt has
displacement at most equal to that of Ψ, and so each one maps the sphere
S(R) to the exterior of the unit ball. Hence we get a homotopy of families
of cycles. At time 0, we have the restriction of the family F to the unit
ball, which we know detects a(k, n)p. At time 1, we have the restriction
of Ψ ◦ F to the unit ball. We conclude that the latter family also detects
a(k, n)p.

We now come to the main point: estimating the volumes of the cycles
in Ψ ◦ F . Since the parallel k-planes in F were in general position with
respect to the coordinate axes, each k-plane meets the dual (n − k − 1)-
skeleton T in at most C(n) points. By taking ϵ > 0 sufficiently small,
we can guarantee that each k-plane meets at most C(n) bad simplices in
B(R). Therefore, for each k-plane P , the image Ψ(P ) lies in the k-skeleton
S except for at most C(n) pieces of plane, each with volume at most Csk.
Therefore, each cycle in the family of bent planes lies inside the k-skeleton

S except for an exceptional region of volume at most C(n)psk = C(n)p
n−k

n .
The volume of the k-skeleton S intersected with the unit ball is bounded
by C(n)s−nsk = C(n)p

n−k
n . We cancel all overlaps of cycles inside S, so

that each region of S has multiplicity zero or 1. The resulting cycle has

total volume at most C(n)p
n−k

n . !

To prove the upper bounds in Theorem 2 we need a few more tools.
We will use two more maps between spaces of cycles. The first map is
the addition map which sends a d-tuple of cycles (z1, . . . , zd) to the sum
z1 + . . . + zd. The addition in the space of cycles is commutative, and so
we view the addition operation as a map A from SP dZ(0,m) to Z(0,m).

The second map is the translation map T . For t ∈ [−1, 1] and for any
cycle z ∈ Z(0,m − 1), we define T (t, z) to be the restriction of {t} × z to
unit ball Bm. The cycle T (t, z) is a translation of the cycle z. We illustrate
the map T in Figure 8 below. The left half of the figure shows a 0-cycle
C ∈ Z(0, 1), consisting of two points. The right half shows T (1/2, z) ∈
Z(0, 2), a 0-cycle in the the 2-disk consisting of two points.

The map T sends {−1}×Z(0,m−1) and {1}×Z(0,m−1) to the empty
cycle in Z(0,m). Therefore, it defines a continuous map T : SZ(0,m−1)→
Z(0,m), where SZ(0,m − 1) denotes the (non-reduced) suspension of
Z(0,m− 1).
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−1/2 1/2 1−1 0
Figure 8

There is a canonical isomorphism σ : H∗+1(SZ(0, m−1))→H∗(Z(0, m−1)).

Lemma 5.2. The cohomology class σT ∗a(0,m) = a(0,m− 1).

Proof. Let z denote a mod2 (m − 1)-cycle in Z(0,m − 1). We need to
check that the pairings ⟨σS∗(a(0,m)), z⟩ and ⟨a(0,m − 1), z⟩ agree. To
compute the second pairing, we pick a fine triangulation Tri of z, and
we let C be a complex of cycles based on this triangulation. Then we
compute the degree of the top-dimensional cycle C(z). The first pairing
is the same as ⟨T ∗(a(0,m)), Sz⟩, where Sz denotes the suspension of z
inside of SZ(0,m−1). This pairing is also equal to ⟨a(0,m), T (Sz)⟩, where
we view T (Sz) as a family of cycles in Z(0,m) parametrized by Sz, the
suspension of z. We divide the segment [−1, 1] into segments of length 1/N .
Then we define a polyhedral decomposition of Sz with faces of the form
∆ × {m/N} or ∆ × [m/N, (m + 1)/N ], where ∆ is a simplex of Tri, our
triangulation of z. Now T (Sz) is a family of cycles in Z(0,m) parametrized
by Sz. We can build a complex of cycles C̃ approximating this family by
taking C̃(∆ × {m/N} = C(∆)× {m/N} and C̃(∆ × [m/N, (m + 1)/N ] =
C(∆) × [m/N, (m + 1)/N ]. It then follows that C̃(Sz) is equal to the
restriction to the unit ball of C(z)×[−1, 1]. Therefore, C(z) and C̃(Sz) have
the same degree, and so ⟨a(0,m − 1), z⟩ and ⟨a(0,m), T (Sz)⟩ are equal. !

The last tool concerns symmetric products of pseudomanifolds. We
use the following vocabulary. Let X be a finite simplicial complex of di-
mension N . Let SK(X) denote the K-skeleton of X. We say that X is
an N -dimensional pseudomanifold if each (N − 1)-simplex of X is con-
tained in exactly 2 N -simplices and if X − SN−2(X) is connected. An
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equivalent definition is that X − SN−2(X) is a connected N -manifold. An
N -dimensional pseudomanifold X has HN (X, Z2) = Z2. We call the non-
trivial element the fundamental homology class of X and denote it by [X].
If X and Y are N -dimensional pseudomanifolds and F : X → Y is a con-
tinuous map, then we define the degree of F by F∗([X]) = (deg F )[Y ].
(The degree lies in Z2.) If y denotes a generic point in Y , then the degree
of F is equal to the number of preimages F−1(y) taken mod2, just as for
manifolds. We will need the following lemma about symmetric products of
pseudomanifolds.

Lemma 5.3. Suppose that X is an N -dimensional pseudomanifold for

N ≥ 2. Then the symmetric product SP dX is a (dN)-dimensional pseu-

domanifold. If X and Y are N -dimensional pseudomanifolds with N ≥ 2,
F : X → Y is a map, and SP dF : SP dX → SP dY is the d-fold symmetric

product of F , then the degree of SP dF is equal to the degree of F .

Proof. Suppose X is a pseudomanifold. First we check that Xd is a pseudo-
manifold. We have to consider Xd − SdN−2Xd. This set is an open subset
of the d-fold product of X − SN−2(X), so it is a manifold. Moreover, the
complement of this set in (X − SN−2(X))d has codimension 2, and so this
set is connected. Hence Xd is a pseudomanifold.

Now assume that N ≥ 2 and consider the symmetric product SP dX.
The diagonal is the subset of Xd where at least two entries are equal.
We can triangulate Xd so that the diagonal is a subcomplex of dimension
N(d−1) ≤ dN −2. Let π denote the quotient map from Xd to SP dX. We
choose a triangulation of SP dX so that π maps the K-skeleton of Xd into
the K-skeleton of SP dX for each K. In particular, the image of the diagonal
lies in SdN−2SP dX. Let A denote SP d(X) − SdN−2SP dX. If we restrict
the quotient map π to π−1(A) we get a covering map. Therefore, π−1(A)
is an open subset of Xd − SdN−2Xd, and hence a manifold. Moreover, the
complement of π−1(A) in Xd−SdN−2Xd has codimension 2, so π−1(A) is a
connected manifold. Therefore A is the quotient of a connected manifold by
a finite group acting freely and properly, and so A is a connected manifold.
Therefore SP dX is a pseudomanifold.

Now assume that X,Y are N -dimensional pseudomanifolds, N ≥ 2, and
that F : X → Y is a continuous map. We let F d denote the product map
from Xd to Y d. By the Kunneth theorem, the degree of F d is equal to
the degree of F raised to the power d. Since we are working mod2, the
degree of F and the degree of F d are equal. Finally we check that the
degree of SP dF is the same as the degree of F d. Let y denote a generic
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point in SP dY . To compute the degree of SP dF , we count the number
of preimages in [SP dF ]−1(y). The point y has d! preimages in Y d. Let
y1 be one of these preimages. To compute the degree of F d, we count the
number of preimages in [F d]−1(y1). Because π is a covering over generic
points, there is one preimage of y1 in Xd lying over each preimage of y in
SP dX. Therefore, the degree of F d is equal to the degree of SP dF . !

Theorem 2 (Upper bounds). The minimax volume

V(SqQ0
0 · · ·Sq

Qn−k−1

n−k−1 a(k, n)) ≤ C(n)
n−k−1
∏

i=0

2
n−k−i

n−i
Qi .

Proof. We begin by considering the space of 0-cycles Z(0,m). For each

cohomology class of the form SqQ0
0 · · ·SqQm−1

m−1 a(0,m), we will construct a
family of 0-cycles Fm(Q0, . . . , Qm−1) that detects it. These families of 0-
cycles are based on certain families of subsets of the unit sphere that were
explained to me by David Wilson.

We will abbreviate SqQ0
0 · · ·SqQm−1

m−1 a(0,m) by SqQa(0,m) and
Fm(Q0, . . . , Qm−1) by Fm(Q). The parameter space of Fm(Q0, . . . , Qm−1)
will be called Pm(Q0, . . . , Qm−1). Each parameter space will be a pseudo-
manifold, and we will check that the pairing ⟨Fm(Q)∗(SqQa(0,m)), [Pm(Q)]⟩
= 1.

The construction is inductive in the dimension m. The base case is
m = 1, and here we have to define F1(Q0). The family F1(Q0) needs

to detect SqQ0
0 a(0, 1) = a(0, 1)2

Q0 . We constructed such a family at the
beginning of the proof of Theorem 1 (upper bounds), by looking at the set
of roots of polynomials of degree 2Q0 . This family is parametrized by real
projective space, so we have P1(Q0) = RP2Q0 . We checked in the proof of
Theorem 1 that the pairing ⟨F1(Q0)∗(SqQ0

0 a(0, 1)), [P1(Q0)]⟩ = 1.
We can now inductively define Fm(Q0, . . . , Qm−1), using the addition

map A and the translation map T , defined above. By the inductive hypo-
thesis, we suppose we already have a family Fm−1(Q1, . . . , Qm−1) :
Pm−1(Q1, . . . , Qm−1)→ Z(0,m− 1). We first define Fm(0, Q1, . . . , Qm−1).
In this case, we define the parameter space Pm(0, Q1, . . . , Qm−1) to be the
suspension SPm−1(Q1, . . . , Qm−1). We define the map Fm(0, Q1, . . . , Qm−1)
according to the following diagram:

SPm−1(Q1, . . . , Qm−1)
SFm−1(Q1,...,Qm−1)−−−−−−−−−−−−−→ SZ(0,m− 1)

T−−−−→ Z(0,m) .

We still have to define Fm(Q0, . . . , Qm−1) for Q0 > 0. To save space, we
introduce the following notation. We use X to denote the space



1966 L. GUTH GAFA

Pm(0, Q1, . . . , Qm−1), and we use f to denote the map Fm(0, Q1, . . . , Qm−1):
X → Z(0,m). We define Pm(Q0, . . . , Qm−1) to be the symmetric prod-

uct SP 2Q0X. To save space, we use d to denote 2Q0 . Now we define
Fm(Q0, . . . , Qm−1) as the following composition:

SP dX
SP df−−−−→ SP dZ(0,m)

A−−−−→ Z(0,m) .
To begin, we verify that Pm(Q) is a pseudomanifold. We already checked

that P1(Q0) is a pseudomanifold. We assume that Pm−1(Q1, . . . , Qm−1)
is a pseudomanifold. The suspension of a pseudomanifold is a pseudo-
manifold, so SPm−1(Q1, . . . , Qm−1) is a pseudomanifold. The pseudomani-
fold Pm−1(Q1, . . . , Qm−1) has dimension at least 1, and so its suspen-
sion has dimension at least 2. Therefore the symmetric product
SP 2Q0 SPm−1(Q1, . . . , Qm−1) is a pseudomanifold.

Next we have to check that the pairing ⟨Fm(Q)∗(SqQa(0,m)), [Pm(Q)]⟩
= 1. Again we proceed inductively. We have already checked this equation
for m = 1. By induction, we assume that it holds for m− 1.

First we consider the special case that Q0 = 0. By definition we need
to compute the following pairing:
〈

Fm(0, Q1, . . . , Qm−1)
∗(SqQ1

1 . . . SqQm−1
m−1 a(0,m)), [Pm(0, Q1, . . . , Qm−1)]

〉

.

Plugging in the definitions of Fm(0,Q1, . . . ,Qm−1) and Pm(0,Q1, . . . ,Qm−1),
we get the following expression:

=
〈

SFm−1(Q1, . . . , Qm−1)
∗T ∗(SqQ1

1 · · ·SqQm−1
m−1 a(0,m)),

[SPm−1(Q1, . . . , Qm−1)]
〉

.

Using the suspension isomorphism and the fact that T ∗ commutes with
Steenrod squares, we get the following expression:

=
〈

Fm−1(Q1, . . . , Qm−1)
∗σ(SqQ1

1 · · ·SqQm−1
m−1 T ∗a(0,m)),

[Pm−1(Q1, . . . , Qm−1)]
〉

.

Steenrod squares commute with σ. In other words, σSqiα = Sqiσα, as
described in [H]. We are using lower squares. Rewriting lower squares in
terms of upper squares, it follows that σSqiα = Sqi−1σα. Using this equa-
tion, we can interchange σ with the Steenrod squares to get the following
formula:

=
〈

Fm−1(Q1, . . . , Qm−1)
∗(SqQ1

0 · · · SqQm−1
m−2 σT ∗a(0,m)),

[Pm−1(Q1, . . . , Qm−1)]
〉

.

According to Lemma 5.2, σT ∗a(0,m) = a(0,m − 1). Substituting
a(0,m − 1) for σT ∗a(0,m) in the expression above leaves the following:

=
〈

Fm−1(Q)∗(SqQ1
0 . . . SqQm−1

m−2 a(0,m− 1)), [Pm−1(Q1, . . . , Qm−1)]
〉

.
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By our inductive hypothesis, this pairing is equal to 1.
To finish the inductive step, we have to deal with the case that Q0 > 0.

Let α denote SqQ1
1 · · · SqQm−1

m−1 a(0,m). Using the abbreviations above, we
have just checked that the pairing ⟨f∗α, [X]⟩ is equal to 1. To finish our
induction, we need to check that ⟨(A ◦ SP df)∗αd, [SP dX]⟩ = 1.

Let N be the dimension of the cohomology class α, and so also the
dimension of X. Let g : X → SN be a map of degree 1 (mod 2).

Recall that X is a suspension. We let x0 be the vertex of one of the
two cones whose union is X, and we consider x0 to be a basepoint for X .
Then we choose a basepoint p0 in SN , arranging that g(x0) = p0. Using the
basepoints, we define the embedding i : X → SP dX by taking a point x to
the d-tuple ⟨x, x0, . . . , x0⟩ and the embedding i : SN → SP dSN by taking a
point p to the d-tuple ⟨p, p0, . . . , p0⟩. Since f = T ◦ SFm−1(Q1, . . . , Qm−1),
f maps the vertex x0 to the empty cycle. Therefore, the following diagram
commutes:

Z(0,m)
f←−−−− X

g−−−−→ SN

⏐

⏐

,

=

⏐

⏐

,
i

⏐

⏐

,
i

Z(0,m)
A◦SP df←−−−−− SP d(X)

SP dg−−−−→ SP dSN

According to Nakaoka [N], HN (SP dSN , Z2) = Z2. Let β be the gen-
erator of this group. According to Nakaoka [N], i∗(β) is the non-trivial
cohomology class ω in HN (SN , Z2).

Let α̃ = (A ◦ SP df)∗(α) and let β̃ = (SP dg)∗(β).
In order to compute our pairing, we will prove that α̃d = β̃d.
Since g is degree 1, we know that g∗ω = f∗α. Because of the commu-

tative diagram, i∗α̃ = i∗β̃.
We write α̃d− β̃d = (α̃− β̃)(α̃d−1 + α̃d−2β̃+ . . .+ β̃d−1) = (α̃− β̃)α̃d−1 +

. . .+(α̃−β̃)β̃d−1. We will prove that each summand in this formula vanishes,
using Lusternik–Schnirelmann theory.

We write SP dX as a union of d + 1 contractible open sets. This con-
struction uses the fact that X is a suspension. It generalizes the fact that
a suspension is the union of two contractible open sets. We write X = SY
for some space Y , and we think of SY as [0, 1] × Y with each component
of the boundary contracted to a point. We let t : X → [0, 1] denote the
projection from [0, 1]× Y onto the first coordinate. Then for each point in
SP dX we get an unordered d-tuple of times ⟨t1, . . . , td⟩. For 0 ≤ k ≤ d,
we define an open set Uk ∈ SP dX to be the set of points where k of the
times ti are (strictly) greater than 1/(k + 2) and the other d− k times are
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(strictly) less than 1/(k + 2). The set Uk is contractible: homotope all the
times less than 1/(k+2) to zero and all the times more than 1/(k+2) to 1.

We prove by induction on d that the sets Uk cover SP dX. When d = 1,
this is true, because either t1 < 1/2 and our point is in U0, or else t1 > 1/3
and our point is in U1. Now suppose that the result holds for d− 1. If all
ti are more than 1/(d + 2), then our point lies in Ud. If not, there is at
least one ti ≤ 1/(d + 2). Renumber the points so that td ≤ 1/(d + 2). Now
look at the (d−1)-tuple of remaining points. By induction, it lies in Uk for
some 0 ≤ k ≤ d − 1. In other words, k of the d − 1 other times are more
than 1/(k + 2) and d − 1 − k of the d − 1 remaining times are less than
1/(k + 2). But td ≤ 1/(d + 2) < 1/(k + 2). Hence for the original d-tuple,
k of the d times are more than 1/(k + 2) and the other d− k are less than
1/(k + 2). In other words, our point lies in Uk.

Lusternik–Schnirelmann theory immediately implies that any (d + 1)-
fold cup product vanishes on SP dX. In our application, we have to deal
with a d-fold cup product. The next step is to show that α̃ − β̃ vanishes
on the union of U0 and U1. This union is not contractible. We will show
instead that it contracts to i(X) ⊂ SP dX. Since i is an embedding, and
since we checked above that i∗(α̃− β̃) = 0, it will follow that α̃− β̃ vanishes
on the union of U0 and U1.

Now we check that the union of U0 and U1 contracts to i(X). If a point
lies in this union, then either it has d times less than 1/2, or else it has
d− 1 times less than a 1/3. In either case, it has d− 1 times less than 1/2.
Let ht : [0, 1] → [0, 1] be a homotopy with h0 the identity, ht(0) = 0 and
ht(1) = 1. We can choose ht so that h1 maps [0, 1/2] to 0. By taking the
product with the identity map, we can think of ht as a homotopy of maps
from [0, 1] × Y to [0, 1] × Y . Since each boundary component is mapped
to itself, our homotopy descends to a homotopy of maps from X to X.
Finally, taking the d-fold symmetric product, we get a homotopy of maps
from SP dX to itself. The final map, SP dh1 maps our union into i(X).
The times of h1(⟨x1, . . . , xd⟩) are ⟨h1(t1), . . . , h1(td)⟩. Since d − 1 times ti
are less than 1/2, d − 1 of the points h1(xi) are the basepoint x0. Hence
SP dh1 maps our union into i(X).

Since α̃ − β̃ vanishes on the union of U0 and U1, and since any coho-
mology class vanishes on Uk for 2 ≤ k ≤ d, Lusternik–Schnirelmann theory
implies that each cohomology class (α̃−β̃)∪α̃e∪β̃d−e−1 vanishes on SP dX.
Summing these terms, we conclude that α̃d = β̃d.
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We want to compute the pairing ⟨(A◦SP df)∗αd, [SP dX]⟩=⟨α̃d, [SP dX]⟩.
By our result above, this pairing is the same as ⟨β̃d, [SP dX]⟩. We can
evaluate this last pairing by pushing it over to SP dSN . It is equal to
⟨βd, (SP dg)∗[SP dX]⟩. We know that g has degree 1. According to Lem-
ma 5.3, SP dg also has degree 1. Hence our pairing is equal to ⟨βd, [SP dSN ]⟩.
According to Nakaoka’s theorem, this pairing is equal to 1. This finishes our
induction on m. We have now computed the pairing ⟨SqQa(0,m), Fm(Q)⟩
= 1.

Using the k-fold suspension map Σ we can construct families of k-cycles.
We define Pk,n(Q) to be Pn−k(Q). Then we define Fk,n(Q) : Pk,n(Q) →
Z(k, n) to be Σ ◦ Fn−k(Q). Since Σ∗a(k, n) = a(0, n − k), it follows that

Fk,n(Q) detects SqQ0
0 · · · Sq

Qn−k−1

n−k−1 a(k, n). This finishes the first step of the
proof.

We take a little time to describe the geometry of the cycles in Fk,n(Q).
These geometric facts will be used to bound the volumes of cycles in our
final family. Of course each cycle in Fn−k(Q) is a union of points. A
simple induction argument shows that the number of points is at most
2Q0 · · · 2Qn−k−1 . Besides the number of points in each cycle, we will need
to use some information about the way the points are arranged. For every
l in the range 0 ≤ l ≤ n − k, each cycle in Fn−k(Q) lies in a union of at
most 2Q0 · · · 2Qn−l−1 l-planes, each parallel to the (xn−l+1, . . . , xn−k)-plane
in Rn−k. We verify this claim by induction on n − k. When n − k = 1,
F1(Q0) is the family of all roots of a degree 2Q0 polynomial. Each set of
roots has at most 2Q0 points, and they trivially lie in one line. We proceed
by induction on n − k, assuming that the result holds for n − k = m − 1.
First we consider the family Fm(0, Q1, . . . , Qm−1). Each cycle in this family
has the form {t} × C, where C is a cycle in Fm−1(Q1, . . . , Qm−1) and
t ∈ [−1, 1]. By induction on m, this cycle lies in 2Q1 . . . 2Qm−l−1 l-planes
for each 0 ≤ l ≤ m− 1. Now we consider the family Fm(Q0, . . . , Qm−1) for
Q0 > 0. This cycle is a union of 2Q0 cycles of the kind above. Therefore,
it lies in a union of 2Q0 . . . 2Qm−l−1 l-planes for each 0 ≤ l ≤ m− 1. Also,
any of these cycles trivially lies in one m-plane.

Each cycle in Fk,n(Q) has the form Σ(C) where C is a cycle in Fn−k(Q).
Therefore, each cycle in Fk,n(Q) is a union of at most 2Q0 · · · 2Qn−k−1 k-
planes each parallel to the (xn−k+1, . . . , xn)-plane. Moreover, for every
l ≥ k, each cycle in Fk,n(Q) lies in a union of at most 2Q0 · · · 2Qn−l−1 l-
planes, all parallel to the (xn−l+1, . . . , xn)-plane.

Before turning to the bending map Ψ, we rotate the family Fk,n to a
generic angle, and we dilate it so that we have a family of relative k-cycles
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in the ball B(R). The map Ψ we will choose has displacement bounded by
C(n) independent of Q. We choose R big enough that the displacement
of Ψ is less than R − 1. Imitating the proof of Theorem 1, it follows that
the restriction of ΨFk,n(Q) to the unit ball detects the cohomology class
SqQa(k, n). Now we come to the heart of the matter: how to choose the
bending map Ψ so that each cycle in ΨFk,n(Q) has small volume.

The first approach one might try is to use the skeleton-squeezing map
Ψ to push most of the parallel k-planes into the k-skeleton of a lattice with
a given side length. This is the strategy that we employed in the proof of
Theorem 1. If we use a lattice of side length s, then each k-plane is pushed
into the k-skeleton except for a region of final volume at most C(n)sk.
On the other hand, the total volume of the k-skeleton of side length s is
roughly C(n)sk−n. Cancelling the overlaps and optimizing s, we end up

with a family of cycles each having volume at most C(n)2
n−k

n

P

Qi . For
most vectors Q, this volume is still much larger than the upper bound we
want to prove. We can improve this approach, because the cycles in Fk,n(Q)
are not arbitrary unions of at most 2

P

Qi parallel k-planes. They also obey
a second property, which we noted above. For every l ≥ k, each cycle in
Fk,n(Q) lies in a union of at most 2Q0 · · · 2Qn−l−1 l-planes, all parallel to
the (xn−l+1, . . . , xn)-plane. We will choose a map Ψ that takes advantage
of this structure.

Our map Ψ will be a composition of skeleton-squeezing maps. The
maps occur at different scales and use skeleta of different dimensions. We
use Ψ[l,s] to denote a squeezing map to the l-skeleton at scale s. Next we

define a sequence of scales si =
∏i

j=0 2−Qj/(n−j). We have s0 ≥ s1 ≥ s2 · · ·
Our map Ψ is the composition Ψ[k,sn−k−1]◦· · ·◦Ψ[n−1,s0]. Roughly speaking,
we first squeeze most of space into the (n−1)-skeleton of the lattice of side
length s0. Then we squeeze most of space into the (n − 2)-skeleton of the
finer lattice with sidelength s1, and so on.

Technically, we need to describe the map Ψ[l,s] in more detail. First of
all, the map depends on a parameter ϵl > 0. As we go along, we will need
to choose these parameters so that ϵk ≪ ϵk+1 ≪ · · · ≪ ϵn−1. There is a
second complication that we have to introduce. In the original definition
of Ψ, we used a lattice centered at the origin. In the course of our estimates,
however, we will need to use a general position argument. Therefore, when
we construct the map Ψ[l,s], we use a lattice centered at a generic point
instead of the origin. (For each l, we use a different lattice centered at a
different generic point.)
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The volume of cycles in ΨFk,n(Q) is controlled inductively by the fol-
lowing lemma.

Lemma 5.4. For each l in the range k ≤ l ≤ n, each cycle in the family

Ψ[l,sn−l−1]◦ · · ·◦Ψ[n−1,s0]Fk,n(Q) lies in a union of at most C(n)
∏n−l−1

m=0 2Qm

pieces of l-plane, each of diameter at most Csn−l−1.

Proof. The proof is by backwards induction, beginning with the case l = n.
When l = n, the claim is basically vacuous. It just asserts that each cycle
in Fk,n(Q) lies in 1 piece of n-plane with diameter on the order of 1.

We now assume the lemma holds for l and we need to prove it for l− 1.
Let C0 be a cycle in Fk,n(Q), and let C be the image Ψ[l,sn−l−1] ◦ · · · ◦

Ψ[n−1,s0]C0. We have to control the geometry of Ψ[l−1,sn−l]C. To do this, we
divide the cycle C into two parts. We let G be the union of the good sim-
plices for the map Ψ[l−1,sn−l] and we let B be the union of the bad simplices.
Then we consider separately Ψ[l−1,sn−l](C ∩B) and Ψ[l−1,sn−l](C ∩G).

First we deal with the bad simplices. We know that C0 is contained
in a union of parallel l − 1-planes Ha for a = 1, . . . , 2Q0 · · · 2Qn−l . The
bad set B lies in the ϵl−1-neighborhood of an (n − l)-skeleton T . We let
T̄ denote the inverse image (Ψ[l,sn−l−1] ◦ . . . ◦ Ψ[n−1,s0])

−1(T ). Since T is a
skeleton of a lattice whose center is in general position, its inverse image
T̄ is an (n − l)-complex. (The complex T has finitely many faces that are
each pieces of (n − l)-plane. The map we are considering is a PL map.
We can cut the domain into finitely many simplices so that the map is
linear on each simplex. Now for each simplex and each face, we look at
Map(simplex) ∩ face. Because the face has been translated by a generic
vector, the intersection has the expected dimension, and so the inverse
image of the given face intersected with the given simplex lies in a plane of
the expected dimension.)

We let B̄ denote the inverse image (Ψ[l,sn−l−1] ◦ · · · ◦ Ψ[n−1,s0])
−1(B).

Since all Ψ are PL, we can choose ϵl−1 sufficiently small that B̄ is contained
in the Cϵl−1 neighborhood of T̄ . (Remark: The constant C here depends
on the choice of ϵl, . . . , ϵn−1.) Since the angle of the planes Ha is in general
position, the intersection Ha∩T̄ consists of at most C(n) points. Using gen-
eral position again, the intersection Ha∩B̄ is contained in at most C(n) balls
of radius at most Cϵl−1. When we apply Ψ[n−1,s0] to these pieces, we stretch
by a factor C, and we may bend each piece into C(n) different planes. As
long as ϵl−1 is sufficiently small, a ball of radius Cϵl−1 meets at most C(n)
simplices of the triangulations for any of the maps Ψ[l,sn−l−1], . . . ,Ψ[n−1,s0].
Therefore, the image Ψ[l,sn−l−1] ◦ · · · ◦ Ψ[n−1,s0](Ha) ∩ B is contained in a
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union of at most C(n) pieces of plane each of diameter at most Cϵl−1. Each
of these pieces of plane meets at most C(n) simplices of the triangulation for
Ψ[l−1,sn−l]. In summary, the intersection (Ψ[l,sn−l−1] ◦ · · · ◦Ψ[n−1,s0]Ha)∩B
is contained in a union of at most C(n) pieces of plane, each piece of plane
lying in a single bad simplex. Adding the contributions from all the planes,
we see that C ∩ B is contained in a union of at most C(n)2Q0 · · · 2Qn−l

pieces of (l− 1)-plane, each piece of plane lying in a single bad simplex. If
∆ is any simplex in the triangulation for Ψ[l−1,sn−l], then the image of ∆
has diameter at most C(n)sn−l. Therefore, the image Ψ[l−1,sn−l](C ∩B) is

contained in a union of at most C(n)2Q0 · · · 2Qn−l pieces of (l − 1)-plane,
each of diameter at most C(n)sn−l.

Second we deal with the good simplices. At this step we use the
inductive hypothesis, which tells us that C is contained in a union of
C(n)2Q0 · · · 2Qn−l−1 pieces of l-plane, each of diameter at most C(n)sn−l−1.
The image Ψ[l−1,sn−l](C ∩G) is contained in the (l− 1)-skeleton of a lattice
of side length sn−l. We also know that the map Ψ[l−1,sn−l] moves each point
at most C(n)sn−l. If P is a piece of l-plane of diameter at most C(n)sn−l−1,
then Ψ[l−1,sn−l](P ∩G) lies in the part of the (l− 1)-skeleton of side length
sn−l within a distance Csn−l of P . This portion of skeleton can be covered
by C(n)[sn−l−1/sn−l]l (l-1)-faces, each of diameter at most C(n)sn−l. Plug-
ging in the definition of si, we see that [sn−l−1/sn−l]l = 2Qn−l . Therefore,
Ψ[l−1,sn−l](C∩G) can be covered by C(n)2Q0 · · · 2Qn−l pieces of (l−1)-plane
of diameter at most C(n)sn−l. !

In particular, each cycle in ΨFk,n(Q) = Ψ[k,sn−k−1]◦· · ·◦Ψ[n−1,s0]Fk,n(Q)

is contained in a union of C(n)2Q0 · · · 2Qn−k−1 pieces of k-plane, each with
diameter at most Csn−k−1. So each cycle has total volume at most
C(n)2Q0 · · · 2Qn−k−1(sn−k−1)k. Plugging in the definition of sn−k−1, we see

that each cycle has volume at most C(n)2Q0 · · · 2Qn−k−1
∏n−k−1

j=0 2−
k

n−j
Qj =

C(n)
∏n−k−1

i=0 2
n−k−i

n−i
Qi . Since ΨFk,n(Q) detects SqQa(k, n),

V
(

SqQ0
0 · · · Sq

Qn−k−1

n−k−1 a(k, n)
)

≤ C(n)
n−k−1
∏

i=0

2
n−k−i

n−i
Qi . !

6 Families of Algebraic Cycles

In this section, we give some examples of families of cycles coming from
algebraic geometry. These examples can be used to give alternate proofs of
the upper bounds in certain cases of Theorem 1 and Theorem 2. Although
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they don’t cover all the cases covered in the previous section, these examples
are simpler in some ways than the examples using bent planes. I had several
reasons for including them. First, seeing examples of families of cycles helps
to put the results of the paper into context. Second, it looks plausible to me
that these examples give the optimal values of V(α) for certain α. Third,
families of complex algebraic varieties give the only proofs of certain upper
bounds for families of integral cycles, as described in Appendix 2.

There is one important technicality. It is not trivial to prove that al-
gebraic families of algebraic cycles actually form continuous families in
Z(k, n). At the end of the section, we give a self-contained proof that
families of algebraic hypersurfaces are continuous in Z(n − 1, n). This ar-
gument makes Examples 2, 3, and 5 completely rigorous.

Right now, Example 4 is not completely rigorous.

Example 1. The roots of a polynomial. Let V (d) be the space of all real
polynomials of one variable with degree at most d. The space V (d) is a
vector space of dimension d + 1. To each non-zero polynomial in V (d), we
associate its real roots, taken with multiplicity. This association defines a
map R0 from V (d) − {0} to the space of integral 0-cycles on the real line,
but the map is NOT continuous. The reason for the discontinuity is that
two real roots may approach each other, become a double root, and then
become two conjugate complex roots. Since R0 only records the real roots,
two real roots can come together and disappear.

We correct this problem by considering the roots with multiplicity mod-
ulo 2. We define a root map R from V (d) − {0} to Z(0, 1) by taking the
real roots of a polynomial, keeping only the roots in the interval (−1, 1),
and recording the multiplicity modulo 2. The map R is continuous.

For any non-zero real number λ, the polynomials P and λP have the
same roots, and so R induces a map F (d) from RPd = [V (d)− {0}]/R∗ to
Z(0, 1). We call this the family of roots of degree d polynomials.

For example, if d = 1, then the map F (1) sends the polynomial ax + b
to its root −b/a. If we fix a = 1, then as b goes from −∞ to +∞, the point
−b/a goes from +∞ to −∞. So the family F (1) sweeps out the unit ball
(−1, 1) with degree 1 modulo 2. Hence F (1)∗(a(0, 1)) is the generator of
H1(RP1).

Next we compute that F (d)∗(a(0, 1)) is the generator of H1(RPd). To
check this, we pick a homologically non-trivial curve c in RPd and we check
that F (c) sweeps out the unit interval. We can take the curve c given by
the projectivization of the linear polynomials, V (1) ⊂ V (d). The map F (d)
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restricted to this copy of RP1 is just F (1), and so the claim follows from
the last paragraph. Therefore, the family F (d) detects a(0, 1)d.

Example 2. Planar real algebraic curves. Now let V (d, 2) denote the
vector space of real polynomials in two variables with total degree at most
d. The vector space V (d, 2) has dimension

(d+2
2

)

= (1/2)(d2 + 3d + 2).

We let RPD(d,2) be the projectivization of V (d, 2) − {0}. The dimension
D(d, 2) = (1/2)(d2 + 3d). To each equivalence class [P ] in RPD(d,2) we
can associate the real algebraic variety defined by P (x, y) = 0. We define
F (d, 2)([P ]) to be the restriction of this real algebraic variety to the unit
disk, considered as a mod 2 relative Lipschitz cycle.

As in the first example, F (d,2)∗(a(1,2)) is the generator of H1(RPD(d,2)).
We can see this by the same argument. The polynomials of the form ax1+b
make up a linear copy of RP1 ⊂ RPD(d,2). The map F (d, 2) restricted to
this RP1 gives a family of parallel vertical lines sweeping out the unit disk.
In other words, a(1, 2) evaluated on F (d, 2)∗([RP1]) is equal to 1, and so
F (d, 2)∗(a(1, 2)) is the generator of H1(RPD(d,2)). Therefore, the family
F (d, 2) detects a(1, 2)p for all p ≤ D(d, 2).

By a standard argument, we can bound the length of a real algebraic
curve in terms of the degree using the Crofton formula. The Crofton for-
mula expresses the length of a curve C in the plane as an appropriate
average of the number of intersections of C with all the lines in the plane.
Suppose that C is a degree d algebraic curve intersected with the unit disk,
and let S1 denote the unit circle. If a line L does not meet the open disk,
then L has zero intersections with C. If L does intersect the open disk,
then it intersects S1 twice. Because C has degree d, it intersects almost
every line L at most d times. By the Crofton formula, the length of C is
at most (d/2) times the length of S1. So the length of C is at most πd.
(I suspect that the sharp constant is 2d, given by a union of d lines through
the origin, but I don’t know how to prove it.)

This example proves that V(a(1, 2)p) ≤ πd for any p ≤ D(d, 2) =
(1/2)(d2 − 3d). Hence V(a(1, 2)p) ≤ Cp1/2, proving the upper bound in
Theorem 1 in case k = 1 and n = 2.

Example 3. Real algebraic hypersurfaces. There is an analogous family of
real algebraic hypersurfaces in any dimension. Let V (d, n) denote the vec-
tor space of real polynomials in n variables of total degree at most d. We let
RPD(d,n) be the projective space given by the quotient [V (d, n)− {0}]/R∗.
The dimension D(d, n) grows like dn in the sense that c(n)dn ≤ D(d, n) ≤
C(n)dn for positive constants c(n) < C(n). We define F (d, n) to be
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the map sending an equivalence class [P ] to the real algebraic variety
P (x1, . . . , xn) = 0 intersected with the unit n-ball. As in the case of curves,
F (d, n) gives a continuous map from RPD(d,n) to Z(n− 1, n).

The pullback F (d,n)∗(a(n−1,n)) is again the generator of H1(RPD(d,n)).
The proof is essentially the same as for curves. We consider a linear
RP1 ⊂ RPD(d,n) given by the polynomials of the form ax1 + b. The restric-
tion of F (d, n) to this RP1 is a family of parallel hyperplanes x1 = constant
sweeping out the unit n-ball. Therefore, the pairing of a(n − 1, n) with
F (d, n)∗([RP1]) is equal to 1, proving the claim. Therefore, F (d, n) detects
a(n − 1, n)p for any p ≤ D(d, n).

As for curves, the Crofton formula allows us to bound the volume of
a degree d real algebraic hypersurface in the unit n-ball by C(n)d. This
example proves that V(a(n − 1, n)p) ≤ C(n)d for any p ≤ D(d, n). Since
D(d, n) ≥ c(n)dn, it follows that V(a(n − 1, n)p) ≤ C(n)p1/n. This proves
the upper bound in Theorem 1 in the case that k = n− 1.

Example 4. Complex algebraic hypersurfaces. If the dimension n is even,
we can think of Bn as the unit ball in Cn/2, and we can consider families of
complex hypersurfaces. If we consider the complex hypersurfaces as mod 2
cycles, we get a family FC(d, n), mapping CPDC(d,n) to Z(n − 2, n). The
dimension DC(d, n) grows like dn/2. The pullback FC(d, n)∗(a(n − 2, n)) is
the generator of H2(CPDC(d,n), Z2). Therefore, this family detects
a(n − 2, n)p for p ≤ DC(d, n) ≤ C(n)dn/2. By the complex version of
the Crofton formula, each degree d complex hypersurface in the unit ball
has volume at most C(n)d. This example proves that V(a(n − 2, n)p) ≤
C(n)p2/n, giving the upper bound in Theorem 1 in case k = n− 2 and n is
even.

Complex cycles are canonically oriented, so we can also look at the
degree d hypersurfaces as families of integral cycles. We discuss integral
cycles in Appendix 2.

Example 5. Products of the previous examples. By taking Cartesian
products we can produce a variety of new families of cycles. For ex-
ample, F (d1, n1) × F (d2, n2) is a map from RPD(d1,n1) × RPD(d2,n2) to
Z(n1 + n2 − 2, n1 + n2). The pullback of a(n1 +n2−2, n1 +n2) is given by
the tensor product ω1 ⊗ ω2, where ωi is the generator of H1(RPD(di,ni)).

Most of these families have unnecessarily large maximal volumes, and
so they are not useful for proving the upper bounds in Theorem 1 and
Theorem 2. We focus on only a few cases, where the maximal volume is near
to optimal. The cases involve products with the trivial family which consists
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of a point moving across an interval. This family is called F (1, 1), the
family that gives the root of a linear polynomial in one variable, described
in Example 1 above. (We called it F (1) at the time.)

Consider the product F (d, n) × F (1, 1), which is a family of cycles in
Z(n−1, n+1) parametrized by RPD(d,n)×S1. Let ω denote the generator of
H1(RPD(d,n)), and let β denote the generator of H1(S1). Then the pullback
of a(n− 1, n + 1) by our family is ω ⊗ β.

This family detects certain towers of Steenrod squares applied to
a(n − 1, n + 1). More precisely, if 2Q ≤ D(d, n), then this family detects
SqQ

1 a(n − 1, n + 1). In order to see this, consider the smash product map
RPD(d,n)×S1 → SRPD(d,n). The cohomology class ω×β is the pullback of
the generator of H2(SRPD(d,n)). Because Steenrod squares commute with

suspensions, it follows that SqQ
1 (ω ⊗ β) = (SqQ

0 ω) ⊗ β = ω2Q ⊗ β. Since

2Q ≤ D(d, n), ω2Q
is a non-vanishing class in H∗(RPD(d,n)) and ω2Q ⊗ β is

a non-vanishing class in H∗(RPD(d,n) × S1).
A cycle in F (d, n)× F (1, 1) is just a product of a cycle in F (d, n) with

a point, and so it has volume at most C(n)d. This example proves that
V(SqQ

1 a(n − 1, n + 1)) ≤ C(n)d as long as 2Q ≤ D(d, n) ≤ C(n)dn. In

other words, it shows that V(SqQ
1 a(n− 1, n + 1)) ≤ C(n)2Q/n. If we write

N = n + 1, then we get the inequality V(SqQ
1 a(N − 2,N)) ≤ C(N)2

1
N−1Q.

This inequality is the upper bound in Theorem 2 in the special case that
k = N − 2 and Qi = 0 for i ̸= 1.

More generally, we can consider the product F (d, n) × F (1, 1) × . . . ×
F (1, 1) = F (d, n) × F (1, 1)s. In this case, we get a family of cycles in
Z(n − 1, n + s) parametrized by RPD(d,n) × T s, where T s denotes the s-
dimensional torus (S1)s. The pullback of a(n− 1, n + s) is given by ω ⊗ β
for ω the generator of H1(RPD(d,n)) and β the generator of Hs(T s). By the
same argument as above, this family detects the class SqQ

s a(n−1, n+s) for
2Q ≤ D(d, n). Each cycle in the family has volume at most C(n)d. This
proves the inequality V(SqQ

s a(n− 1, n+ s)) ≤ C(n)2Q/n, giving some more
special cases of the upper bounds in Theorem 2.

We now return to the technical problem of showing that algebraic cy-
cles are flat cycles and that the families we mentioned above are continuous
families of flat cycles. We will prove that the family of real algebraic hy-
persurfaces F (d, n) defined in Example 3 is genuinely a continuous family
of mod 2 flat (n − 1)-cycles. As a special case, it follows that the family
F (d, 2) in Example 2 is a continuous family of flat cycles, and it also follows
that the products in Example 5 are continuous families of flat cycles. This
material is probably old, but I don’t know a reference for it.
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Let us start by considering the following special case. Fix a polynomial
P ̸= 0, and consider the two polynomials P − δ and P + δ for a small real
number δ. If δ is small, the two polynomials are close together in the space
of all polynomials. The vanishing sets of these two polynomials are P−1(δ)
and P−1(−δ). These two cycles bound a chain P−1([−δ, δ]). We have to
show that if δ is small, then this chain has small volume. The following
lemma gives such a bound.

Lemma 6.1. Suppose that P is a real polynomial of degree at most d in n
variables. We can write P in multi-index notation as P (x) =

∑

|I|≤d cIxI .

Suppose that max |cI | = M . Then the set {x ∈ B(1) | |P (x)| ≤ δ} has

volume at most C(d, n)[M−1δ]1/dn.

Remark. This estimate is far from sharp. For our purposes, it doesn’t
matter what power of δ appears in the estimate.

Proof. By scaling, it suffices to prove the theorem when M = 1. We
first consider the trivial case that maxI≠0 |cI | ≤ (1/2)n−d. In this case,
we must have |c0| = 1. But then |P (x)| ≥ 1/2 everywhere, and so our
inequality holds automatically. We may assume that maxI≠0 |cI | ≥ c(d, n).
By scaling, it suffices to prove that if maxI≠0 |cI | = 1, then the volume of
P−1([−δ, δ]) is at most C(d, n)δ1/dn.

We proceed by induction on n. First we do the case n = 1.

Divide the 1-dimensional ball [−1, 1] into at most d segments Si so that
P is monotonic on each segment. Let S̄i := Si ∩ P−1([−δ, δ]). Because P
is monotonic on Si, each S̄i is a single segment. The oscillation of P on S̄i

is at most 2δ. Therefore, it suffices to check that the oscillation of P on a
segment S ⊂ [−1, 1] of length |S| is at least C(d)|S|d.

We write P (x) =
∑d

i=0 cixd. The dth derivative P (d) is a constant
d!cd. Therefore, the oscillation of P (d−1) on a segment S is d!|cd||S|. We
can choose a subsegment S1 ⊂ S with |S1| ≥ (1/4)|S| so that on S1,
|P (d−1)| is constant up to a factor of 2 with size on the order of |cd||S|. (In
particular, the sign of P (d−1) is constant on S1.) Therefore, the oscillation
of P (d−2) on S1 is on the order of |cd||S|2 + |cd−1||S|. We can choose
a subsegment S2 ⊂ S1 with |S2| ≥ (1/8)|S1| so that on S2, |P (d−2)| is
constant up to a factor of 2. Therefore, the oscillation of P (d−3) on S2 is
on the order of |cd||S|3 + |cd−1||S|2 + |cd−2||S|. Continuing in this way, we
eventually produce a subsegment of S where the oscillation of P is at least
c(d)[|cd||S|d + . . .+ |c1||S|]. In particular the oscillation is at least c(d)|S|d.
This proves our lemma in case n = 1.
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Now we turn to the inductive step. We assume that the lemma holds
for n−1. Let P be a polynomial in n variables of degree d. As we described
at the beginning of the proof, we can assume that |cI | = 1 for a non-zero
index I. By reordering the variables, we can assume that xn divides xI .
We sort the monomials of P according to the power of xn, writing P (x) =
∑d

i=0 Pi(x1, . . . , xn−1)xi
n. Here, each Pi is a polynomial of degree at most

d in the first n − 1 variables. By assumption, one of the Pi with i ̸= 0
has a coefficient with norm 1. Using induction, we can apply the lemma
to the polynomial Pi. We conclude that |Pi| ≥ β except for a set B of

measure C(d, n)β
1

(n−1)d , for a number β that we can choose later. Suppose
(x1, . . . , xn−1) is not in B. Fixing this choice of (x1, . . . , xn−1), we consider
P as a polynomial in the one variable xn. This polynomial has largest
coefficient of size at least β. By applying the lemma to this 1-dimensional
polynomial, we conclude that |P (xn)| ≥ δ except for a subset of values of

xn of volume at most C(d, n)(β−1δ)1/d. We take β = δ
n−1

n , finishing the
induction. !

With this lemma in hand, we can prove the continuity of F (d, n). Let
P be a real degree d polynomial in n variables. We write P =

∑

cIxI , and
we define ∥P∥ = [

∑

|cI |2]1/2. We consider the family of all P of norm 1.
This family is parametrized by the sphere S = {cI |

∑

|cI |2 = 1}. Let VP

denote the set {x ∈ Bn(1) | P (x) = 0}. For an open set of full measure
in S, the variety VP is a smooth hypersurface which meets the boundary of
Bn(1) transversely. In this case, VP clearly defines a mod 2 Lipschitz cycle
and hence a mod 2 flat cycle. We let S0 ⊂ S denote this open set of full
measure. We define a map F (d, n) : S0 → Z(n − 1, n) by mapping P to
VP considered as a flat cycle. We note that VP = V−P . Therefore, if P is
contained in S0, then so is −P , and F (d, n)(P ) = F (d, n)(−P ).

Lemma 6.2. If P and Q are in S0, then the area-distance from VP to VQ

is at most C(d, n)∥P −Q∥ϵ(d,n), for a constant ϵ(d, n) > 0.

In particular, the map F (d, n) extends to a continuous map from S
to Z(n − 1, n). Since F (d, n)(P ) = F (d, n)(−P ), the same holds for the
extension, and so we can take a quotient by the action of Z2, giving a map
F (d, n) : RPD(d,n) → Z(n − 1, n). This F (d, n) is the family of degree d
real algebraic hypersurfaces described in Example 3 above.

Proof. Let F (x, t) = (1 − t)P + tQ. We let VF = {(x, t) ∈ Bn(1) × [0, 1] |
F (x, t) = 0}. For each P ∈ S0, for almost every Q ∈ S0, the set VF is a
smooth manifold meeting the boundary of Bn(1) × [0, 1] transversely. For
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the time being, we assume that this is true for P and Q. Then VF is a
relative n-cycle in Bn(1) × [0, 1]. Let π : Bn(1) × [0, 1] → Bn(1) be the
projection onto the first factor. Then π(VF ) is a relative Lipschitz n-chain
in Bn(1) with boundary VP − VQ. The area-distance from VP to VQ is at
most the volume of π(VF ). In the rest of the proof, we give an upper bound
for this volume.

Let A be the image of VF under the map π, considered as a subset of
Bn(1). Notice that for almost every point of a ∈ A, π−1(a) is a single point
in VF . Therefore, it suffices to bound the volume of A. We know that the
volume of VF is at most C(n)d by an argument using the Crofton formula.
Since π : VF → A is 1-to-1 over almost every point of A, we can view almost
all of VF as the graph on a function T : A → [0, 1]. Therefore we get the
following integral inequality:

∫

A

(

1 + |∇T |2
)1/2 ≤ C(n)d .

At a point x, ∇T = −∇xF (x, T (x))/∂tF (x, T (x)). We now give bounds
for ∇F . Let δ := ∥P −Q∥. The time derivative ∂tF (x, t) = −P (x)+ Q(x),
and so |∂tF (x, t)| ≤ C(d, n)δ. On the other hand, the space derivative
∇xF (x, t) is equal to (1 − t)∇P + t∇Q = ∇P + t∇(Q − P ). Now, the
coefficients of∇(Q−P ) are at most C(d, n)δ, and so |t∇(Q−P )| ≤ C(d, n)δ.
Therefore, |∇xF (x, t)−∇P (x)| ≤ C(d, n)δ. Plugging these bounds into our
last equation, we get the following:

∫

A
δ−1|∇P | ≤ C(d, n) .

Our next idea is to apply the previous lemma to control the volume of
the set where |∇P | is small. We have assumed that ∥P∥ = 1. As a corollary
of the last lemma, the oscillation of P is at least c(d, n). Therefore, the
maximum of |∂iP | must be at least c(d, n) for some i. We fix this choice of i.
Now ∂iP is a polynomial of degree d − 1 with norm ∥∂iP∥ ≥ c(d, n) > 0.
Applying the lemma, we conclude that the set where |∂iP | is at most δ1/2

has volume at most C(d, n)δ1/2dn. Using the last equation, we see that the
volume of A is at most C(d, n)δ1/2dn + C(d, n)δ1/2.

So far we have assumed that VF was non-singular and transverse to the
boundary. For each P , this assumption holds for almost every R, but it
may not hold for Q. Hence we bound the area-distance from P to almost
every R. Similarly, we bound the area-distance from Q to almost every R.
Now we may choose a polynomial R which is good for both P and Q and
with ∥P −R∥+ ∥R −Q∥ ≤ 2∥P −Q∥. !
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7 Appendix 1: The Standard Definition of Flat Cycles

In this appendix, we recall the standard definition of the space of flat cy-
cles. We check that it is equivalent to the definition given in section 1.
The standard definition is more complicated than the definition we gave in
section 1. The reason that the standard definition is worthwhile is that one
constructs not only a space of flat cycles but a chain complex of flat chains,
containing the flat cycles as a subset. In other contexts, especially in the
theory of minimal surfaces, one is interested in the whole chain complex,
but in this paper we were concerned only with the space of cycles.

As in section 1, we let Irel(k, n) denote the complex of relative, mod 2
Lipschitz k-chains in the unit n-ball. We define a distance function on this
space of k-chains as follows. We define the flat norm of a k-chain C to be
the infimum, over all (k + 1)-chains D of |D|+ |∂D−C|. We need to make
a remark about this formula in the context of relative chains. We view D
and C as relative chains, and so we also view ∂D − C as a relative chain,
and we measure its volume as a relative chain. For example, if C is the
line x = 0 in the unit disk and D is the relative 2-chain given by x ≥ 0
in the unit disk, then ∂D − C is zero and has volume zero. If we were
working with absolute chains instead of relative ones, then ∂D − C would
be a semicircle with volume π.

In the figure below, we illustrate the sum |D| + |∂D − C| for a 1-chain
C and a 2-chain D in the unit disk. The 1-chain C is shown in a solid
line. The 2-chain D is the region enclosed by C and by the dotted lines.
The volume of |∂D − C| is the sum of the lengths of the two dotted lines.
Because we are working with relative chains, it does not include the length
of the arc of the circle bordering D.

The flat distance between two chains C1 and C2 is defined to be the flat
norm of C1−C2. We say that C1 and C2 are equivalent if the flat distance
between them is zero. The set of equivalence classes of relative Lipschitz
chains is a metric space. We define the completion of this metric space to
be the space of relative flat k-chains in the unit n-ball, Irel,flat(k, n).

We say that a flat chain C has volume less than V if C is a limit of
relative Lipschitz chains Ci with volume less than V .

If C is a relative Lipschitz k-chain, then the flat norm of its bound-
ary is at most the flat norm of C. Suppose that |D| + |∂D − C| is close
to the flat norm of C. We use the k-chain C − ∂D to bound the flat
norm of ∂C. We get that the flat norm of the boundary of C is at most
|C − ∂D| + |∂(C − ∂D)− ∂C|. The second term is zero, and so the flat



Vol. 18, 2008 MINIMAX PROBLEMS AND STEENROD SQUARES 1981

Figure 9

C

D

norm of ∂C is at most |C − ∂D|, which is at most |C − ∂D| + |D|, which
is within ϵ of the flat norm of C. Therefore, the flat distance between ∂C1

and ∂C2 is at most the flat distance between C1 and C2. Therefore, the
boundary operation extends to a continuous map from Irel,flat(k + 1, n) to
Irel,flat(k, n).

Now we can define the space of flat cycles Zflat(k, n) to be the space
of cycles in the complex Irel,flat(k, n). We give Zflat(k, n) the subspace
topology inherited from Irel,flat(k, n).

The goal of this appendix is to check that the space Zflat(k, n) is exactly
the space Z(k, n) defined in section 1.

The main point here is that if C1 and C2 are two relative Lipschitz
k-cycles in the unit n-ball, then the flat distance between them is equal
to the area-distance between them. The area distance is the infimum over
all Lipschitz chains D with ∂D = C of |D|. On the other hand, the flat
distance is the infimum over all Lipschitz chains D of |D| + |∂D − C|. It
follows that the flat distance is at most the area distance. On the other
hand, suppose that D is any relative Lipschitz k-chain and that E is the
cone over C − ∂D with vertex at the origin. Then E is a relative Lipschitz
(k + 1)-chain with volume at most (k + 1)−1|∂D − C| ≤ |∂D − C|. Then
∂(D + E) = C and |D + E| ≤ |D|+ |∂D −C|. Therefore, the flat distance
is equal to the area distance.
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Now we can check that Z(k, n) is contained in Zflat(k, n). Certainly
each Lipschitz k-cycle is contained in Irel(k, n). Hence Z(k, n) is exactly
the subset of Zflat(k, n) which is given by limits of Lipschitz k-cycles.

We have one more point to check. If z is a cycle in Zflat(k, n), it is
not apriori clear that z can be written as a limit of Lipschitz k-cycles. By
definition, a cycle z ∈ Zflat(k, n) is a limit of relative Lipschitz chains Ci.
The fact that ∂z = 0 implies ∂Ci converges to zero in the flat topology, but
it doesn’t imply that ∂Ci = 0 for any finite i. For each Ci, we can choose a
k-chain Di so that |Di|+ |∂Di−∂Ci|→ 0. By the isoperimetric inequality,
we can find another k-chain Ei with ∂Ei = ∂Ci − ∂Di and with |Ei| → 0.
We let C̃i = Ci−Di−Ei. Each C̃i is a Lipschitz cycle. On the other hand,
the flat distance from C̃i to Ci is at most |Di| + |Ei| → 0. Therefore, C̃i

converges to z in the flat topology.

In summary, we have shown that Zflat(k, n) and Z(k, n) are the same
underlying set equipped with the same metric and hence the same topology.

8 Appendix 2: Integral Cycles

The minimax problem described in this paper makes equally good sense
for integral cycles in place of mod 2 cycles. The lower bounds in this paper
generalize to families of integral cycles. Using families of complex algebraic
cycles, we can prove matching upper bounds for some cohomology classes.
For most cohomology classes, however, there is a large gap between the
best upper and lower bounds that we can prove.

Let ZZ(k, n) denote the space of integral relative k-cycles in the unit
n-ball. For a cohomology class α in H∗(ZZ(k, n)), we define F(α) to be
the set of all families of integral cycles, F : P → ZZ(k, n), that detect the
cohomology class α in the sense that F ∗(α) is non-zero in H∗(P ). (This def-
inition makes sense for any choice of coefficients in the cohomology groups.)
Then we define the minimax volume V(α) by the following formula:

V(α) = inf
F∈F(α)

sup
C∈F

mass(C) .

Using the methods in section 1, we can construct a fundamental co-
homology class aZ(k, n) in Hn−k(ZZ(k, n), Z). We can then reduce this
class to either Hn−k(ZZ(k, n), Q) or Hn−k(ZZ(k, n), Z2). We denote these
cohomology classes a(k, n, Z), a(k, n, Q), and a(k, n, Z2).

All of the lower bounds in the paper apply without modification to the
space of integral cycles.
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Theorem 1A (Lower bounds). Let a(k, n) be short for any of the classes

a(k, n, Z), a(k, n, Q), or a(k, n, Z2). Then the following lower bound holds:

V(a(k, n)p) ≥ c(n)p
n−k

n .

Theorem 2A (Lower bounds). For each ϵ > 0, there is a constant

c(n, ϵ) > 0 so that the following estimate holds:

V(SqQ0
0 . . . Sq

Qn−k−1

n−k−1 a(k, n, Z2)) ≥ c(n, ϵ)
n−k−1
∏

i=0

(2− ϵ)
n−k−i

n−i
Qi .

Remark. If Almgren’s arguments apply to the space of flat cycles,
which they probably do, then ZZ(k, n) is weak homotopic to an Eilenberg–
Maclane space K(Z, n − k). The mod2 cohomology ring of K(Z, n − k)
was determined by Serre in [S]. It is a free algebra over Z2 generated by

SqQ1
1 . . . Sq

Qn−k−2

n−k−2 a(k, n, Z2).
We can prove some interesting upper bounds by using families of com-

plex algebraic cycles. These upper bounds are not completely rigorous,
because we haven’t checked that the families of algebraic cycles are con-
tinuous in the space ZZ(k, n). The continuity sounds true to me. Related
results are mentioned in [La1], for example.

Example 1. Suppose that n is even and that a(n − 2, n) is short for
any of the classes a(n − 2, n, Z), a(n − 2, n, Z2), or a(n − 2, n, Q). Then
V(a(n − 2, n)p) ≤ C(n)p2/n. This upper bound matches the lower bound
in Theorem 1A up to a constant factor.

Proof. We have n = 2m, and so we can view the unit ball Bn as the
unit ball in complex space Cm. We consider the family of complex hy-
persurfaces of degree at most d. This family is parametrized by CP Nm(d),
where Nm(d) ∼ dm. It detects the class a(n − 2, n)p for all p ≤ Nm(d).
Each complex hypersurface intersected with the unit n-ball has volume
at most C(n)d. Hence V(a(n − 2, n)p) ≤ C(n)d for p ≤ c(n)dm, and so
V(a(n− 2, n)p) ≤ C(n)p2/n. !

Example 2. Suppose that n is even. Then V(SqQ
s a(n − 2, n + s, Z2)) ≤

C(n)2
2
n

Q. According to Theorem 2A, this minimax volume is at least

c(n, ϵ)(2 − ϵ)
2
n

Q. Hence the upper and lower bounds match up to a factor
that grows sub-exponentially in Q.

Proof. The proof is essentially the same as in Example 5 of section 6. Let
F (1, 1) denote a family of 0-cycles in the unit 1-ball consisting of a single
point that moves from one end of the interval to the other. We can think
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of F (1, 1) as a family of integral 0-cycles that detects a(0, 1, Z) and also
a(0, 1, Z2). Take the product of F (1, 1)s with Example 1 above. !

For many other cases, there is a big gap between the best upper and
lower bounds. The simplest example concerns 1-cycles in the unit 3-ball.
Our best lower bound for V(a(1, 3, Z)p) is cp2/3. The only upper bound
that I know for V(a(1, 3, Z)p) is Cp, which we get by considering families
of p vertical lines.

9 Appendix 3: Minimax Volumes of Riemannian
Manifolds

Minimax volumes analogous to those we have studied can also be defined
using a Riemannian manifold (Mn, g) in place of the unit n-ball.

Let Z(k,M) denote the space of absolute mod 2 k-cycles in M . If M
has a boundary, then let Zrel(k,M) denote the space of relative mod 2 k-
cycles in (M, ∂M). The construction of the fundamental cohomology class
a(k, n) generalizes to the setting of manifolds. If M is a closed n-manifold,
then we get a fundamental cohomology class a(k,M) ∈ Hn−k(Z(k,M)).
If M is a compact n-manifold with boundary, then we get a fundamental
cohomology class a(k,M) ∈ Hn−k(Zrel(k,M)).

If α is any cohomology class in H∗(Z(k,M)), then we can define a
minimax volume associated to α. We let F(α) denote the set of all families
of cycles F : P → Z(k,M) that detect α. Then we define a minimax
volume V(M,g)(α) by the usual formula,

V(M,g)(α) = inf
F∈F(α)

sup
C∈F

Vol(C) .

We need the metric g in order to measure the volumes of k-cycles in M . For
a fixed choice of M and α, the minimax volume V(M,g)(α) is a function of g.
Roughly speaking, this function measures how large the manifold (M,g) is.
If g ≥ h, then it’s easy to check that V(M,g)(α) ≥ V(M,h)(α).

These minimax volumes can be used to control the geometry of degree 1
maps between Riemannian manifolds. If Φ : M → N is a Lipschitz map,
then it induces a map Zk(Φ) from Z(k,M) to Z(k,N) for every k. Similarly,
if Φ : (M, ∂M) → (N, ∂N) is a Lipschitz map of pairs, then it induces a
map Zk(Φ) from Zrel(k,M) to Zrel(k,N). In either case, the pullback
Zk(Φ)∗[a(k,N)] = (deg Φ)a(k,M). This equation follows directly from the
construction of a(k,M).

If Φ : M → N is a piecewise C1 map, then we say that the k-dilation
of Φ is at most Λ if Φ maps each k-dimensional submanifold of M with
volume V to an image with volume at most ΛV .
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Proposition 9.1. Suppose that Φ : (M,g) → (N,h) is a C1 map with

degree 1 mod2 and k-dilation Λ. Suppose that O denotes any natural

cohomology operation with mod 2 coefficients. In particular, O may denote

a cup power or any tower of Steenrod squares. Then the following inequality

holds:
ΛV(M,g)

(

Oa(k,M)
)

≥ V(N,h)

(

Oa(k,N)
)

.

Proof. For any δ > 0, let Fδ be a family of k-cycles in M that detects
Oa(k,M) with volume at most V(M,g)(Oa(k,M)) + δ. Then Φ(Fδ) is a
family of k-cycles in (N,h) that detects Oa(k,N) with volume at most
Λ[V(M,g)(Oa(k,M)) + δ]. !

This proposition gives a large number of lower bounds for the k-dilation
Λ of a degree 1 map from (M,g) to (N,h). If N has a boundary, then we
can formulate a slightly more general version of this proposition.

Proposition 9.2. Suppose that (Mn, g) is a compact n-manifold and that

(N,h) is a compact n-manifold with boundary. Suppose that U ⊂M is an

open set with a piecewise smooth boundary. Suppose that Φ : (U, ∂U) →
(N, ∂N) is a piecewise C1 map with degree 1 mod 2 and k-dilation Λ. Let

O be a cohomology operation. Then the following inequality holds:

ΛV(M,g)

(

Oa(k,M)
)

≥ V(N,h)

(

Oa(k,N)
)

.

Proof. For any δ > 0, let Fδ be a family of k-cycles in M that detects
Oa(k,M) with volume at most V(M,g)(Oa(k,M)) + δ. Let F̂δ be the re-

striction of this family to U . The family F̂δ detects Oa(k,U) with volume
at most V(M,g)(Oa(k,M)). Then Φ(F̂δ) is a family of k-cycles in (N,h)
that detects Oa(k,N) with volume at most Λ[V(M,g)(Oa(k,M)) + δ]. !

In my thesis [Gu2], I studied the k-dilation of degree 1 maps between
various sets in Euclidean space. The main theorem of the thesis is the
following.

Theorem ([Gu2], [Gu3]). Suppose that R and S are n-dimensional rect-

angles with dimensions R1 ≤ · · · ≤ Rn and S1 ≤ · · · ≤ Sn respectively.

Suppose that U ⊂ R is an open set with a piecewise C1 boundary and

that Φ : U → S is a degree 1 piecewise C1 map with k-dilation Λ. Let

Qi = Si/Ri. Then for each integer 0 ≤ j ≤ k and each number k+1 ≤ l ≤ n,

the following inequality holds:

Λ ≥ c(n)(Q1 . . . Qj)(Qj+1 . . . Ql)
k−j
l−j . (∗)

Conversely, for each pair of rectangles R,S, there is a set U ⊂ R
and a degree 1 map from U to S with k-dilation at most

C(n)maxj,l(Q1 . . . Qj)(Qj+1 . . . Ql)
k−j
l−j .
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When I began the work on the material in this paper, one of my moti-
vations was to find a new proof of (∗). According to the last proposition,
we have the following lower bounds for Λ:

Λ ≥ VS
(

Oa(k, S)
)

/VR
(

Oa(k,R)
)

.

Hence, if we could estimate the minimax volumes of a rectangle up to
a constant factor, we would get many lower bounds for Λ. We end with a
conjecture about the minimax volumes that would imply (∗).

Conjecture 9.3. For each k + 1 ≤ l ≤ n, the minimax volume

VR(SqQ
n−la(k,R)) is equal to the following expression up to a constant

factor C(n):

VR
(

SqQ
n−la(k,R)

)

∼ inf
0≤j≤k

R1 . . . Rj(Rj+1 . . . Rl)
k−j
l−j 2

l−k
l−j

Q.
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