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Abstract. We explore M. Gromov's counterexamples to systolic inequalities. Does the manifold 
S 2 × S 2 admit metrics of arbitrarily small volume such that every noncontractible surface inside it 
has at least unit area? This question is still open, but the answer is affirmative for its analogue in the 
case of S '~ × S n, n > 3. Our point of departure is M. Gromov's metric on S 1 x S 3, and more general 
examples, due to C. Pittet, of metrics on S ~ × S '~ with 'voluminous' homology. We take the metric 
product of these metrics with a sphere S '~- 1 of a suitable volume, and perform surgery to obtain the 
desired metrics on S '~ × S '~. 

Mathematics Subject Classifications (1991): 53C23 

O. Introduction 

In 1949 Loewner  proved that for any metric g on the 2-toms, one has 

area(g) 
sys (g) --- 5-' 

where the 1-systole sys l (g)  is defined to be the length of  the shortest noncontractible 
curve in g. 

Berger  ([3]) introduced the notion of  the k-systole of  an n-dimensional  Rie- 
mannian manifold ( V ~ , g )  in 1972. Here sysk(g) is the infimum of  volumes of  

k-dimensional  integer cycles representing nonzero homology classes (for k = 1, 
this gives the same definition as above, in the case of  abelian fundamental group). 

Loewner ' s  inequality leads one to consider an analogous inequality for the 
1-systole of  an n-dimensional  manifold, and an inequality for the middle-dimen- 
sional systole: 

A. vol~(g_______~) >__ positive constant, and 
sys~(g) 

B. 
vol2.(g) 
sys (g) - -  >_ positive constant. 

Gromov  ([10]) proved inequality A for n-dimensional  manifolds V admitting 
a map to a K(Tr, 1) space such that the induced homomorphism in n-dimensional  
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homology sends the fundamental class [V] to a nonzero class. For example, a 
negatively curved manifold trivially satisfies A, since in this case the 1-systole 
equals twice the injectivity radius r (cf. [6, p. 276]), and a ball of radius r has at 
least the Euclidean volume growth r n. However, the fact that the same manifold 
satisfies A when it is endowed with an arbitrary metric is highly nontrivial. The 
tools that Gromov uses to prove A include the coarea (i.e. Eilenberg's) inequality 
([5, p. 101]) and the isoperimetric inequality of Federer-Fleming ([7]). We will use 
the same tools in the construction of counterexamples to the middle-dimensional 
inequality B. Let z be a k-cycle in R N. 

In the simplest case, the coarea inequality can be stated as follows. L e t / / C  R N 
and let f ( x )  = dist(x, H) ,  where x E R N. Then 

/5 VOlk(z) _> VOlk_l(Z f3 f - l ( t ) ) d t .  

To state the isoperimetric inequality of Federer-Fleming, we introduce the 
notion of the filling volume of z. 

DEFINITION. The filling volume FillVol(z) is defined to be the infimum of 
volumes of (k + 1)-chains c C R N satisfying Oc = z. 

The isoperimetric inequality then asserts the existence of a constant C = C ( N )  
such that for every k-cycle z of R N one has 

FillVol(z) _< C(N)vo lk ( z )  (k+l)/k. 

Gromov's theorem combined with the work of Babenko ([1, p. 30]) gives a 
complete understanding of manifolds satisfying A. Meanwhile, recent examples 
of Gromov indicate that inequality B is probably false, whatever the underlying 
topological type. This paper is an effort to understand some of these examples 
obtained by surgery (sketched in [4, p. 302]). 

Note that inequality B becomes valid for S n x S n if one replaces the systole by 
the stable systole (cf. [12, p. 60]), which may be defined by taking the infimum, not 
over integer cycles, but over rational cycles representing integer homology classes. 
A necessary feature of the counterexamples is thus the different asymptotics of the 
systole and the stable systole. 

We construct counterexamples to the middle-dimensional isosystolic inequality 
B via counterexamples to the following intersystolic inequality involving systoles 
of dimension and codimension 1 of (S 1 x S n, 9): 

vol(g) 
sysl(g) sysn(g) 

> positive constant. ( .)  

THEOREM 1. The failure of the intersystolic inequality ( . )  implies the failure of  
the isosystolic inequality in middle dimension for S n × S '~, for all n >_ 3. 
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For odd-dimensional spheres, ( , )  fails even for homogeneous metrics, due to 
Gromov (cf. Section 1 and [4, p. 302]). B6rard Bergery and Katz ([2]) detect the 
failure of ( , )  for S ~ x S 2 by using NIL geometry, and Pittet ([14]) detects it for 
all n >_ 2 by using SOL geometry. Note that in all of these examples, it is the 
1-systole that is 'unstable' (i.e. the estimates for the 1-systole are false for the 
stable 1-systole). Combining the results of Pittet or Gromov with the theorem, we 
obtain the following corollary. 

COROLLARY 2. The manifold S ~ x S ~ for  all n >_ 3 admits metrics with 
arbitrarily small ratio vol/sys 2. Such metrics can be obtained by surgery on a 
product metric V x S ~-1. Here V is diffeomorphic to S 1 x S n and is endowed 
with metrics with vol/(sysl sysn) --+ 0, while S '~-1 is a round sphere of  volume 
sysn(V)/sys ffV). 

Note that no product metric on S n × S n can have such a property. Our construction 
does not work for n = 2 because we cannot control the 4-dimensional volume of 
the handle attached in order to pass from S 1 x S 2 x S 1 to S 2 X $2 (cf. 3.2). 

QUESTION 3. Does the manifold ~2 X S 2 admit metrics of  arbitrarily small 
volume such that every noncontractible surface inside it has at least unit area ? 

If the homotopy groups 7r~ vanish for i _< n - 1, then every noncontractible 
n-dimensional submanifold represents a nonzero homology class. Thus by renor- 
malizing the metric of Corollary 2 to unit n-systole, we can affirm that for n _> 3, 
the manifold S ~ / S ~ admits metrics of arbitrarily small volume such that every 
noncontractible n-dimensional submanifold has at least unit volume. 

We will describe suitable metrics on S ~ x S ~ and look for lower bounds for 
their n-systole. The geometric ingredients in the proof of the lower bound are 
the coarea inequality, the isoperimetric inequality of Federer-Fleming, and the 
technique of calibration (cf. section 1). The topological ingredients in our proof 
are the excision homomorphism and the homological invariance of the Lefschetz 
transverse intersection of cycles (cf. [12] and [8]). 

More precisely, we find a lower bound for the n-volume of the 'unstable' class 
S 1 x S n-1 in V × S n-1 by integration, using the coarea inequality. The key here 
is that the 1-cycle obtained by transverse intersection of cycles is homological- 
ly invariant and hence, under suitable conditions, represents a nonzero class in 
H I ( S  1 x S ~ x 5~-1).  After performing the surgery to go from V x S ~-1 to 
S n × S n, we encounter the difficulty of estimating the 'unstable' class in S ~ x S ~. 
This is done by imitating the argument with the coarea inequality. To obtain a 
homological interpretation of a suitable 1-dimensional class in the context of the 
(simply connected!) manifold S n x S n, we resort to relative homology. 

In Section 1, we describe metrics gR on S 1 x S 3 satisfying 

vol(gR) ~ 0  a s R ~ e ~ .  
sysl (gn) sys3 (gR) 
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These are Gromov's 'parallelogram' metrics on S 1 X S 3. In Section 2, we exhibit 
the failure of the middle-dimensional isosystolic inequality for the metric product 
V × S~adiusn-1 for an (n -- 1)-sphere of a suitable radius, where the manifold V, 
diffeomorphic to S 1 × S '~, disobeys the (1, n)-intersystolic inequality (e.g. the 
parallelogram metrics). In Section 3, we perform a metric surgery on V × S •-1 to 
obtain suitable metrics on S n x S n and prove Corollary 2, modulo the control of 
the 'unstable' class. The latter is obtained in Section 4, which explains the use of 
relative homology. 

1. Two Descriptions of the Paral lelogram Metric 

We construct a metric 9R on S 1 X S 3 as the quotient of the product metric R × S 3, 
where S 3 is the round sphere of radius R, by a suitable covering transformation T 
(cf. [4, p. 302]). Here T acts on a point (x, z) E R × S 3 by 

where S 3 is viewed as a sphere of radius R in C 2. One can think of T as a 
'translation' of  R × S 3 by (1 /R ,  1). Here we write '1' for the second component 
because a point of the Hopf fiber is displaced a unit geodesic distance by T (the 
fiber is rotated byan  angle which is the reciprocal of the radius of the 3-sphere). 

There is an alternative description of this metric in terms of the matrix of metric 
coefficients. Let (el,  e2, e3, e4) be a basis of  the tangent space at a E S 1 × S 3 
satisfying the following properties: 

(i) the ei are orthonormal with respect to the standard metric (i.e. the metric 
product of  unit spheres); 

(ii) e I is tangent to S1; 

(iii) e2 is tangent to the Hopf fiber of S 3 passing through the point a. 

The inner products of these vectors with respect to the new metric gR are 
given by the following matrix, which we will denote the same way by abuse of 
notation: 

gR ----- 

1 R 0 0 
R I + R  2 0 0 
0 0 I + R  2 0 
0 0 0 I + R  2 

i.e. by the quadratic form x 2 + 2 R x ,  x2 +(1  + R2)(x 2 + x 2 + x42). Here we took the 

radius of S 3 to be ~ + R e instead of R to simplify the nondiagonal coefficient. 
Note that if R is an integer then the Hopf fiber becomes the (1, R)-curve on the 
'unit square' toms spanned by the fiber and S 1. 
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With respect to the new metric, the vectors e 1 and e2 form a highly deformed 
parallelogram. For this reason we will refer to gR as the parallelogram metric. 

LEMMA 1.1. The volume ofgn grows as R 2, while sys 1 ,,~ 1 and sys 3 ~ R 3. 
Proof The 1-systole equals the minimum distance between two distinct points 

of an orbit {Tk(b)}, where b 6 R × S~. If k _> R then the R-component of b 
increases by at least 1. If 1 < k < R then the S3-component is at least a unit 
distance away from the starting point, having not had time to complete a circle. 
Note that the stable 1-systole is O(1/R) since dist(b, T[R](b)) = 0(1) .  

To estimate the 3-systole, we use a calibration argument (cf. [11, p. 38]). Let 
be the 3-form on R × S 3 obtained as the pull-back of the volume form of S 3 by the 
projection to the second factor. Then ~ is invariant by the covering translation T, 
closed, and has norm 1. Note that the latter condition fails if we pull back by any 
projection to the second factor of (S 1 × S 3 , 9R). This can be explained heuristically 
by saying that the 'slanted' S 1 is not in the kernel of~o, but R is. Let z be a 3-cycle 
in S 1 × S 3 representing a nonzero class k[S 3] 6 H3(S 1 × S 3) = Z. Then by 
Cauchy-Schwarz and Stokes, 

fz fS w~R3"  v o l ( z )  >_ = Ikt 3 

2. Middle-Dimensional Isosystolic Inequality 

We explain how the failure of the (1, n)-intersystolic inequality for S j × S ~ implies 
the failure of the middle-dimensional isosystolic inequality for S 1 × S n × S n-1. 
Let 

W ~- (S 1 × S n , g R )  where vol(gn) ~ 0 as R ~ oo. 
sysl (gR) sysr~(gR) 

Let 90 be a fixed metric of unit volume on S n-1 , and let Ago be a metric of 
volume 

v o l ( A g o ) -  sysn(V) 
sysl (V ) " 

For example, for the metric gR of Section 1 we choose A(R) = R 3 so that 
area(S 2, Ago) ,'~ R 3. 

PROPOSITION 2.1. The metric product M = V × ( S n-1  , Ago) satisfies 

volz,~(M) ~ 0 as R ~ oo. 
sys2(M)  
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Proof. We have 

vol (M)  = vol(V) vol(Ag0) = vol(V) sysn(V ) 
sysl(V) 

If z represents a class in H~( M)  = H,~( S 1 x S ~ x S ~-1) = Z x Z with a nonzero 
[S '~] component, then the projection of z to V gives a cycle nonhomologous to 0, 
and is distance-decreasing. Hence vol(z) _> sysn(V), and 

vol2~(M) < vol2n(M) voln+l(V) -+ 0. 
vol2(z) - sys2(V) - sys l (V)sysn(V ) 

The lower bound on the volume of an n-cycle representing [S 1 x S ~- 1 ] E H~ ( S 1 x 
S n x S n-  1) is obtained using the Lefschetz transverse intersection of cycles and 
the coarea inequality. More precisely, the set-theoretic formula 

(S  1 X S n X {pt}) n (S  1 x {pt} x S n-l)  = S 1 x {pt} x {pt} 

makes sense at the homological level. Given a (n + 1)-cycle Cn+l E [S 1 x S n] E 
H~+I(M), and an n-cycle C~ E [S 1 x S n-l]  E I tn(M),  we will have, under the 
hypothesis of transversality, 

Cn+ 1 CI Cn E [S 1] E H,(M), 

since Lefschetz's transverse intersection of cycles ([8]) is dual to the cup product 
in cohomology, so that the class of the intersection is independent of the choice of 
the cycles C,~ and C~+1. 

In particular, the length of Cn+1 n C,~ is greater than or equal to sys l (M)  = 
sys 1 (V). Let p : M --+ S n-  1 be the projection to the second factor. The intersection 
C,~ fq p -  1 (x) is transverse for a set of x E S '~- 1 of full measure by Sard's theorem. 
Hence on this set, it represents a nonzero multiple of the class [S 1] and so has 
length bounded below by sysl(V). Since the metric is a product, we apply the 
coarea inequality to find 

vol(C~) >_ f length(Cn f) p - l ( x ) )  dx 
s( Sn--1 ,/~gO) 

_> f sysl(V ) dx = sysn(V ). 
s( S n -1  ,AGO) 

This proves the volume bound for cycles representing [S 1 x Sn-1]. The argument 
is similar for any class proportional to [S 1 x S~-1]. 

3. T h e  M e t r i c  o n  s n x s n 

Let M = V x S n - l ,  with the metric of Proposition 2.1, where V = S 1 x S ~. 
We would like to control the n-systole of M after the surgery replacing it by 
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M '  = o c'~ x S ~. Recall that the standard surgery along S 1 in S 1 x S n -1  produces 
S '~ (cf. [9, p. 33]). We denote by C the n-sphere obtained by surgery on S 1 × S ~-1 , 
to distinguish it from S n, and write M'  = S'* x C. 

We fill the S~-factor in an S~-equivariant way, i.e. we attach an (n + 2)- 
dimensional blob B 2 × 5 :r~ to M, by glueing its boundary O(B 2 × S n) = V to a 
fixed V C M. We thicken the blob to obtain the simplicial complex 

P = M U ( B  2 x S '~ x B~-I ) .  (3.1) 

Here B~-  1 C S n-  1 is a small ball, and the attaching map e~ is the identity map of 
V x B~-  1. Then M '  can be thought of as the boundary of P. 

We need a lower bound, after surgery, for the volume of a cycle representing 
the class [S ~] E I t n ( M ' )  = Z x Z (or, more generally, a class with a nonzero 
[S n]-component). The case of [C] will be treated in the next section. 

The idea is to endow the disc B 2, which fills S 1, with the metric of a long cone. 
If the cycle runs along the whole length of the cone, then the coarea inequality will 
produce a narrow place where we can cut the cycle into two pieces. The cut can 
be filled using an isoperimetric inequality. Thus the cycle splits into the sum of 
two cycles. One of them lies entirely in the family of cones, and the other can be 
pushed out of the cones. In both cases the volume can be bounded from below by 
an easy projection argument. 

More precisely, let L > 0 and let 

B 2 = (S 1 X [0, L])UP,,  

where the 'cap' Y, (a disc with a fixed metric) is attached to the cylinder S 1 x [0, L] 
along the boundary component S 1 x {L}, while OB = S 1 x {0}. 

Note that prior to performing the surgery, we deform the metric on M near V so 
it becomes a product in an e-neighborhood U~ = S l x S n x B~-  1 of V. We perform 
the deformation without decreasing the metric of M, and so that length(S 1) > 2 
and vol(S n) > 2 (cf. Remark 3.5). We obtain M'  by attaching a handle 

I t  = B 2 × S n x S n-2 

to M \ Ue along the identity map on the boundary OH = S 1 x S n X S ~  - 2 = 0 Ue. 

PROPOSITION 3.2. Let n >_ 3. Then the manifold m '  = (M\U~)  U H has the 
following four  properties: 

(i) i f  e is sufficiently small, then vol(M')  _< 2 vol(M); 
(ii) the handle H admits a distance-decreasing projection to its factor S ~, whose 

volume is at least sysn(V); 
(iii) i f  we remove the cap P, from B 2, leaving the long cylinder, the remaining part 

o f  the handle H admits a distance-decreasing retraction to M;  
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(iv) both (ii) and (iii) remain true i f  M '  is replaced by the polyhedron P, i.e. if11 
is replaced by B 2 × S n × B~ -1. 

Proof  To prove (i), note that the volume of the handle 11 

vol (H)  = vol( B 2 ) vol( S n ) vol(S~ -2) ~ L length(S 1 ) vol( S~)e n-2 

can be made arbitrarily small provided n > 3. The dimension restriction is due 
to the fact that the blob B 2 × S n must have smaller dimension than M to avoid 
increasing its volume. The remaining parts of the proposition are immediate from 
the construction. 

PROPOSITION 3.3. Let M = V ×( S n-l,/~ffo) where A(n-1)/2 = sys~(V) /sys l (V) .  
We perform the surgery replacing M by M '  = ( M \ U , )  U 11, diffeomorphic to 
S ~ x C, where C is diffeomorphic to the n-sphere. Let z be an n-cycle in M r 
representing a class with a nonzero [ Sn]-component. Then vol(z) _> -12 sysn(V ). 

Proof  We first consider the following two cases. 

(a) The cycle z stays away from the caps E C B 2. Then it can be pushed off 
the handle back into M without increasing its volume. Once in M,  it projects 
to an n-cycle in V of smaller volume, which is not homologous to 0 by the 
hypothesis of the proposition. 

(b) The cycle z is contained entirely within the handle 11. Then z projects to the 
S '~ factor with nonzero degree and by a distance-decreasing map. 

In either case, we get the lower bound of sys,~(V) for the volume of z in view 
of Proposition 3.2(ii) and (iii). 

Now let z be an arbitrary cycle in M ~, and suppose vol(z) < ½sys,~(V). Let f 
be the distance to M \ U ,  C M~: 

f "  M r ~ R, f ( z )  = dist(z, M\U~).  

If the cylinder is long enough, e.g. L _> sysn(V ), then the coarea inequality 
produces a slice z rq f - l ( t )  of small area: 

area(z n S - l ( t ) )  < 1. 

Note that f - 1  (t) = S 1 × S ~ × S~ -2 where by construction length(S 1) > 2 (S 1 is 
the cross-section of the cylinder portion of B 2) and vol(S n) > 2. We now consider 
the intersection z N  f - l ( t )  as an (n - 1)-cycle in the polyhedron P of (3.1). We 
apply the isoperimetric inequality of Lemma 3.7 below to S 1 × ,_,On × Bn-1  C p ,  

and conclude that the ( n -  1 )-cycle z n f - l ( t )  can be filled in P by an n-chain c~ of 
small volume. Note that the lemma does not apply directly in M r, since the factor 
S~ -2 of f - l ( t )  is too small to satisfy the hypotheses of the lemma. Moreover, 
different connected components o f  z n f - 1  (t) may not even be homologous to 0 
in H n _ l ( S  1 × S n × S n-2) = Z. 
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Let zt = z n f - l ( [o ,  t]). If the cycle zt + ct represents a nonzero homology class 
in P ,  then vol(zt + ct) > sysn(V) by (a) and Proposition 3.2(iv). Therefore 

vol(z) > vol(zt) > sysn(V ) - vol(ct) "~ SySn(V), (3.4) 

contradicting the initial assumption vol(z) < lsys~(V).  Otherwise we apply (b) 
to the cycle z - zt - ct. 

Remark 3.5. Let us make explicit the parameter e in the case of the parallelogram 
metric gR of Section 1. We choose a metric on S 1 × S 3 x 8 2 which is bigger than 
the original metric of M,  as follows. Let h be a product metric on V = S 1 x S 3 
which is bigger than gR. Define a function ¢ so that ¢(p) = i if p < e and ¢(p) = 0 
if p > 2e. We define a new metric on M = V x S 2 by the formula 

¢(p)h  + (1 - ¢(p))g + dp 2 + a2(p)dO 2 

where p(x) = dist(x, 81 )< 8 3) is defined by the radial distance from a fixed point 
b E S 2, p E [0, 7rR3/2], while 0 is the polar angle, and a(p) = R 3/2 sin(p/R3/2). 

Take the length of the 'long cylinder' to be L = R 3. If the cycle z has volume 
o(R 3) then for some t we will have area(z f3 f - l ( t ) )  = o(1) and hence vol(ct) ,- 
o(1) by Lemma 3.7, and the calculation (3.4) applies. Let hR be the metric on 
S 1 × 8 3 defined as the product of a circle of radius x/~ and a 3-sphere of radius 

2R 2, i.e. 

hR = Diag(2, 1 + 2R 2, 1 + 2R 2, 1 q- 2R 2) 

in terms of the basis described in Section 1. Then hR >_ gR since 2x2+ ( l+2RZ)y  2 -  
(x 2 + (1 + R2)y 2 + 2Rxy)  = (x - Ry)  2 > O. Note that VOI(S 1 × $3~ hR) grows 
as R 3. Thus the handle H = B 2 x S 3 x S~ has vol(H) -,, LR3s = eR 6. Since 
vol(M) ~ R 5, it suffices to choose c = o(R -1) to justify the assertion (i) of 
Proposition 3.2. 

DEFINITION 3.6. We say that V satisfies the isoperimetric inequality for small 
k-cycles if there exists a constant C > 0 such that for every k-cycle z ofvol(z)  < 1 
one has 

FiUVol(z) _< C vol(z) (k+l)/k. 

LEMMA 3.7. A metric product of  spheres o f  volumes at least 2 satisfies the 
isoperimetric inequality for small cycles. This conclusion remains true if  we further 
multiply by a convex Euclidian domain. 

Proof. Let S '~ be the unit sphere and let V = R p. We first prove the isoperimetric 
inequality for small cycles in V x S n. Note that z is homologous to 0 by the volume 
assumption, even if k = n. Similarly, if k = 1, the 1-cycle z can be filled by 
'coning'  each connected component from any point in this component. 
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The proof is by induction on n. Let St be the distance sphere of radius t in S n, 
0 < t < 7r. By the coarea inequality, there exists a t such that volk_ 1 (z f3 (V x St ) ) < 
1, where t E [Tr/2 - ½, 7r/2 -t- ½]. Then the (n - 1)-sphere St has radius bigger than 

cos(½). We apply the inductive hypothesis to V x St and conclude that there exists 
a chain c in V x St such that z Cl (V x St) = 0e and whose volume is bounded by 
the isoperimetric inequality. 

We decompose z as the sum z = Zl + z2 where Zl = zt + c and z2 = z - zl. 
Then zi, i = 1, 2 lie in the (closures of)the connected components of V x (Sn \S t ) .  
But the components of S n \ S t  are spherical caps which are Bilipschitz equivalent 
to the unit ball B C R ~. We are thus reduced to the isoperimetric inequality in 
W x B C R p+n. Applying the Federer-Fleming inequality in R p+n we obtain a 
suitable chain in R p+n. But R n admits a distance-decreasing retraction to B. (Note 
that the same retraction takes care of the extra convex factor of the lemma.) This 
produces the desired chain in V x B and proves the isoperimetric inequality for 
small cycles in R p x S '~. 

To prove this for S p x S n, we exchange the factors and apply the previous 
argument to V × S p where V = S '~. 

4. Bounding the Unstable Class 

Denote by C the n-sphere obtained by surgery on S 1 x S n-  1. In the previous section 
we described a metric surgery to go from S 1 x S '~ x S n-1 to S '~ x C. So far we have 
found lower bounds for volumes of cycles representing classes with nonzero [S ~]- 
component in H ~ ( S  n x C).  Note that the argument of Section 3 actually estimates 
the mass of such classes (i.e. 'stable' volume defined as the infimum over rational 
cycles representing them), provided the estimate on sys~(V) = sys,~(S 1 x S n) is 
stable. This cannot be done for [C] since the stable isosystolic inequality is true. 
Thus the proof given below necessarily relies upon the unstable estimate of the 
1-systole (cf. Lemma 1.1). 

The proof becomes more readable when generalized as follows. Let A x B be 
the metric product of two compact Riemannian manifolds, while A = A1 x A2 is 
a topological product, let k = dimA1 and assume 

dimA1 + dimB = dimA2 = n. 

LEMMA 4.2. Suppose H n ( A  x B)  is generated by [A2] and [A1 x B]. Then for  
any metric on A, one has 

sys~(A x B)  = min{sysk(A ) voln-k(B) ,  sys~(A)}. 

Proof. This is a reformulation of Proposition 2.1. 

Assume that A1 bounds a (k + 1)-manifold E, and denote by C the result of 
applying the standard surgery to A1 x B along an A1 C A1 x B. Let B~ C B be 
a small ball centered at b E B. 
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LEMMA 4.3. In A X B, we perform a surgery along A x {b} (inside A X B~ ) by 
attaching a handle ~ x A2 x OBe, to obtain A2 x C. Consider a cycle z representing 
a nonzero multiple of[C] E Hn(A2 x C). Then 

vol(z) >_ ½ sysk(A) vol~_k(B ). 

Proof. Let p: A x B ~ B be the projection to the second factor. By the coarea 
inequality, 

vol(z) > /B v°l(z f ' lP- l (z ) )  dx" 

We need a homological interpretation of z f-I p - t ( x ) ,  where z ~( B~, as a nontrivial 
representative of a class in I I k (p - l ( z ) )  = //k(A),  in order to find lower bounds 
for volume as before. Let U~ = A x Be. Let X = (A x B)\U~ and Y - OUr. The 
cup product in cohomology 

t t ~ - k ( X , Y )  x H~(X)- -+ / /2 '~ -~ (X ,Y)  

is dual to the product in homology defined at the level of cycles by transverse 
intersection 

x n (x,r) - .  n k ( x ) ,  (4.4) 

which provides a homological interpretation for the transverse intersection A - 
(A1 × B)  = A1. Here we view At x B as a relative class in I t ~ ( X , Y )  = 
H~(A  × B,  U~) (excision). Note that the isomorphism can be realized at the level 
of cycles without deforming the cycle representing [A1 x B] outside a small 
neighborhood of U~. Since we have excluded b~ from the picture, (4.4) is also a 
homological interpretation of  A • C = A1. 
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