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Abstract. We prove an inequality conjectured by Larry Guth that relates the
m-dimensional Hausdor↵ content of a compact metric space with its (m � 1)-
dimensional Urysohn width.

As a corollary, we obtain new systolic inequalities that both strengthen the clas-
sical Gromov’s systolic inequality for essential Riemannian manifolds and extend
this inequality to a wider class of non-simply connected manifolds.

The paper also contains a new version of isoperimetric inequality (Theorem 6.2).
It asserts that for every positive integer m, Banach space B, compact subset X
of B, and a closed subset Y of X there is a filling of Y by a continuous image
of X with the (m + 1)-dimensional Hausdor↵ content bounded in terms of the
m-dimensional Hausdor↵ content of Y .

1. Introduction

1.1. Main result. A metric space X is called boundedly compact, if each closed
metric ball in X is compact or, equivalently, each closed and bounded subset of X
is compact. The m-dimensional Hausdor↵ content HCm(U) of U , U ⇢ X, is the
infimum of

P
i r

m
i among all coverings of U by countably many balls B(xi, ri) in X.

We say that X has q-dimensional Urysohn width  W if there is a q-dimensional
simplicial complex K and a continuous map ⇡ : X ! K so that every fiber ⇡�1(s)
has diameter  W in X.

In this paper we answer a question of L. Guth, relating Hausdor↵ content and
Urysohn width of metric spaces [Gu17, Question 5.2].

Theorem 1.1. For each positive integer m there exists "0m > 0, such that the fol-
lowing holds. If X is a boundedly compact metric space and there exists a radius R,
such that every ball of radius R in X has m-dimensional Hausdor↵ content less than
"
0
mR

m, then UWm�1(X)  R. Here one can take "0m = (1020 m)�m2
.

Intuitively, the Urysohn width UWm�1(X) measures how well metric space X

can be approximated by an (m� 1)-dimensional space. The definition of Hausdor↵
content looks similar to the definition of Hausdor↵measure, except that for Hausdor↵
content we do not take the limit over all coverings with the maximal radius of the
ball in the covering tending to 0. In particular, the m-dimensional Hausdor↵ content
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Figure 1. Surface ⌃ is a connected sum of a thin long torus and many
copies of a surface of very large area and very small diameter. The area
of every metric ball of radius 1 in ⌃ is large, but 2-dimensional Haus-
dor↵ content is small. By Theorem 1.1 the Urysohn width UW1(⌃) is
also small.

of a set U is always less than or equal to the m-dimensional Hausdor↵ measure of U .
When the Hausdor↵ dimension of a compact metric space U is greater than m the
m-dimensional Hausdor↵ measure is infinite, but HCm(U) is always finite and can
be very small.
Theorem 1.1 generalizes a result of Guth in [Gu17], where X is assumed to be an

m-dimensional Riemannian manifold, and HCm replaced by the volume. This result
has been previously conjectured by M. Gromov, and for a long time had been an open
problem. Guth’s proof is based on a clever construction of a covering by balls with
controlled overlap from his previous paper [Gu11] and also uses S. Wenger’s simplified
version ([W]) of Gromov’s proof of J.Michael-L.Simon isoperimetric inequality and
its generalizations ([Gr]).

If X is compact, then choosing R = HCm(X)

"0m

1
m and denoting 1

("0m)
1
m

as c(m) we

obtain:

Theorem 1.2. For each m there exists a constant c(m) such that each compact
metric space X satisfies the inequality

UWm�1(X)  c(m) HC
1
m
m (X).

Here one can take c(m) = (1020m)m.

As observed by Guth in [Gu17] Theorem 1.2 can be viewed as a quantitative version
of the classical Szpilrajn theorem asserting that each compact metric space with
zero m-dimensional Hausdor↵ measure has Lebesgue covering dimension  m � 1.
Indeed, if the m-dimensional Hausdor↵ measure of X is equal to zero, then, as HCm

does not exceed the m-dimensional Hausdor↵ measure, HCm(X) also must be equal
to zero. Now Theorem 1.2 implies that UWm�1(X) = 0, which implies that the
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covering dimension of X is at most m � 1 (see the proof of Lemma 0.8 in [Gu17]).
Also, note that if X is a closed m-dimensional Riemannian manifold, then Theorem
1.2 improves the well-known Gromov’s inequality relating the volume of a closed
Riemannian manifold and its filling radius (as the filling radius does not exceed
1

2
UWm�1 -see [Gr], pp. 128-129, where UWm�1 is denoted as Diam

0
m�1

).

1.2. New systolic inequalities. We observed that Theorem 1.2 has the following
corollary.

Definition 1.3. A CW-complex X is m-essential if there exists a coe�cient group
G such that one of the homomorphisms Q⇤i : Hi(Mn;G) �! Hi(K(⇡1(Mn), 1)) for
some i � m, induced by the classifying map Q : X �! K(⇡1(X), 1) is non-trivial
(that is, has a non-zero image). X is m-“essential” if Q is not homotopic to a map
that factors through a map to am (m� 1)-dimensional CW -complex.

Of course, n-essential closed n-dimensional manifolds are exactly the essential
manifolds as defined in [Gr]. The definition of m-“essential” CW-complexes gener-
alizes the definition of “essential” polyhedra on p. 139 of [Gr]. Obviously, if X is
m-essential, then X is also m-“essential”. Therefore, one can regard m-essentiality
as a su�cient condition of m-“essentiality”.

Recall that a metric is called a length metric, if the distance between each pair
of points is equal to the infimum of lengths of paths connecting these points, and a
metric space such that its metric is a length metric is called a length space. Also,
recall that if X is a non-simply connected length space, then sys1(X) denotes the
infimum of lengths of non-contractible closed curves in X.

Theorem 1.4. For each positive integer m there exist a constant c(m) with the
following property. Let X be an m-essential, or more generally, an m-“essential”
finite CW-complex endowed with a length metric. Then

sys1(X)  C(m) HC
1
m
m (X). (⇤)

Here one can take C(m) = (1020m)m.

Remarks. 1. Compactm-essential Riemannian manifolds with or without boundary
of dimension n � m constitute the most obvious example of path metric spaces
satisfying the conditions of the theorem.
2. If m is the dimension of X, then this inequality improves Theorem B

0
1
on p.

139 of [Gr] (as HCn(X)  Vn(1)vol(X)). When X is a closed m-dimensional Rie-
mannian manifold, this inequality is the strengthening of the famous Gromov systolic
inequality sys1(Mn)  c(n)vol

1
n (Mn).

3. Observe that if k < m then HC

1
k
k (X) � HC

1
m
m (X), (see Lemma 1.6 below).

Therefore, disregarding the constants c(m), these inequalities become stronger as m
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increases. On the other hand, the assumption that X is m-essential also becomes
stronger when m increases.
4. Note that our estimate for C(m) grows as (Cm)m which is the same as in Wenger’s
version of the systolic inequality ([W]) (albeit with a much worse estimate for the
constant C than in Wenger’s paper), and is somewhat better than Gromov’s (Cn

3
2 )n.

Whenever we wanted to obtain a specific value for the constant C, we did not try to
optimize it. It is not di�cult to see that our C = 1020 can be significantly improved
even staying within the framework of our approach.
We are going to prove this theorem in section 8. The proof combines the ideas

from [Gr] with our main theorem.
Examples. 1. If Em is an essential closed manifold (in the sense of [Gr]), then any

product Em ⇥ N
n�m with a closed manifold, or a connected sum E

m ⇥ N
n�m
1

#N
n
2

is m-essential and satisfies the systolic inequality from the previous theorem. For
example, if M8 is a Riemannian manifold di↵eomorphic to T

3 ⇥ S
5#S

4 ⇥ S
4, then

sys1(M8)  c(3)HC3(M8)
1
3 .

2. The classical Hopf’s theorem implies that if a closed Riemannian manifold M
n

has a homology class in H2(Mn) that is not spherical (i.e. not in the image of the
Hurewicz homomorphism ⇡2(Mn) �! H2(Mn)), then M

n is 2-essential. Therefore,
sys1(Mn)  c(2)

p
HC2(Mn). Similarly, if a closed Riemannian manifoldM

n satisfies
⇡i(Mn) = 0 for all i 2 {2, . . . ,m�1} and there exists a non-spherical m-dimensional
homology class of Mn, then M

n is m-essential and satisfies the systolic inequality
(*).
The inequalities (*) can be restated as the assertion that there exists a constant

b(m) > 0 such that if HCm(X)  b(m) for an m-essential X, then sys1(X) 
1. Of course, our main theorem implies more, namely, that the assumption about
the Hausdor↵ content of the whole manifold can be replaced by the assumption
about all metric balls of radius 1: Also, as Theorem 1.1 holds also for boundedly
compact metric spaces, the previous theorem can be immediately generalized for
locally finite CW-complexes. In particular, it holds for m-essential complete non-
compact Riemannian manifolds with or without boundary.

Theorem 1.5. Let X be an m-“essential” boundedly compact length space homeo-
morphic to a CW-complex, where m � 2. If for some R > 0 for each metric ball B of
radius R in X HCm(B)  b(m)Rm, then sys1(X)  R, where b(m) = (1020m)�m2

.

Example. Consider a complete Riemannian T
2 ⇥RN . If HC2 of each metric ball

of radius 1 does not exceed b(2), then there exists a non-contractible closed curve of
length  1.
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FILLING METRIC SPACES 5

1.3. Hausdor↵ content: basic properties and some examples. The following
properties of the Hausdor↵ content for compact metric spaces immediately follow
from the definition:

1. Subadditivity. HCm(
S

i Ai) 
P

i HCm(Ai).
2. Good behaviour under Lipschitz maps. If f : X �! Z is a L-Lipschitz map,

and Y ⇢ X, then HCm(f(Y ))  L
m HCm(Y ).

Applying this to the inclusion map of Y into X (which is, obviously, 1-Lipschtiz
we obtain:

3. Monotonicity. If Y ⇢ X, then HCm(Y )  HCm(X).
4. Rescaling. If A is a subset of a Banach space, and � is a scalar, then HCm(�A) =

|�|m HCm(A).
5. For each m HCm(X)  rad

m(X)  diam
m(X).

Indeed, a compact metric space X can always be covered by one metric ball of
radius diam(X).

6.

Lemma 1.6. If m > k then HC
1
k
k (X) � HC

1
m
m (X).

Indeed, choose a finite covering of X by metric balls with radii ri so that
P

i r
k
i 

HCk(X) + " for an arbitrarily small ". Now
P

i r
m
i =

P
i(r

k
i )

m
k  (

P
i r

k
i )

m
k 

(HCk(X) + ")
m
k . Now the desired inequality follows when we take " �! 0.

7. Consider the Euclidean 2-ball B of radius 1. We already know that its HC1

cannot exceed 1, but, in fact, it is equal to 1, as the sum of radii of any collection of
balls covering a diameter of B (that has length 2) should be at least 1.

8. HCm is not additive. Indeed, cut the ball B in the previous examples into
two halves H1, H2 along a diameter. Note, that HC1(Hi) is still equal to one. So,
when we remove one of these halves, the values of HC1 does not decrease. Moreover,
if we will take the union of the remaining half with a metric ball of arbitrarily small
radius centered at one of two points of the diameter, the value of HC1 of the union
will, in fact, become greater than 1. This example illustrates di�culties that one can
encounter trying to make the value of HCm of a metric space smaller by cutting out
its subsets and replacing them by subsets with a smaller value of HCm.

9. Let BK be a two-dimensional metric ball of radius 1 in the hyperbolic space with
constant negative curvatureK << �1. The area of BK behaves as exp(

p
�K) >> 1,

yet HC2(Bk)  1 << vol(Bk), as BK can be covered by just one metric ball of radius
1. It is obvious that HC2(BK) = 1, and that if we will cut a concentric metric ball
of a small radius " out of BK , the value of HC2 will not change. (This is another
example of non-additivity of HCm, this time in the situation when m = dim(X).)

10.
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6 LIOKUMOVICH, LISHAK, NABUTOVSKY, ROTMAN

Lemma 1.7. Consider the unit cube C = [0, 1]n in l
n
1 (which is the n-dimensional

linear space endowed with the max-norm). For each m  n HCm(C) = 1

2m
.

Indeed, observe that the cube is the metric ball of radius 1

2
centered at (1

2
, . . . ,

1

2
),

and so HCm(C)  1

2

m
.

To prove the opposite inequality consider a covering of C by metric balls with radii
ri so that

P
i r

m
i  HCm(C)+ " for an arbitrarily small ". Observe that these metric

balls are cubes with side length 2ri. As the Lebesgue measure of their union cannot
be less than the Lebesgue measure of C, we conclude that

P
i(2ri)

n � 1, whence
1

2n


P
i(r

m
i )

n
m  (

P
i r

m
i )

n
m  (HCm(C)+")

n
m . When " �! 0, we obtain the desired

inequality.

Corollary 1.8. If P = [0, r1] ⇥ . . . ⇥ [0, rn], is an n-dimensional parallelepiped in
l
n
1, where r1  . . .  rn, and m  n, then HCm(P ) � ( r1

2
)m.

Indeed, by monotonicity, HCm(P ) is not less than HCm of the n-cube C ⇢ P with
side length r1, for which we have HCm(C) = ( r1

2
)m.

1.4. Some ideas of the proof of Theorem 1.1 and the plan of the paper.

Our proof of the main theorem essentially follows Guth’s proof of the inequality
UWn�1(Mn) < 1 for closed Riemannian manifolds Mn such that for each metric ball
B of radius  1 vol(B)  "m. So, we follow the exposition in [Gu11] and [Gu17],
that, in turn, incorporates many ideas from [Gr] and [W]. Yet almost no element
of Guth’s proof works as is for compact metric spaces/Hausdor↵ content instead of
Riemannian manifolds/the volume. Virtually every component of the proof needs to
be done di↵erently or at least significantly modified.
(1) We would like to start from defining “good balls” similarly to how it was done
in [Gu11]. Assuming R = 1, for each p 2 X we consider the sequence of values
1

7
,

1

73
, . . . ,

1

72i+1 , . . . and look for the first (the maximal) value r in this sequence, such
that the “reasonable growth” condition HCm(7B)  49m+1 HCm(

1

7
B) holds for the

metric ball B of radius r centered at p. (Here and below if B is a metric ball of
radius r, then �B denotes the concentric metric ball of radius � r. Observe, that if
X were the Euclidean space, HCm(7B) = 49m HCm(

1

7
B).) The resulting ball B will

be, by definition, the good ball centered at p.
Yet observe, that the existence of a good ball requires the assumption that the

lower HCm-density at p is positive (compare with the proof of Lemma 1 in [Gu11]).
Obviously, this is not true for an arbitrary compact metric space X.
Our remedy is to take the product X

0 of X with a very small round sphere Sm

and observe that (a) X 0 has HCm-density 1; and (b) If Theorem 1.1 holds for X 0 and
some "m, then it holds for X and "0m. Thus, we reduce the general case to the case
of positive density, and in this case the “good ball” centered at p always exists. The
details of this reduction can be found in the next section.
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FILLING METRIC SPACES 7

(2) Once one has good balls centered at all points of X, the standard Vitali covering
construction yields a “good covering” of X by good balls exactly as in Lemma 2 of
[Gu11] - see section 3 for more details.

Our Lemma 3.3 is a somewhat generalized version of the adaptation of Lemma 3
from [Gu11] for HCm. Yet the proof of Lemma 3 in [Gu11] relies on the additivity
property of the Hausdor↵ measure, which does not hold for Hausdor↵ contents. Of
course, the sole reason for failure of additivity for HCm is the fact that given a cover
of the union of two disjoint sets A and B by metric balls, the same metric ball can
cover both a part of A and a part of B providing “savings” with the situation, when
A and B are covered separately.

Our remedy involves the following observation: Assume that disjoint metric balls
B1, . . . , Bk have comparable radii (say, all their radii are in the interval [ s

2
, s] for some

s), and HCm of their union is very small in comparison with s
m (say, < ( s

1000
)m).

This means that metric balls used for an almost optimal (from the point of view
of HCm) covering of

S
i Bi can contain only metric balls of radius  s

1000
. Now we

can just throw away all metric balls in this covering that intersect more than one of
the balls Bi, and observe that the remaining balls still cover

S
i(1 � 1

250
)Bi, and no

remaining ball can intersect more than one Bi. As the result, we can conclude that
HCm(

S
i Bi) is at least as large as

P
i HCm(0.996Bi). If, in addition, we know that for

some ✓ > 0 HCm(0.996Bi) � ✓HCm(Bi), then we have the inequality HCm(
S

i Bi) �
✓
P

i HCm(Bi) that provides a replacement for the missing additivity.
As in [Gu11], Lemma 3.3 can be used to deduce Lemma 3.4 asserting that if d

balls from the good covering intersect, then the smallest of their radii does not exceed
a(m) exp(�b(m)d) for some constants a(m) and b(m).
(3) In [Gu11] the good covering is used to construct a map � from the manifold to
the parallelepiped P = [0, r1] ⇥ . . . ⇥ [0, rD], where r1  r2  . . .  rD denote the
radii of good balls in the good covering, and D the cardinality of the good covering.
Each coordinate �i of � corresponds to the respective ball Bi of the covering. The
map �i sends all points outside of Bi to 0, all points in 1

2
Bi to ri, and between 1

2
Bi

and Bi it linearly decreases as the function of the distance to the centre of Bi.
In [Gu11] P was endowed with the Euclidean metric. In section 4 we make one

small but absolutely crucial change: Our P introduced is endowed with the l1-metric.
As the result, the Lipschitz constant for � is bounded by an absolute constant that
does not depend on D (over which we have no control). (This contrasts with the
Euclidean case, where one gets the factor

p
D in the Lipschitz constant.) As the

result, we can use our Lemma 3.4 to prove the crucial inequality in Lemma 4.1 (our
analog of Lemma 5 from [Gu11]) without the need to use an analog of Lemma 4 from
[Gu11]. This fact is very fortunate, as some simple examples convinced us that there
is no good analog of Lemma 4 for HCm. (Technically speaking, the issue here is that
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the proof of Lemma 4 in [Gu11] uses the additivity of the volume three times. For two
of these occurrences an argument similar to the argument outlined in (2) can be used
to save the situation, yet the last use of the additivity seems to kill any possibility of
adapting the lemma for the Hausdor↵ content.) Our Lemma 4.1 provides an upper
bound for the ratio of HCm(�(X)

S
F ) to r

m
1
, where F is a d-dimensional face of P ,

and r1 is its smallest side length. This upper bound exponentially decreases with d.
Note that if X is not compact, but merely boundedly compact, D can be 1. Yet

the image of � will be in a certain closed subcomplex of P , called the rectangular
nerve of the cover, that we denote RN . All faces of RN are finite-dimensional, and
RN is contained in the subset of P that consists of all points x such that for some i
the ith coordinate of x is equal to ri.
(4) The proof of the main theorem continues only in the last section. Section 5 is
devoted to the proof of the coarea inequality and the cone inequality for general
compact metric spaces and the Hausdor↵ content. These inequalities will then be
used in section 6 to prove an isoperimetric inequality, which will be the crucial
ingredient in the proof of the main theorem in section 7.
The cone inequality involves two compact metric spaces X and Y ⇢ X inside of

a ball of radius R in a Banach space. One wants to construct a continuous map  
of X into B so that this map remains the identity map on Y , yet HCm+1( (X)) 
c(m)RHCm(Y ). The obvious idea is to try to map X into the cone CY over Y with
the tip at the center of B(R). Yet how can one map X into CY ? The mapping to
the cone would involve mapping at least some neighbourhood of Y in X to Y , yet,
there does not seem to be any general way to do this. As the result, our “cone” is
not CY (although it lies at a small distance from it).
Also, in section 5 we present a concise proof of a very general version of the coarea

inequality in metric spaces for Hausdor↵ content.
(6) Section 6 contains an adaptation of the Gromov isoperimetric inequality for

Hausdor↵ contents. The original J. Michael-L. Simon isoperimetric inequality [MS]
asserts that given an (n � 1)-dimensional cycle Y in RN

Y bounds a n-chain with
n-dimensional volume  c(n)voln�1(Y )

n
n�1 . Gromov proved this using a di↵erent

method that makes it possible to prove this inequality for L
1 and other Banach

spaces instead of RN ([Gr]). Wenger simplified Gromov’s proof and improved the
value of the constant ([W]). In [Gu17] Guth adopted Wenger’s proof to prove a
version of the Michael-Simon inequality for maps, where given a n-manifold X with
boundary Y and its map f into RN one wants to alter f to a new map F that
coincides with f on Y and satisfies the inequality voln(F (X))  c(n)vol(f(Y ))

n
n�1 .

(Yet a similar theorem valid for maps to all Banach spaces and with a concrete value
for constant c(n) is stated (without proof) already in [Gr] in section (A000) of Appendix
2. In this theorem stated by Gromov both X and Y are assumed to be polyhedra
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FILLING METRIC SPACES 9

rather than manifolds. In our Theorem 6.2 X and Y are assumed to be compact
metric spaces, and we use Hausdor↵ contents instead of Hausdor↵ measures.) Proofs
of Gromov, Wenger and Guth use induction with respect to n. Our proof also uses
the induction with respect to m, despite the fact that unlike the situation in all these
papers, our m has nothing to do with the dimension of a compact metric space Y .

We present two versions of the isoperimetric inequality for maps of compact metric
spaces and Hausdor↵ contents. One version is very general; the second version which
is actually used in the proof of the main theorem works only in the situation when
f(Y ) that we want to “fill” is on the boundary of a parallelepiped U in a finite-
dimensional Banach space. However, in this second version we prove an important
additional property of the filling F (X), namely, that it is located su�ciently close
to the boundary of U .

We want to follow the approach of [W] that involves a sequence of local improve-
ments of the cycle Y that we want to fill. To improve Y one finds a certain collection
of disjoint metric balls, cuts them out, and replaces them by chains with smaller
volumes. On the first glance this approach seems absolutely bound to fail in our
situation. Indeed, consider examples 8 and 9 in the previous subsection. In both
cases we cut out a large piece from some Y , yet HC does not decrease, and, moreover,
can increase once one adds a set with an arbitrarily small Hausdor↵ content.

Yet a remedy exists: We combine the idea explained in (2) that involves using
only the metric balls with HCm that is much less than the mth power of the radius
with a powerful new idea: Fix an almost optimal (from the point of view of HCm)
finite covering Q of Y by metric balls Bi. We introduce the concept of m-dimensional
Hausdor↵ content, fHCm, with respect to the covering Q for subsets of Y . fHCm is
defined as HCm but with the following important di↵erence: This infimum of

P
i r

m

is taken only over coverings by metric balls from Q. (That is, each ball of any
covering of a subset of Y that we are allowed to consider must be one of the balls
Bi.) Observe that: (a) HCm  fHCm, so an upper bound for fHCm is automatically

an upper bound for HCm; (b) For Y fHCm and HCm are almost the same. Now
the idea is to ran Wenger’s argument by removing (and then replacing) only metric

balls with fHCm ⇠ ( r
A(m)

)m, where r denotes the radius of the considered ball, and

A(m) is a su�ciently large constant. (It is not di�cult to see that if there are not
su�ciently many metric balls with this property to run this argument, then Y has
a “round shape” (meaning that HCm�1(Y )

1
m�1 ⇠ the diameter of Y in the ambient

metric), so that the isoperimetric inequality for Y follows from our version of the cone
inequality.) The basic idea here is that now we are throwing out only “important”
balls. Moreover, for each ball B that is being replaced, the balls from Q in the
optimal covering of B yielding the value of fHCm(B) are also important (despite
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being very small): removal of each of those balls reduces fHCm(Y ) and, therefore, its
HCm.
(7) Once the isoperimetric inequality is established we return to proving the main

theorem. Our proof presented in section 7 has the same main ideas as the proof
in [Gu17], yet is somewhat di↵erent. We would like to modify the � : X �! RN

in stages, so that all new maps remain subordinate to the open cover. Eventually,
we will produce a map from X to the (m � 1)-skeleton of RN , which will still be
subordinate to the cover, and, therefore, it will automatically have small values of
the diameter of the inverse image of each point. Simultaneously, with � we modify
RN = RN

(0), through a sequence of its closed subcomplexes RN
(i), so that the

image of each intermediate map �(i) will be in RN
(i).

We assume that �(0) is �. We define �(i) inductively. The new map �
(i+1) will

di↵er from �
(i) only on inverse images of maximal open faces of RN

(i) of dimension
� m. Also, RN

(i+1) is obtained from RN
(i) by removing all its maximal open faces

of dimension � m.
We consider all maximal open faces F of P of dimension � m. For each face F

of dimension k � m + 1, we first compose the restriction of �(i) to (�(i))�1(F ) with
a map defined on �(i)(X)

T
F and whose image lies in a very small neighbourhood

of @F . This map can be described as follows: We cut F by the boundary of a
slightly smaller parallelepiped F1 ⇢ F and apply the previously proven isoperimetric
inequality that enables us to replace the part of the image of �(i)(X) inside F1 by
a “small” m-chain “close” to the boundary of F1 and, thereby, to the boundary of
F . (This replacement is done at the level of maps.) Note, that HCm can somewhat
increase on this step. Then we compose the “amended” �(i) on (�(i))�1(F ) with the
radial projection from the center of F to its boundary. The result will be �(i+1)

on (�(i))�1(F ). This operation also increases HCm. Yet as the result of both these
operations the upper bound for HCm provided by the inequality (4.1) increases by a

factor of less than 1+ a1(m)"a2(m)

m exp(�a3(m)k). Therefore, despite the fact that D
can be uncontrollably large, the product of this factors for k, k � 1, . . . ,m+ 1 never
becomes too large, no matter how large k is. In fact, this product does not exceed 2
providing that "m is small enough.
If the dimension of F is m, we just observe that, as HCm(F

T
�
(i)(X)) < HCm(F ),

there is an open metric ball � in F that does not intersect �(i)(X). We define �(i+1)

on (�(i))�1(F ) as the composition of a retraction of F \ � to @F with the restriction
of �(i) on (�(i))�1(F ).

2. Reduction to the case of positive density

Theorem 1.1 was proven in [Gu17] for m-dimensional Riemannian manifolds and
volume instead of HCm. One fact about m-dimensional Riemannian manifolds used

25 May 2019 22:28:15 EDT
Version 1 - Submitted to J. Amer. Math. Soc.



FILLING METRIC SPACES 11

in the proof there was that limr!0

V ol(B(x,r))
rm = const(m). Of course, this is not

true for Hausdor↵ content in arbitrary metric spaces. However, this property can
be (partially) restored by taking a product with a very small round m-dimensional
sphere. We are going to present the rigorous construction as the next Proposition
2.1. This proposition also incorporates the observation that since the conclusion of
Theorem 1.1 is scale invariant, it is su�cient to require that the assumption of the
theorem holds only for all metric balls of a fixed positive radius R, e.g. R = 1 or
R = 2.

Proposition 2.1. For each positive integer m there exists "m > 0, such that the fol-
lowing holds. Suppose X is a boundedly compact metric space, satisfying the following
properties:

1. every ball of radius 1 in X has m-dimensional Hausdor↵ content less than "m;
2. for every x 2 X we have lim infr!0

HCm(B(x,r))
rm = 1.

Then UWm�1(X)  1.

Now we describe how to deduce Theorem 1.1 from Proposition 2.1. When X is a
compact metric space we proceed as follows. By scaling the metric we may assume
that R = 2 in the hypothesis of Theorem 1.1. Fix "m from Proposition 2.1 and let
"
0
m = 1

10

"m
2m

. By the assumption of Theorem 1.1 we have HCm(B)  "m/10 for every
ball B of radius 2 in X.

Let Sm(⌧) ⇢ Rm+1 denote the round m-sphere with radius ⌧ . Consider space
Y = {(x, p) : x 2 X, p 2 Sm(⌧) with product metric d((x1, p1), (x2, p2)) =
max{dX(x1, x2), dSm(⌧)(p1, p2)}. We claim that for a su�ciently small choice of ⌧
space Y satisfies assumptions 1 and 2 of Proposition 2.1. To define ⌧ fix a finite
covering {B(xi, 2)} of X by balls of radius 2, such that concentric balls of half the
radius still cover X. For each i let B(xi

j, r
i
j) be a finite covering of B(xi, 2), such thatP

j(r
i
j)

m  "m/5. We set ⌧ = 1

10
mini,j r

i
j.

Now we can show that the two assumptions are satisfied.
1. Consider a ball B of radius 1 in Y , B = B(x, 1)⇥�(p, 1). We have that B(x, 1) ⇢

B(xi, 2) for some i and so there exists a covering of B(x, 2) by balls B(xi
j, r

i
j). Since

⌧  rij
10

we have that balls B(xi
j, r

i
j)⇥ �(p, rij) cover B, so HCm(B)  "m/5.

2. This follows since HCm(B(x, r)⇥ �(p, r)) � HCm(�(p, r)).
Applying Proposition 2.1 to Y we obtain a map ⇡

0 : Y ! S into an (m � 1)-
dimensional simplicial complex S with fibers of diameter  1. Composing with the
inclusion map we obtain the desired map from X into S with fibers of diameter  1.

When X is boundedly compact, but not compact, we need to modify the above
argument by constructing a “product” metric with variable radius of Sm(⌧). More
precisely this can be done as follows. Fix a point x0 2 X. Let S denote a surface
of revolution obtained by rotating the graph of a monotone decaying function ⌧ :
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12 LIOKUMOVICH, LISHAK, NABUTOVSKY, ROTMAN

[0,1) ! (0, 1) around the non-negative xm+1-axis in Rm+1. Topologically S is
Sm ⇥ [0,1). Consider X ⇥ S with the product metric and define X̃ ⇢ X ⇥ S

to be the set X̃ = {(x, p, t), x 2 X, p 2 Sm
, t 2 [0,1) : d(x, x0) = t} with the

restriction metric from X ⇥ S. We have a homeomorphism  : X ⇥ Sm ! X̃ given
by  (x, p) = (x, p, dist(x, x0)).
Let "m be as defined above. By the assumption of Theorem 1.1 we have HCm(B) 

"m/10 for every ball B of radius 2 in X. We will show that if ⌧(0) is small enough
and ⌧(t) decays su�ciently fast then X̃ satisfies assumptions of Proposition 2.1 and
Theorem 1.1 follows as in the compact case.
Fix a locally bounded covering {B(xi, 2)} of X, so that balls of half the radius

still cover X. For each i let {B(xi
j, r

i
j)} be a finite covering of B(xi, 2), such thatP

j(r
i
j)

m  "m/5. Given a non-negative integer n let N(n) be such that 1

N(n) < r
i
j for

all xi
j 2 X with distX(xi

j, x0)  n+ 2. We choose ⌧(t) so that ⌧(t)  1

10N(btc) . Then

for any ball B((x, p, dist(x, x0)), 1) ⇢ X̃ we have that it is contained in
S

j B(xi
j, r

i
j)⇥

�((p, dist(xi
j, X0)), rij) with

P
j(r

i
j)

m  "m/5. This shows that the proof of Theorem
1.1 can be reduced to the proof of Proposition 2.1.
In the rest of the paper we prove Proposition 2.1.

3. Construction of good covering

We will say that B(p,R) is a good ball if it satisfies the following properties.
A. Reasonable growth: HCm(B(p, 7R))  49m+1 HCm(B(p, 1

7
R)).

B. Volume bound: HCm(B(p,R)  HCm(B(p, 7R))  7m+1
"mR

m+1.
C. Small radius: R  1

7
.

This definition is a direct adaptation of the definition in [Gu11] for HCm instead
of the volume.

Lemma 3.1. Let X be a boundedly compact metric space satisfying assumptions 1
and 2 of Proposition 2.1. Then for every x 2 X there is a radius R so that B(x,R)
is a good ball. Moreover, if "m <

1

700m+1 , then HCm(B(p, 7R))  ( R
100

)m+1.

Proof. The proof essentially repeats the proof of Lemma 1 in [Gu11]. We consider the
sequence of radii Ri = 7�1�2i with i ranging from 0 to 1 and are looking for the first
value that satisfies the reasonable growth condition. Observe that each time, when
this condition is not satisfied for R = Ri, the density D(p, 7R) = HCm(B(p,7R))

(7R)m
drops

by the factor 1

49
, when we pass from R = Ri to R = Ri+1 = Ri

49
. Therefore, sooner

or later some Ri will satisfy this condition. (Indeed, if this never happens, the lower
density will be dropping all the way to 0 contradicting the assumed property 2 of X.)
The same calculation implies that each time, when condition A is not satisfied for
R = Ri, and we pass to R = Ri+1, the ratio

D(p,7R)

7R does not increase. Now note that
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D(p,7R0)

7R0
 "m. (This is equivalent to our assumption that HCm(B(p,R0))  "m.)

Therefore, if i0 is the smallest value of i such that Ri satisfies the reasonable growth
condition, then D(p,7Ri)

7Ri
 "m. This means that HCm(B(p, 7Ri))  7m+1

R
m+1

i "m.
Therefore, B(p,Ri0) is a good ball. Condition C follows by construction. ⇤

Because of Lemma 3.1, we can cover X with good balls. Following [Gu11] we
now use the Vitali covering lemma to choose a convenient sub-covering with some
control of the overlaps. More precisely, we call an open cover {Bi} good if it obeys
the following properties.

1. Each open set Bi is a good ball.
2. The concentric balls (1/2)Bi cover M .
3. The concentric balls (1/6)Bi are disjoint.
(Recall that if Bi is short-hand for B(pi, ri), then (1/2)Bi is short-hand for

B(pi, (1/2)ri).)

Lemma 3.2. Let X be a boundedly compact metric space satisfying assumptions 1
and 2 of Proposition 2.1, then it has a locally finite good cover. If X is compact,
then this cover is finite.

Proof. For each point p 2 M , pick a good ball B(p). Then look at the set of balls
{(1/6)B(p)}p2M . These balls cover M . Choose a cover of X by good balls 1

6
Bi,

where Bi are good balls, and only finitely many of these balls intersect B for any
closed metric ball B in X. Now the same argument as in the Vitali covering lemma
implies the existence of a locally finite collection of pairwise non-intersecting ball 1

6
Bi

(from the chosen locally finite covering), such that the concentric balls 1

2
Bi cover the

whole X. ⇤
We now fix a good cover for our metric space X, which we will use for the rest of

the paper. The following lemma is an analog of Lemma 3 in [Gu11], yet the proof of
Lemma 3 in [Gu11] uses the additivity of the volume, that we do not have for HCm.
We circumvent this di�culty using an idea sketched in subsection 1.4.

Lemma 3.3. Assume that "m < 700�m�1
. Then there exists a constant C = C(m)

depending only on m with the following property: For any positive s and any metric
ball B of radius  s, not necessarily in our cover, the number of balls Bi from our
cover, with radii in the range s  ri  2s, intersecting B, is less than C. One can
take C(m) = 49m+1.

Proof. Let {Bi}ki=1
be the set of balls in our cover that intersect B and have radii in

the indicated range. We number them so that B1 has the property HCm(1/7B1) 
HCm(1/7Bi) for all i > 1. Now, all of the balls Bi and B are contained in the ball
7B1. On the other hand, all the (1/6)Bi are disjoint.
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14 LIOKUMOVICH, LISHAK, NABUTOVSKY, ROTMAN

Fix a covering by balls �(j) of 7 B1 with radii %j, so that for some very small "
HCm(7 B1)+ " �

P
%
m
j . As HCm(7 B1)  (radius(B1)/100)m+1, the radii %j are less

than the radius (B1)/100  s
50
.

We claim that for each j there is at most one i such that �j intersects (1/7)Bi.
Indeed, if �j intersects (1/7)Bj, it is contained in (1/6)Bj, and, therefore, it can

not intersect any other (1/7)Bi.
It follows that HCm(7B1) �

P
i HCm((1/7)Bi) � kHCm((1/7)B1). Because of

reasonable growth (property A) of B1 we conclude that k  C(m) = 49m+1.
⇤

The following lemma was stated as an observation in [Gu11] (in the case of Rie-
mannian manifolds/volume). Our proof essentially repeats the proof in [Gu11].

Lemma 3.4. If some d good balls B1, . . . , Bd have a non-empty intersection, and r

is the smallest radius of these balls, then r  2

7
exp(�b(m)d), where b(m) = ln 2

49m+1 .

Proof. Assume that the balls are numbered so that their radii ri = radius(Bi) form an
increasing sequence. Thus, r = r1. Let r0 =

1

7
(as in the definition of good balls). De-

fine the interval [r, r0] into at most log
2

r0
r +1 subintervals [r, 2r], [2r, 4r], . . . , [2Kr, r0]

that we are going to call scales. The previous lemma implies that there are at most
C(m) balls Bi with radii within each scale, where one can take C(m) = 49m+1. So
the total number d of balls does not exceed C(m)(log

2

r0
r +1). Solving this inequality

for r we obtain the assertion of the lemma. ⇤

4. Rectangular nerve of a good cover

Let {Bi} be a good cover. Consider the parallelepiped P =
QD

i=1
[0, ri] where ri

is the radius of the ball Bi. (If X is not compact but only boundedly compact ,
then D = 1.) We are going to call P the parallelepiped of the cover. We choose
the metric on P induced by the l1 norm on the ambient space RD. (In other words,
dist(x, y) = maxDi=1

|xi � yi|.) This is di↵erent from [Gu11], where P was considered
with the Euclidean metric.
We are going to define a continuous map � : X ! P . To define �, we let �i be a

real-valued function supported on Bi with �i(x) = ri for x 2 1

2
Bi and �i(x) = ri �

2dist(x, pi) on Bi \ 1

2
Bi, where pi denotes the center of Bi. Taking �i as coordinates,

we get a map � : X �!
QD

i=1
[0, ri]. Our definition of � and our choice of the metric

on
QD

i=1
[0, ri] imply that the Lipschitz constant of � is 2. It is important for us here

that this upper bound does not depend on D (that we cannot control), as in the case
for the Euclidean metric on

Q
i[0, ri].

The rectangular nerve of the cover had been defined in [Gu11] as some closed sub-
complex of P that includes all open faces of P having a non-empty intersection with
the image of �. We denote the rectangular nerve as RN , and following [Gu11] define
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it as follows. Observe that each open face F of the rectangle can be determined
by dividing the dimensions 1, ..., D into three sets: I0, I1, and I(0,1) with i 2 I0 if
�i = 0 for all points in F , i 2 I1 when �i = ri for all points in F , and i 2 I(0,1)

when 0 < �i < ri. Define I+ as the union of I1 and I(0,1). By definition, an open
face F is contained in the rectangular nerve RN if and only if the set I1(F ) is not
empty, and the intersection \i2I+(F )Bi is not empty. Note that all faces in RN are
finite-dimensional.

So defined rectangular nerve has two important properties. First, the construction
of a good cover implies that each point is in 1

2
Bi for some good ball Bi. Also, each

point of �(X)
T

F must be in the intersection \i2I+(F )Bi. So, each point of X will
be mapped by F into one of open faces of P that were included in RN . Thus, as
previously claimed, �(X) ⇢ RN . Second, RN is contained in the union of all closed
hyperfaces of P defined by the equations xi = ri, where xi denotes the i-th coordinate
of a point of P . Thus, for each point x in RN , there is some k such that xk = rk.

From now on we regard � as a map not into P but to its closed subset RN .
In section 7 we will inductively deform the image of � = �

(0), by pushing it
into lower dimensional skeleta of RN until it lands in the (m � 1)-skeleton of RN .
Simultaneously, we will be changing RN = RN

(0) � RN
(1) � . . . by removing on

each step all maximal open faces of dimension � m. More precusely, for each map �(i)

our goal will be the following: We start from the collection of all maximal open faces
Fj in RN

(i). For each Fj such that dimFj > m� 1, we will alter �(i) on (�(i))�1(Fj)
so that this map remains continuous, but its image will be in the boundary of Fj.
We denote the resulting map (altered on all sets (�(i))�1(Fj) for all maximal faces
Fj of dimension � m) as �(i+1). Simultaneously, we change RN

(i) by removing all
maximal open faces of RN

(i) of dimensions � m, and denote the result as RN
(i+1).

Observe that if (�(i)(y))k = rk for some y and k, then the same will be true for
�
(i+1). Indeed, we need to check this only in the case, when �(i)(y) is in some maximal

open face Fj in RN
(i), where we alter �(i), but in this case the kth coordinate must

be rk for all points of Fj, and, therefore, for all points of its boundary. Similarly,
if (�(i)(y))k = 0 for some y and k, then the same will be true for �(i+1). It is clear
that for each face Fj in RN �

(i) will map Fj into its (m � 1)-dimensional skeleton,
if i > dimFj � m. Moreover, for i > dimFj � m the restrictions of all continuous
maps �(i) to the closure (�(i))�1(Fj) will coincide. Define �(1) as follows. For each
x consider the open cell F in RN containing �(x). Let Fj denotes a maximal open
cell in RN containing F in its closure with the maximal possible dimension. (The
existence of such a cell follows from the local finiteness of the good cover.) Now
define �(1)(X) as �(i)(x), where i = max{0, dimFj � m + 1}. The map �

(1) will
be the desired map with diameter of each fiber (�(1))�1(x)  2

7
< 1. Indeed, let

�
(1)(y) = x. By our construction, �(1)(y) = �

(i)(y) for some i. Consider the
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(non-empty) set I of indices k such that (�(y))k = (�(0)(y)k = rk. Our observation
implies that the similarly defined set J of indices k such that xk = �

(i)(y)k = rk will
contain I, and, therefore, will be non-empty. In the opposite direction, if k 2 J ,
then �(1)(y)k = �

(1)(y)k 6= 0. This means, that 1) Each y1 2 (�(1))�1(x) is in 1

2
Bk

for a good ball Bk for some k = k(y1) 2 J ; 2) For each other point y2 2 (�(1))�1(x)
y2 2 Bk(y1). This means that the distance between y1 and y2 in X does not exceed
2rk(y1)  2

7
, as claimed.

In order to perform these deformations we need to keep track of the m-dimensional
Hausdor↵ content of the images. Note that given a face F of RN we can push
�(X) \ F into @F whenever HCm(�(X) \ F ) < HCm(F ). In order to apply this
reasoning repeatedly we need the following analog for HCm of Lemma 5 from [Gu11].
Given an open face F ⇢ RN , we let Star(F ) denote the union of F and all open

faces F 0 such that F ⇢ F̄
0. If F has dimension k, then each open face in F

0 ⇢ Star(F )
has dimension � k, and the only k-face in Star(F ) is F . We let %(F ) denote the
shortest length of any of the sides of F , and BF is the corresponding ball in the good
covering with radius %(F ).

Lemma 4.1. There are constants C1(m) and b(m) > 0 depending only on m so that
the following estimate holds: Suppose {Bi} is a good cover. Then there is a map
�
(0) : X ! N subordinate to the cover so that that following volume estimate holds:
For any face F ⇢ RN of dimension d(F ),

(4.1) HCm[�
(0)(X) \ Star(F )]  14m+1

"m%(F )me�b(m)d(F )
.

where b(m) = ln 2

49m+1 .

Proof. The map �
(0) is just the map � from X to RN constructed above. Ob-

serve that �(D)(X)
T

Star(F ) = �
(0)(

T
i2I+(F )

Bi) ⇢ �
(0)(BF ). As we are using the

max-norm on the target space, the Lipschitz constant of �(0) does not exceed 2 re-
gardless of the dimension (in contrast with the Euclidean case, where it can behave
as

p
D). Therefore, HCm(�(0)(X)

T
Star(F ))  2m HCm(BF )  14m+1

"m%(F )m+1
.

But Lemma 3.4 implies that %(F )  2

7
exp�b(m)d(F )

. Trading one %(F ) for the right
hand side of the last inequality we obtain the inequality in the lemma. ⇤

We will continue our proof in section 7, after establishing in section 6 an isoperi-
metric inequality for HCm. In the next section we are going to state and prove
versions of the cone inequality and the coarea inequality that are required for our
purposes.
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5. Cone and coarea inequalities for Hausdorff content

Lemma 5.1 (Cone inequality 1). Let B(R) be a closed metric ball of radius R in a
Banach space S. Let X be a subset of S, and Y be a proper compact subset of X,
such that Y ⇢ B(R). Then there exists a subset Z of B(R) such that:
(1) Y is a subset of Z;
(2) HCm(Z)  m(1 + 1

m)mRHCm�1(Y ) < emRHCm�1(Y );
(3) There exists a continuous map  : X �! Z such that its restriction on Y is the
identity map.

Here e = limm!1(1 + 1

m)m is the Euler’s number.

Proof. Let {Bi(ri)}i2I be a finite covering of Y by closed metric balls such thatP
i r

m�1

i  HCm�1(Y ) + " for some " that can be taken arbitrarily small. Let r be
any positive number  mini ri.

Let p denotes the center of the ball B(R) from the text of the theorem. For each set
V let Conep(V ) denote the union of the closed straight line segments in the ambient
Banach space connecting p with all points of V . Observe, that for each metric ball
Bi(ri) the set Conep(Bi(ri)) can be covered by at most m

R
ri

metric balls of radius

(1+ 1

m)ri. (The first of these balls is Bi((1+
1

m)ri); the centers of all subsequent balls
are spaced along the segment connecting the center of Bi(ri) and p at distances ri

m
apart. It is straightforward to check, using triangle inequality, that this collection of
balls covers Conep(Bi(ri))). Therefore, Conep(Nr(V )) can be covered by a collection
of at most m

R
ri

metric balls of radius (1 + 1

m)ri, where i ranges over I. Therefore,

HCm(Conep(Nr(V ))  R
ri

P
i m((1 + 1

m)ri)m  m(1 + 1

m)mR(HCm�1(Y ) + "), where
" is arbitrarily small.

Let � : [0,1] ! [0, 1] be a continuous monotone function with �(0) = 1 and �(t) =
0 for all t � r defined as 1� 1

rx for x 2 [0, r] and zero for all x 2 [r,1). We define
a map � : B(R) ! Conep(Nr(Y ))

T
B(R) by the formula �(x) = �(dist(x, Y ))x +

(1 � �(dist(x, Y ))p. (It is obvious that � maps all points of B(R) at distance � r

from Y to p, and that the restriction of � to Y is the identity map.) As X is not
assumed to be in B(R), the image of � can (somewhat) stick out of B(R). This
can be remedied by composing � with the 1-Lipschitz retraction S �! B(R) that
sends each point of S to the nearest point of B(R). Denote the restriction of this
composition to X by  . Now we can set Z =  (X). As Z ⇢ Conep(Nr(Y )),
HCm(Z)  HCm(Conep(Nr(Y ))  m(1+ 1

m)mR(HCm�1(Y )+ ") for arbitrarily small
", which implies the lemma, when " �! 0. ⇤

Observe that Z is not a cone over Y , although it is very close to Conep(Y ). In
fact, in the proof above we can replace the chosen value of r by any smaller positive
value, and the proof would still works. So, if desired we could choose Z arbitrarily
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close to an actual cone over Y in S. Below we will be referring to Z as the cone over
Y , and will call this construction the coning of Y. Also, note that if X and Y are
given as images under a continuous map ⌧ : X̃ �! S from a metric space X̃ to S of
X̃ itself and its proper subset Ỹ , then we can consider the composition F of the the
map  with ⌧ , and obtain the following version of the previous lemma:

Lemma 5.2 (Cone inequality 2). Let B(R) be a metric ball of radius R in a Ba-
nach space S. Let X be a metric space, and Y its proper compact subset. Given a
continuous map ⌧ : X �! S, such that ⌧(Y ) ⇢ B(R) there exists a continuous map
F : X �! B(R) such that:
(1) The restriction of F to Y coincides with ⌧ ;
(2) HCm(F (X))  m(1 + 1

m)mRHCm�1(⌧(Y )) < emRHCm�1(⌧(Y ));
and
(3) Assume that both the center of B(R) and ⌧(X) are in a convex set U . Then one
can additionally ensure that F (X) ⇢ U , and so F maps X to B(R)

T
U .

Remark. It might be of interest to note that if the convex set U in the previous
lemma is compact, and F (X \ Y )

T
@U = ;, then one can choose F so that it is

the identity map not only on ⌧(Y ) but also everywhere outside of the interior of U .
Indeed, as in the previous lemma, it is su�cient to consider the particular case, when
⌧ is an inclusion map of X ⇢ U . We are assuming that X

T
@U ⇢ Y .

Choose a positive r < r0 as in the proof of Lemma 5.1. Choose a posi-
tive r⇤  r such that dist(X \ Conep(Nr(Y )), @U) > r⇤. Define � as in the
proof of Lemma 5.1, but for r⇤ instead of r, and then define � by the formula
�(x) = �(dist(x, Y

S
@U))x + (1 � �(dist(x, Y ))p. We will consider � as the map

of U (rather than B(R), as in the proof of Lemma 5.1). It is obvious that its image
will also be in U . Also, the restriction of � to @U is the identity map. Therefore, we
can extend � to a map F : S �! S by defining it as the identity map outside of U .
In the next lemmaB(R) denotes a metric ball of radiusR in a (boundedly) compact

metric space X, B(R2) \ B(R1) is the annulus between two concentric metric balls,
SR denotes the metric sphere of radius R.

Lemma 5.3. (Co-area inequality) Let U ⇢ B(R2) \B(R1) be a closed set. Then,
Z ⇤R2

R1

HCm�1(SR

\
U) dR  2HCm(U),

where
R ⇤

denotes the upper Lebesgue integral. Therefore, there exists R 2 [R1, R2],
such that HCm�1(SR \ U)  2

R2�R1
HCm(U).

Proof. Let {Bri(pi)} be a covering of U with
P

i r
m
i  HCm(U) + ", where i 2

{1, . . . , N} for some N . The desired inequality would follow from the inequalityR ⇤R2

R1
HCm�1(SR

T
U) dR  2

P
i r

m
i . We are going to prove a stronger inequality,
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where HCm�1(SR

T
U) is replaced by the following quantity that is obviously not

less than HCm�1(SR

T
U), namely,

P
i2I(R)

r
m�1

i , where I(R) denotes the set of all
indices i such that the intersection of Bri(pi) and S(R) is not empty. The left hand
side of the desired inequality becomes

Z R2

R1

X

i2I(R)

r
m�1

i dR =

Z R2

R1

NX

i=1

r
m�1

i �i(R)dR =
NX

i=1

r
m�1

i

Z R2

R1

�i(R)dR,

where the characteristic function �i(R) is equal to 1 for all R 2 [R1, R2] such that
SR and Bri(pi) have a non-empty intersection, and to 0 otherwise. Finally, observe

that
R R2

R1
�i(R)dR  2ri, which implies the desired inequality. ⇤

Let ⌃R, R 2 [R1, R2] be a family of closed sets in a boundedly compact metric
space X with the following property (C): For each pair of points x 2 ⌃t and y 2 ⌃s

distX(x, y) � |s � t|. (For example, this property holds for a family of equidistant
surfaces such that dist(⌃t,⌃s) = |t� s|.) Let A(R1, R2) denote

S
R2[R1,R2]

⌃R.
It is obvious that the above proof generalizes (verbatim) to the following somewhat

more general situation:

Lemma 5.4. (Co-area inequality 2) Let ⌃R be a family that satisfies the property
(C), U ⇢ A(R1, R2) a closed set. Then,

Z ⇤R2

R1

HCm�1(⌃R

\
U) dR  2HCm(U).

Therefore, there exists R 2 [R1, R2], such that HCm�1(⌃R \ U)  2

R2�R1
HCm(U).

For example, this lemma now applies to the situation, whenX is the parallelepiped
P = [0, r1] ⇥ [0, r2] ⇥ . . . [0, rD] endowed with max(l1)-norm, 0  R1 < R2 
mini ri/2, and ⌃R is the boundary of the paralellipiped PR = [R, r1 � R] ⇥ [R, r2 �
R]⇥. . . [R, rD�R], or, more generally, to similar situations, when the common center
of the family of boundaries of parallelipipeds PR does not coincide with the center
of P .

6. Isoperimetric extension inequality.

Theorem 6.1. Assume that U ⇢ Rn is a closed n-dimensional parallelepiped with
sides parallel to the coordinate axes and with l1 metric. Let f : X �! U be a contin-
uous map from a compact metric space X to U , and Y denote f�1(@U). Assume that
m is an integer number between 2 and n�1, and that HCm�1(f(Y )) > 0. Then there
exist constants I1(m), I2(m), and a map F : X �! U with the following properties:
(1) The restriction of F on Y coincides with f ;
(2) HCm(F (X))  I1(m) HCm�1(f(Y ))

m
m�1 ;
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(3) Let R = I2(m) HCm�1(f(Y ))
1

m�1 . Then F (X) is contained in R-neighbourhood
of @U . Here one can take I1(m) = (100m)m and I2(m) = (4000m)m.

Remark. The proof of Theorem 6.1 given below yields (1), (2) (but not (3))
for arbitrary Banach spaces S, arbitrary closed subsets Y of X (not necessarily
Y = f

�1(@U)), and arbitrary values of m � 2. Thus, we obtain the following
theorem that can be compared with Theorem A000 in Appendix 2 of [Gr].

Theorem 6.2. Let S be a Banach space, X a compact metric space, Y a closed
subset of X, f : X �! S a continuous map, and m � 2 an integer number. Assume
that HCm�1(f(Y )) > 0.
Then there exist a constant I1(m), and a map F : X �! S with the following

properties:
(1) The restriction of F on Y coincides with f ;
(2) HCm(F (X))  I1(m) HCm�1(f(Y ))

m
m�1 ;

Remark. If HCm�1(f(Y )) = 0, our proof gives that for each positive � there
exists F : X �! S that coincides with f on Y and such that HCm(F (X))  �.

Theorem 6.1 immediately follows from its particular case, when X ⇢ U , and f is
the inclusion, as we can just apply this particular case to f(X) and then compose
the resulting F with f . So, we will present the proof only for this particular case.
We will proceed by induction on m. The proof given below will work for both

theorems with very minor di↵erences at the very end of section 6.1 and the proof of
the base of the second induction in section 6.2. In the situation of Theorem 6.2 we
define U as S.

6.1. The base case m = 2. We will start from a general overview of our strategy.
We are going to partition X into several pieces and define maps form each piece to
U that can be combined into a single continuous map F from X to U that can then
be restricted to X, and will have the desired properties.
All but one of these “pieces” will be in small closed neighbourhoods of connected

components of some union of metric balls in S providing an almost optimal covering
of Y (from the perspective of HC1). These pieces will be mapped using the coning
construction, so that their boundaries will be mapped to points pi. Finally, it would
remain the last “piece”, i.e. the closure of the complement to the (finite) union of all
previously described “pieces”. The map on its boundary is already defined; it sends
the boundary to a finite collection of points, and one can extend it to a map into
an arc connecting all these points using the Tietze extension theorem. Alternatively,
one could just cone the points pi into a tree with one new vertex (the tip of the cone)
and use the well known generalization of Tietze theorem for the case when the target
space is a contractible ANR (in particular, a contractible CW-complex).
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Let {Bi}Ni=1
be a finite collection of closed metric balls covering Y with

P
ri 

HC1(Y ) + �. Let U1, ..., Uk be those connected components of
S

Bi that con-
tain at least one point of f(Y ). Note that each Uj is the union of Bi for
all i 2 E(j), where the sets E(j) form a partition of {1, . . . , N}. Therefore,P

diam(Uj) 
P

i 2ri  2HC1(Y ) + 2�. For each j choose a closed ball
B(Rj) of radius Rj = diam(Uj) with the center at pj 2 Uj

T
Y . By Lemma

5.2 applied to U , B(Ri), X
T

Ui as X, and Y
T

Ui as Y , there exists a map
Fi : B(Ri) �! S such that Fi is the identity on Ui

T
Y .Moreover, we have

HC2(Fi(X
T

Ui))  4.5diam(Ui) HC1(Ui

T
Y )  4.5 diam

2(Ui). Summing over all
i and noticing that

P
i diam(Ui)2  (

P
i diam(Ui))2  4(HC1(Y ) + �)2 we see thatP

i HC2(Fi(X
T

Ui))  20HC1(Y )2, if � is su�ciently small. Also, it is obvious that
Fi maps B(Ri)

T
U to itself.

Recall that the construction of each Fi involves choosing a positive parameter r.
The value of r must be su�ciently small, but it can be chosen arbitrarily close to 0.
This parameter plays a role in the construction of a map �i : U �! B(Ri). Note
that �i and its extension to the whole B(Ri), Fi, map all points of X at distances � r

from Ui to pi. Choose r <
1

2
mini,j dist(Ui, Uj). Then for each i the set X

T
@Nr(Ui)

is mapped by Fi to pi. We are going to define F on X
T
Nr(Ui) as Fi.

Let G ⇢ U be an arc with no self-intersections, so that
S
pi ⇢ G. So far F has

been defined on X
T
(
S

i Nr(Ui)). It maps each set X
T
@Nr(Ui) to pi. Using Tietze

extension theorem we can continuously extend F to a map of X\ interior(
S

i Nr(Ui)
into G. As the image of this map is 1-dimensional, it has zero two-dimensional
Hausdor↵ measure, and, therefore, zero HC2. Thus, F satisfies property (2) of the
theorem with I1(2) = 20.

To prove property (3) in Theorem 6.1 define Q2 as G, and Q1 as
S

i Fi(X \
S

interior(Nr(Ui)). For each point x in the image of F (Nr(Ui)) there exists a point
y 2 Y such that the distance between x and y does not exceed diam(Ui)  3HC1(Y ).
We are going to somewhat modify our construction of F on the inverse image of Q2

to ensure property (3). Note that we can assume without any loss of generality that
R is less than the distance from the center of the paralellepiped U to its boundary.
It is easy to find a ball � with a center c near the center of the parallelepiped U with
a very a small positive radius that does not intersect G. Now we can retract U \ �
to the R-neighbourhood of @U . This retraction leaves Q1 intact, but maps Q2 inside
the R-neighbourhood. As the dimension of the image of Q2 is still one, its HC2 is
zero. We change F on X\ interior(

S
i Nr(Ui) by composing it with the retraction

U \ � �! @U . This completes the proof of property (3) with I2(2) = 3.

6.2. Inductive step: set up. By induction we assume the conclusions of Theorem
6.1 to be true for all dimensions less than or equal to m. We will now prove it for
m+ 1.
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Let " = "(n, Y, U) > 0 be a small constant to be determined later.
We will consider compact sets Y 0 ⇢ X

0 ⇢ U .
We will first show that the conclusions of the theorem hold forX 0 and Y

0, whenever
HCm(Y 0)  ", and maxy2Y 0 dist(y, Y )  R1(Y ) for some R1(Y ) that will be defined
later. (Recall that according to the assumption of Theorem 6.1 Y ⇢ @U .) Then we
inductively prove the result for larger and larger values of HCm(Y 0) until we obtain
it for X, Y and f . Formally speaking, the induction will be with respect to k > 1
such that HCm(Y 0) 2 ((1 + 1

20m
)k�1

", (1 + 1

20m
)k"]. At each step of the induction we

are going to increase the allowed upper bound for HCm(Y 0) by the factor of 1+ 1

20m
,

and to prove that the desired extension is possible for all such sets Y 0 that are also
su�ciently close to Y . More precisely, we require that maxy2Y 0 dist(y, Y )  Rk(Y ),
where Rk(Y ) > 0 that will be defined later decreases with k. Obviously, after finitely
many induction steps we will obtain the assertion of the lemma for Y .
More precisely, we will show that there exists F 0 : X 0 �! U , such that

(1) The restriction of F 0 on Y
0 is the identity map;

(2) HCm+1(F 0(X 0))  I
0
1
(m+ 1)HCm(Y 0)

m+1
m + "0;

In the situation of Theorem 6.1
(3) maxx2X0 dist(F 0(x), @U)  Rk(Y ) + I2(m) HCm(Y 0)

1
m .

The value of "0 > 0 in (2) can be chosen to be arbitrarily small, assuming that
" > 0 is small enough. Setting I1(m) = 2I 0

1
(m) and choosing Y , X and f for Y 0, X 0

and f
0 we obtain the result of the theorem.

First, we prove the base of the induction with respect to k. Assume that
HCm(Y 0)  ". Let R0(Y ) = diam(Y ) + R1(Y ). Observe that Y

0 ⇢ BR0(p) for
some p 2 U . By Lemma 5.1 there exists a map F0 : X �! BR0(p) \ U , so that

HCm+1(F0(X
0))  emR0 HCm(Y

0),

and the restriction of F 0 on Y
0 coincides with f

0. This is su�cient to prove (1) and
(2) (that is, for Theorem 6.2), as one can take F

0 = F0.
In the situation of Theorem 6.1 we need also to prove (3). We are going to modify

F0. We apply projection from an average point argument similar to the proof of
Deformation Theorem of Federer and Fleming ([FF], see also Lemma 7.2 in [Gu13]
and Lemma 2.5 in [Y] for more general versions of this argument adapted to Hausdor↵
content). Given a point p 2 Ur = U \Nr(U) let Rp,r denote a radial projection map
Rp,r : Ur \ {p} �! @Ur. Denote the length of the shortest edge of U by r1. Extend
Rp,r to a map Rp,r : U �! Nr(U) by setting Rp,r(x) = x for all x 2 U \ Ur. For any
x, y 2 Ur \ {p} we have

(6.1) dist(Rp,r(x), Rp,r(y)) 
const(U, n)dist(x, y)

min{|x� p|, |y � p|}
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Here we can take dist to be l1 or Euclidean distance since the two di↵er not more
than by a factor const(n).

Cover F0(X 0) by a finite collection of balls {�(pi, %i)} satisfying
P

i %
m+1

i <

2HCm+1(F0(X 0))  2emR0(Y ) HCm(Y 0)  c(m,Y )". If R1(Y ) � r1
2
we have nothing

to prove. Assume that R1(Y ) < r1
2
, and define R⇤ = R⇤(Y ) = R1(Y )+I2(m)"

1
m , r⇤ =

r⇤(Y ) = r1
2
� R⇤(Y ). If " is su�ciently small, r⇤ is positive. Let E =

S
i �(pi, 2%i).

Note the the (Euclidean) volume of E does not exceed 2n
P

i(%
m+1

i )
n

m+1  2n". There-
fore, if " = "(n, Y, U) is su�ciently small, V = UR1 \E is a non-empty set of volume
greater than rn⇤

2
.

We will choose a point p 2 V and define F
0(x) = Rp,R⇤ � F0(x). By (6.1) we have

that Rp,R⇤(�(pi, %i)) is contained in a ball of radius  const(U,n)%i
|p�pi|�%i

. Hence, we have

HCm+1(Rp,R⇤ � F0(X 0)) 
P

i
const(U,n)%m+1

i
(|p�pi|�%i)m+1 . Consider the integral of this quantity

over V :
Z

V

HCm+1(Rp,R⇤ � F0(X
0))dp 

Z

V

X

i

const(U, n)%m+1

i

(|p� pi|� %i)m+1
dp

 const(U, n)
X

i

%
m+1

i

Z

V

dp

(|p� pi|� %i)m+1

 const(U, n) HCm(Y
0)

(6.2)

The exact value of the constant const(U, n) changes from line to line; the last
integral is bounded since m+ 1  n� 1. (This inequality is one of the assumptions
of Theorem 6.1.)

It follows that there exists a point p 2 V with HCm+1(Rp,R0 � F0(X 0)) 
const(U,n)HCm(Y 0

)

rn⇤ /2
= const(U, n, Y )". Also, observe that, as Y

0 ⇢ NR1(Y )(@U), Rp,R⇤

is the identity map on Y
0. We choose "0 = const(U, n, Y )". Choosing " su�ciently

small, we can assume "0 <
I01(m+1)

HCm(Y )
m+1
m

. This is our last restriction on ", and it is not

di�cult to choose a positive "(n, Y, U) satisfying all the constraints above.
This finishes the proof of the initial step of the induction, when HCm(Y 0)  " (or,

k = 1).
Now, we are going to explain the idea of the proof of the inductive step. Suppose

(1+ 1

20m
)k" < HCm(Y 0)  (1+ 1

20m
)k+1

" and maxy2Y 0 dist(y, Y )  Rk(Y ), and that we

already established the desired assertion for all Ỹ 0 such that HCm(Ỹ 0)  (1+ 1

20m
)k"

and maxy2Ỹ 0 dist(y, Y )  Rk(Y ).
In this case we are going to find certain Y

00 ⇢ X
0 such that 1) For each y 2 Y

00

dist(y, Y 0) < Rk(Y ) � Rk+1(Y ); 2) HCm(Y 00)  HCm(Y 0
)

1+
1

20m
. The first property implies

that for each y 2 Y
00
dist(y, Y )  Rk(Y ), and now 2) will imply that Y

00 can be
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“filled” as desired. We will be filling Y
00 by the image of a certain subset X 00 of X 0

that contains Y 00; the rest of X 0 will be used to “fill” the “gap” between Y
0 and Y

00.
Here are some details of how this will be accomplished. In the next subsection we

are going to define a certain finite system of closed metric balls B̃j in S intersecting
Y

0, and establish some useful properties of these balls. Then we will remove all the
intersections of the interior of B̃j with Y

0 from Y
0. Instead we will attach “fillings” of

@B̃j

T
Y

0 obtained by the application of the induction assumption. More precisely,
we will apply our theorem to m, Y defined as @B̃j

T
Y

0, and X defined as @B̃j

T
X

0.
The desired filling will be F (@B̃j

T
X

0). (The resulting F will be denoted ⌧j below.)
The result will be Y

00. In other words, Y 00 = (Y 0 \
S

j(B̃j

T
Y

0))
SS

j ⌧j(@B̃j

T
X

0).

The subset X
00 will be the closure of X 0 \

S
j B̃j

T
X

0. The “rest of X 0” will beS
j B̃j

T
X

0. “Filling the gap between Y
0 and Y

00” is accomplished by applying the

coning (Lemma 5.2) to B(R) defined as B̃j, Y defined as (Y 0 T
Bj)

S
(X 0 T

@B̃j), and
⌧ defined as the identity map on Y

0 T
B̃j, and ⌧j on X

0 T
@B̃j. In section 6.4 we will

provide more details of this construction and verify that so constructed F
0 satisfies

property (2). The proof will use various properties of chosen balls B̃j established in
section 6.3.
The distances between points y 2 Y

00 and Y
0 will be less than 2maxj rad(B̃j).

As we will see in the next subsection, the radii of all B̃j will be less than
2A(m) HCm(Y )

1
m (1 + 1

20m
)�l/m, where A(m) is a specific constant ( later we will

choose A(m) as (60mI1(m))
m�1
m ), and l = blog

1+
1

20m

HCm(Y )

HCm(Y 0)c. Now we can define

all Ri(Y ) by recurrent relations Ri(Y ) = Ri�1(Y )� 4A(m) HCm(Y )
1
m [(1+ 1

20m
)

1
m ]�l,

and R1(Y ) can be defined so that all Ri(Y ) for i  K remained positive, where
K is the minimal k such that HCm(Y )  (1 + 1

20m
)k"(n, Y, U). So, one can take

R1(Y ) = 4A(m) 1

1�(1+
1

20m )
� 1

m
HCm(Y )

1
m . Therefore, one will get property (3) in The-

orem 6.1 with I2(m + 1) = 4A(m) 1

1�(1+
1

20m )
� 1

m
 (4000m)m. (Here we are using

I1(m) = (100m)m.) Thus, one can take I2(m) = (4000m)m.

6.3. Definition of covering {B̃j} and some useful estimates. Fix a covering
of Y 0 by closed balls �j, j = 1, . . . , N of radius rj centered in S so that

P
j r

m
j 

HCm(Y 0)(1+�), where � can be chosen arbitrarily small. We denote this collection of

balls Q. For each subset W of Y 0 define m-dimensional Hausdor↵ content fHCm(W )
with respect to Q as the infimum of

P
j2J r

m
j over all subsets J ⇢ {1, . . . , N} such

thatW ⇢
S

j2J �j. In other words, we calculate the Hausdor↵ content with respect to

only balls from the collection Q. Clearly, for each W we have fHCm(W ) � HCm(W ),

so any upper bound for fHCm will be automatically an upper bound for HCm.
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Define A(m) as (60mI1(m))
m�1
m . For a point p 2 Y

0 consider quantity
gHC(B(p,r)

T
Y 0

)

rm . Observe that as r ! 0 this quantity approaches positive infinity

(since fHC of any non-empty subset of Y 0 is bounded from below by the m-th power
of the radius of the smallest ball), and, as r ! 1, it approaches 0. Hence, for

each p we can define r
0(p) = sup{r|fHC(B(p, r)

T
Yi) � rm

A(m)m
}. It will be more

convenient to work with a slightly larger radius r(p) = (1 + 1

m)r0(p). Assuming �

is su�ciently small, r(p) < 2A(m) HCm(Y 0)
1
m . If HCm(Y 0)  (1 + 1

20m
)�l HCm(Y ),

then r(p) < 2A(m) HCm(Y )
1
m [(1 + 1

20m
)

1
m ]�l.

Now we would like to define concentric balls B̃j(p, r̃(p)) for some somewhat larger
radii r̃(p) � r(p). For this purpose consider the annulus A = B(p, (1 + 1

m)r(p)) \
B(p, r(p)). Applying the coarea inequality (Lemma 5.3) to A

T
Y

0 we see that there
exists r̃(p) 2 [r(p), (1 + 1

m)r(p)] such that

(6.3) HCm�1(@B(p, r̃(p) \ Y
0)  2m

r(p)
HCm(B(p, (1 +

1

m
)r(p)) \ Y

0)

Use the Vitali covering construction to find a finite system of disjoint balls B̃j =
B(qj, r̃(qj)), j 2 {1, . . . , L} for some L such that

S
i B(qj, 3r̃(qj)) covers all Y 0.

From the definition of B̃j we will derive four useful inequalities, namely (6.7), (6.8),
(6.9), and (6.10), relating various quantities to HCm(Y 0).

Inequality (6.7). Observe that from the definition of r(qj) there exists a sequence of

radii rl approaching
r(qi)
1+

1
m

from below with fHCm(B(qj, rl)\Y 0) � r(qj)m

(1+
1
m )mA(m)m

; on the

other hand, fHCm(B(qj, r)\Y 0) < rm

A(m)m
for every r >

r(qj)

1+
1
m

. Since fHCm(B(qj, r)\Y 0)

is monotone, it follows that

(6.4) fHCm(B(qj,
r(qj)

1 + 1

m

) \ Y
0) =

r(qj)m

(1 + 1

m)mA(m)m

Also, for every ✓ � 1

1+
1
m

we have

(6.5) fHCm(B(qj, ✓r(qj)) \ Y
0)  (1 +

1

m
)m✓m fHCm(B(qj,

r(qj)

1 + 1

m

) \ Y
0)

Let {�jl} denote the covering of B(qj,
r(qj)

1+
1
m

)\Y 0 realizing its Hausdor↵ content with

respect to Q, fHCm(B(qj,
r(qj)

1+
1
m

)\ Y
0) =

P
l rad(�jl)

m. Since 1

(1+
1
m )mA(m)m

<
1

(2m)m
we

have rad(�jl) <
r(qj)
2m for each l. In particular, if i 6= j, then none of balls �jl can

appear as a ball �il0 in a covering that realizes gHCm(B(qi,
r(qi)
1+

1
m

) \ Y
0). Therefore,
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P
j
fHCm(B(qj,

r(qj)

1+
1
m

) \ Y
0) = fHCm([jB(qj,

r(qj)

1+
1
m

) \ Y
0)  fHCm(Y 0). Also, �jl does

not intersect Y 0 \B(qj, r(qj)). It follows that

(6.6) fHCm(Y
0 \

[
B̃j)  fHCm(Y

0)�
X

j

fHCm(B(qj,
r(qj)

1 + 1

m

) \ Y
0).

On the other hand, since Y
0 ⇢

S
B(qi, 3r(qi)) and utilizing (6.5) we have

X

j

fHCm(B(qj,
r(qj)

1 + 1

m

)\Y 0) �
X

j

1

(1 + 1

m)m3m
fHCm(B(qj, 3r(qj))\Y 0) � 1

(1 + 1

m)m3m
fHCm(Y

0).

Denote (

P
j
gHCm(B(qj ,

r(qj)

1+ 1
m

)\Y 0
)

gHCm(Y 0)
)

1
m by ↵.

We just established that ↵ � 1

3(1+
1
m )

>
1

5
; earlier we saw that ↵  1.

Using the definition of ↵ in (6.6) we obtain

(6.7) fHCm(Y
0 \

[
B̃j)  (1� ↵

m)fHCm(Y
0)  (1� 1

5m
) HCm(Y

0).

Now we are going to deduce three more inequalities:

(6.8)
X

j

r(qj) HCm�1(@B̃j \ Y
0)

m
m�1  30(m+ 1)

A(m)
1

m�1

↵
m+1 HCm(Y

0)
m+1
m

(6.9)
X

j

HCm�1(@B̃j \ Y
0)

m
m�1  30m

A(m)
m

m�1
↵
m HCm(Y

0)

(6.10)
X

j

r(qj) HCm(B̃j \ Y
0)  12A(m)↵m+1 HCm(Y

0)
m+1
m

Proof of inequality (6.8). From inequalities fHCm((1 + 1

m)Bj \ Y
0)  (1+

1
m )

mr(qj)m

A(m)m
,

(6.3) and (6.5) we obtain
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HCm�1(@B̃j \ Y
0)  2m

r(qj)
HCm((1 +

1

m
)Bj \ Y

0)

=
2m

r(qj)
fHCm((1 +

1

m
)Bj \ Y

0)
1
m HCm((1 +

1

m
)Bj \ Y

0)
m�1
m

 4m

A(m)
HCm((1 +

1

m
)Bj \ Y

0)
m�1
m


4m ⇤ (1 + 1

m)2m�2

A(m)
fHCm(B(qj,

r(qj)

1 + 1

m

) \ Y
0)

m�1
m

 4e2m

A(m)
fHCm(B(qj,

r(qj)

1 + 1

m

) \ Y
0)

m�1
m

(6.11)

We use (6.4) and (6.11) to bound from above the the left hand side of (6.8).

X

j

r(qj) HCm�1(@B̃j \ Y
0)

m
m�1 

X

j

4e2mr(qj)

A(m)
m

m�1

fHCm(B(qj,
r(qj)

1 + 1

m

) \ Y
0)


4e2m(1 + 1

m)

A(m)
1

m�1

X

j

fHCm(B(qj,
r(qj)

1 + 1

m

) \ Y
0)

m+1
m

 4e2(m+ 1)

A(m)
1

m�1

�X

j

fHCm(B(qj,
r(qj)

1 + 1

m

) \ Y
0)
�m+1

m

 4e2(m+ 1)

A(m)
1

m�1

↵
m+1 fHCm(Y

0)
m+1
m

 30(m+ 1)

A(m)
1

m�1

↵
m+1 HCm(Y

0)
m+1
m

(6.12)

This finishes the proof of (6.8).
Proof of inequalities (6.9) and (6.10). By (6.11) and arguing as in the last step of
the proof of (6.8) we obtain

X

j

HCm�1(@B̃j \ Y
0)

m
m�1  4e2m

A(m)
m

m�1

X

j

fHCm(B(qj,
r(qj)

1 + 1

m

) \ Y
0))

 30m

A(m)
m

m�1
↵
m HCm(Y

0)
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Using (6.4) and (6.5) we get

X

j

r(qj) HCm(B̃j \ Y
0) 

X

j

(1 +
1

m
)A(m)fHCm(B(qj,

r(qj)

1 + 1

m

) \ Y
0)

1
m fHCm(B̃j \ Y

0)

 (1 +
1

m
) ⇤ (1 + 1

m
)2mA(m)

X

j

fHCm(B(qj,
r(qj)

1 + 1

m

) \ Y
0))

m+1
m

 (1 +
1

m
) ⇤ (1 + 1

m
)2mA(m)(

X

j

fHCm(B(qj,
r(qj)

1 + 1

m

) \ Y
0)))

m+1
m

 12A(m)↵m+1 HCm(Y
0)

m+1
m

6.4. Inductive step: construction of F
0
. Here’s a brief description of the strategy

of the proof. Map F
0 will be defined in a di↵erent manner on di↵erent parts of the

domainX
0. First we will define F 0 on

S
j X

0\@B̃j in such a way that F 0(X 0\@B̃j) will
have controlled m-dimensional Hausdor↵ content. This is accomplished by applying
(using our inductive assumption) Theorem 6.1 one dimension lower with X

0 \ @B̃j

playing the role of X, Y 0 \ @B̃j playing the role of Y . and B̃j playing the role of U .
The next step is to extend F

0 to
S

j X
0 \ B̃j. We do this using the cone construction

(Lemma 5.2) and utilizing the bound we obtained for the image of X 0 \ @B̃j in the
previous step. Finally, if we define X 00 by throwing out

S
j X

0 \ B̃j from the domain

X
0 and taking the closure, and then define Y

00 by replacing
S

j Y
0 \ B̃j ⇢ Y

0 with

F
0(X 0 \ @B̃j), we will show (using inequalities proved in the previous section) that

the Hausdor↵ content of Y 00 has decreased by a multiplicative constant in comparison
with the Hausdor↵ content of Y 0. This allows us to apply the inductive assumption
on k, extending the definition of F 0 to X

00 and, thus, to the whole of X.
We start by defining F

0 on
S

j X
0\@B̃j. For each j we apply inductive assumption

for the dimension m to sets Xj = @B̃j \X
0, Yj = @B̃j \ Y

0 and convex set B̃j. We
obtain a map ⌧j : Xj ! B̃j with the properties

(6.13) HCm(⌧j(Xj))  I1(m) HCm�1(@B̃j \ Y
0)

m
m�1

Let F̃ denote a map, such that F̃ (x) = x for x 2 Y
0 and F̃ (x) = ⌧j(x) for x 2 Xj.

We extend ⌧j to a map F̃ : X �! U using Tietze extension theorem.
Now we would like to modify F̃ on

S
j X

0 \ B̃j. Let Zj = (Y 0 \ B̃j) [ ⌧j(Xj).

We apply Lemma 5.1 to define Fj : X 0 \ B̃j �! U , such that Fj = F̃ on Xj and
Fj(x) = x on Y

0 \ B̃j. The resulting map satisfies the inequality HCm+1(Fj(X 0 \
B̃j))  emr(qj) HCm(Zj).
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Figure 2

Using (6.13), (6.8) and (6.10) we estimate

X

j

HCm+1(Fj(X
0 \ B̃j)) 

X

j

emr(qj)
�
HCm(⌧j(Xj)) + HCm(Y

0 \ B̃j)
�


X

j

emr(qj)
�
I1(m) HCm�1(@B̃j \ Y

0)
m

m�1 +HCm(Y
0 \ B̃j)

�

 30em(m+ 1)I1(m)

A(m)
m

m�1
↵
m+1 HCm(Y

0)
m+1
m + 12emA(m)↵m+1 HCm(Y

0)
m+1
m

 [
30em(m+ 1)I1(m)

A(m)
m

m�1
+ 12emA(m)]↵m+1 HCm(Y

0)
m+1
m

(6.14)

Finally, we use the inductive assumption for k to modify F̃ on X
00 = X

0 \
S

B̃j.
We estimate the Hausdor↵ content of Y 00 = (

S
j ⌧j(Xj)) [ (Y 0 \

S
j B̃j). Combining

inequalities (6.13), (6.7) and (6.9) we get

HCm(Y
0 \

[

j

B̃j) +
X

j

HCm(⌧j(Xj))  (1� ↵
m) HCm(Y

0) +
30mI1(m)

A(m)
m

m�1
↵
m HCm(Y

0)

 (1� ↵
m(1� 30mI1(m)

A(m)
m

m�1
)) HCm(Y

0)

= (1� ↵
m

2
)HCm(Y

0)  (1� 1

2 ⇤ 5m ) HCm(Y
0)

 (1� 1

10m
) HCm(Y

0) < (1 +
1

20m
)k".
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by our choice of A(m). (Recall that ↵ � 1

5
.) It follows that we can apply the

inductive assumption on k for X 00, Y 00 and the restriction of F̃ to X
00.

We obtain a map F
00 : X 00 �! U , which is an identity on Y

0 and satisfies

(6.15) HCm+1(F
00(X 00))  I

0
1
(m+ 1)(1� ↵

m

2
)
m+1
m HCm(Y

0)
m+1
m + "0

Observe that F 00 and F̃ agree on Y
0 and @X 00. We define F

0(x) = F
00(x) for x 2 X

00

and F
0(x) = Fj(x) for x 2 Xj. Combining (6.14) with (6.15) we get

HCm+1(F
0(X 0)) 

�
(
30em(m+ 1)I1(m)

A(m)
m

m�1
+ 12emA(m))↵m+1+

I
0
1
(m+ 1)(1� ↵

m

2
)
m+1
m

�
HCm(Y

0)
m+1
m + "0

 ((
e(m+ 1)

2
+ 12emA(m))↵m + I

0
1
(m+ 1)(1� 1

2
↵
m)) HCm(Y

0)
m+1
m + "0

= ((
e(m+ 1)

2
+ 12e60

m�1
m m

2� 1
m I1(m)

m�1
m )↵m+

I
0
1
(m+ 1)(1� 1

2
↵
m)) HCm(Y

0)
m+1
m + "0

 I
0
1
(m+ 1)HCm(Y

0)
m+1
m ,

providing that I1(m + 1) = 2I 0(m + 1) � 4[ e(m+1)

2
+ 12e60

m�1
m m

2� 1
m I1(m)

m�1
m ] + 1,

and "0 is su�ciently small. (Here we were using the inequality ↵  1.) It is easy to
see that the last inequality holds, if we take I1(m) = (100m)m.
This finishes the proof of the theorem.

7. Proof of Proposition 2.1 (and the main Theorem 1.1).

As the case m = 1 easily follows from the definitions, we assume that m � 2.
Now the proof is similar to the proof in [Gu11], [Gu17] but with some twist. We
start from the map of X to the rectangular nerve RN corresponding to the chosen
good covering of X that was constructed in section 4. Then, as it was explained
in section 4, we proceed by induction starting from the maximal cells of RN and
going to their skeleta of lower and lower dimension. We will construct a sequence of
continuous maps � = �

(0) ⇠ �
(1) ⇠ ... ⇠ �

(i) ⇠ . . . subordinate to the cover, where
�
(i) will map X to the union of j(F )-skeleta of of all maximal cells F of RN , where

j(F ) = max{m� 1, dimF � i}. Recall, that �(i+1) di↵ers from �
(i) only on the union

of inverse images (�(i))�1(Fj) for all maximal open faces Fj in RN
(i) of dimension

� m, and for each Fj the restriction of �(i+1) to (�(i))�1(Fj) has its image in the
closure of Fj (see section 4). Besides this requirement, we are going to construct
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�
(k), k = 1, 2, . . . so that these maps will obey the following estimate, slightly weaker

than the estimate that � = �
(0) obeys: For each face F of dimension � m in RN

HCm[�
(k)(X) \ Star(F )] < 2C1(m)"m%(F )me��d(F )

. (⇤⇤)

Here C1(m) = 14m+1 and � = b(m) = 49�m�1 ln 2 (see Lemma 4.1). This inequal-
ity will be needed to be able to continue constructing the subsequent maps �(k+1),
�
(k+2), etc. Once we are able to construct a sequence �(i) as above, we will construct
�
(1) exactly as in section 4. Then, as it was proven in section 4, we are done, as

every two points of X mapped to the same point of the (m� 1)-skeleton of RN are
at the distance  2

7
< 1.

On each step assume that �(k) was already constructed. To construct �(k+1) we
consider all maximal open faces Fj of RN

(k) of dimension � m. For each face Fj we
will be altering the �(k) on the inverse image of Fj under �(k).

If dimFj = m, we first observe that HCm(�(k)(X)
T
Fj)  HCm(Fj). To see this

we compare the right hand side of the inequality (**) with the lower bound ( r1
2
)m

for HCm(Fj) provided by Corollary 1.9. This implies the existence of an open metric
ball � in the complement of �(k)(X)

T
Fj in Fj. Consider a retraction � of Fj \ � to

@Fj. Define �(k+1) on (�(k))�1(Fj) as the composition of the restriction of �(k) to the
same set and �. It is clear that the validity of (**) is not a↵ected.

If i = dimFj � m + 1, then the procedure will consist of two steps. On the first
step we improve the image of �(k) in the considered cell using Theorem 6.1. As the
result the image of the map will be very close to the boundary of the cell. Our
upper bound for the m-dimensional Hausdor↵ content can increase but only by a
factor very close to 1. On the second step we compose our map with the radial
projection from the center of the ball. Again, our upper bound for the HCm of the
image can increase, but as the image is very close to the boundary, the factor will
be very close to 1. Moreover, in both cases the di↵erence between the factor and 1
exponentially decreases with the dimension of the cell. As a corollary, the product
of all these factors for di↵erent values of the dimension remains uniformly bounded
by an expression that does not depend on the dimension of the initial maximal open
cell in RN . (Recall that we do not have a control over their dimensions.) Finally,
choosing "m su�ciently small, we see that the product of all these factors for the
di↵erent dimensions will be less than 2, as desired.

Here is the description of these two steps:
Step 1. Denote the dimension of Fj by i, and redenote Fj as F i. Consider a system

of equidistant surfaces in F
i for @F i at distances ranging from 0 to r1"

�
m
m exp(���

m i),
where r1 is the smallest side length of F i, and � = �(m) 2 (0, 1) will be chosen
later. Use Lemma 5.4 to find an equidistant that we will denote @F i

% such that
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HCm�1(@F%

T
�
(k)(X)  4 C1(m)"

m��
m

m r
m�1

1
e
��m��

m i. Observe that @F i
% is a boundary

of a parallelepiped that we denote F i
%. Here % denotes the distance between @F i and

@F
i
%. (Recall that the considered metric on F

i is l
1.) Denote the annular domain

in F
i between @F

i and @F
i
% by A

%
0
. Now we would like to improve the restriction

of �(k) on (�(k))�1(F i
%) by applying Theorem 6.1 to U defined as F

i
%, X defined as

(�(k))�1(F i
%), f defined as the restriction of �(k) on (�(k))�1(F i

%), Y defined as the
inverse image of @F i

%

T
�
(k)(X) under this f , the dimension n equal to i, and m in

Theorem 6.1 defined as our m (so that the condition m + 1  n in Theorem 6.1
holds).
As as result, we are going to get a new map f̄ on X (replacing f) that

coincides with our old map f (that is, �(k)) on @F
i
%

T
�
(k)(X), has its image

in the R-neighbourhood of @F i
%, for R defined as in the text of Theorem 6.1,

and has HCm of its image bounded by I1(m)(4C1(m))
m

m�1 "

m��
m�1
m r

m
1
exp(��m��

m�1
i) 

C1(m)"mrm1 exp(�� i)[I1(m)4
m

m�1C1(m)
1

m�1 "

1��
m�1
m exp(� (1��)�

m�1
i)].

Observe that R  r1I2(m)(4C1(m))
1

m�1 "

m��
m(m�1)
m r

2
m�1
1

exp(�� (m��)
m(m�1)

i) 
r1"

�
m exp(���

m i), if "m is su�ciently small. For this purpose it is su�cient to take

any "m  (4C1(m))�
1

1�� I2(m)�
m�1
1�� , where C1(m) = 14m+1. Therefore the image of

f̃ is in R1 = 2r1"
�
m
m exp(���

m i)-neighbourhood of @F .
Now merge f̄ and the restriction of �

(i) to the inverse image of A
%
0

un-
der �

(i) into one continuous map � of (�(k))�1(F i) into F
i. Its image

will be in the R1-neighbourhood of @F
i. Its HCm will not exceed the

HCm of �
(k)(X)

T
F

i plus HCm of the image of f̄ , that is, it will not

exceed C1(m)"mrm1 exp(�� i)[1 + I1(m)4
m

m�1C1(m)
1

m�1 "

1��
m�1
m exp(� (1��)�

m�1
i)] =

C1(m)"mr
m+2

1
exp(�� i)(1 + const(m)"

1��
m�1
m exp(� (1��)�

m�1
i)), where const(m) denotes

4
m

m�1C1(m)
1

m�1 I1(m).
Step 2. On this step we compose the map � defined at the end of step 1 with the
radial projection from the center of F i to @Fi. The Lipschitz constant will not exceed

(1� 2R1
r1

)�1
< (1� 4"

�
m
m exp(���

m i))�1
< 1 + 8"

�
m
m exp(���

m i) for a su�ciently small
"m.
The resulting map will be �(k+1) defined on (�(k))�1(F i). Note that when we pass

from �
(k) to �

(k+1) our upper bound for the HCm of the image increases by not

more than the factor of (1 + const(m)"
1��
m�1
m exp(� (1��)�

m�1
i))(1 + 8"

�
m
m exp(���

m i))m.

For our idea to work, the product
QD

i=m(1 + const(m)"
1��
m�1
m exp(� (1��)�

m�1
i))(1 +
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8"
�
m
m exp(���

m i))m must converge and be less than 2. Replacing this product by the
infinite product, taking the natural logarithm, and using the inequality ln(1+x) < x

for all positive x, we can replace this requirement by a stronger requirement that

"

1��
m�1
m const(m)

1X

i=m

e
� (1��)�

m�1 i + 8"
�
m
mm

1X

i=m

e
� ��

m i
< ln 2 (⇤ ⇤ ⇤)

. Clearly, the series in this expression converge to some finite ⌧(m), and choosing "m
su�ciently small we can ensure that this inequality is valid.

Choose "m = (c⇤m)�m2
and � = �(m) = min{2

3
,

4

lnm} for some su�ciently large
constant c

⇤. To see there exists a choice of c⇤, c⇤ that makes the inequality above
valid, it is su�ciently to consider only the case, when m is su�ciently large.

We are going to replace the inequality (***) by the system of two inequalities (that
taken together are obviously stronger than (***)): We are going to require that each
of the two summands in the left hand side of (***) is less than 1

2
ln 2. We are

going to substitute 49�(m+1) ln 2 for �, and observe that the sums of two geometric
progressions in the left hand side of (***) are very close to m�1

1�� 49
m+1 log

2
e and,

correspindingly, m
� 49

m+1 log
2
e. Replacing 1

2
ln 2 by a smaller value 0.25, substituting

the expression for const(m) and multiplying both sides by 4 we obtain:

4"
1��
m�1
m 4

m
m�114

m+1
m�1 I1(m)

m� 1

1� �
49m+1 log

2
e  1,

and

32"
�
m
mm

m

�
log

2
e49m+1  1.

We consider two cases: m < e
6, when � = 2

3
, and m > e

6, when � = 4

lnm . In the
first case taking the logarithm, we obtain the inequalities:

(1 +
m

m� 1
) ln 4 +

m+ 1

m� 1
ln 14 +m(ln 100 + lnm) + ln(log

2
(e)) + ln(m� 1) + ln(3)+

(m+ 1) ln 49� m
2

3(m� 1)
(lnm+ ln c⇤) < 0,

and

ln(48 log
2
e) + 2 lnm+ (m+ 1) ln 49� 2

3
m(lnm+ ln c⇤) < 0.

Solving for ln c⇤ and taking the maximum over the set of all integer m between 2
and 403 = be6c, we see that both inequalities are always satisfied if c⇤ > e

38.
Now consider the case, when m � 404 = de6e and � = 4

lnm .
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Again, taking the logarithm, and rounding up the logarithms of constants to the
nearest integers we obtain somewhat stronger inequalities,

6.34 + lnm+ 4(m+ 1) +m(4.61 + lnm) +
1� 4

lnm

m� 1
(�m

2)(ln c⇤ + lnm) < 0,

and

4 + 4(m+ 1) + 2 lnm+
4

m lnm
(�m

2)(ln c⇤ + lnm) < 0.

Now the second inequality holds for c⇤ � 2; the first inequality holds for c⇤ � e
38.

We conclude that all four inequalities hold for all c⇤ > e
38 and, in particular, for

c
⇤ � 1017.
Finally, recall that "0m = "m

10⇤2m . This completes the proof of the main theorem.

8. The proof of systolic inequalities.

Here we prove the systolic inequalities stated in subsection 1.2. We will be using
the upper bounds for UWm�1 provided by Theorem 1.1.
The proof is modelled on the argument from [Gr] used there to deduce the in-

equality sys1(Mn)  c(n)vol
1
n (Mn). First, observe that according to [Gr], Appendix

1, Proposition (D) on p. 128, the Kuratowski embedding f : X �! L
1(X) is at the

distance 1

2
UWm�1(X) from some (m � 1)-degenerate map g : X �! L

1(Mn), that
is, a map g which is a composition of a map g1 of X into a (m�1)-dimensional poly-
hedron K, and a map g2 of K into L

1(X). Let W denote the quotient space of the
cylinderX⇥[0, 1] by the quotient map g1 : X⇥{1} �! K. Define F : W �! L

1(X)
as f on the “bottom” X ⇥ {0} of W , g (or, equivalently, g2) on the “top”, and as
straight line segments connecting f(x) and g(x) in L

1(X) on all “vertical” segments
of W “above” x 2 X ⇥ {0}.
Exactly as in the proof of Lemma 1.2.B from [Gr] one can prove that if sys1(X) �

3UWm�1(X), then the classifying map Q : X �! K(⇡1(X), 1) can be extended to
W by first mapping it as above to L

1(X) and then extending the classifying map
defined on X ⇥ {0} ⇢ W ⇢ L

1(X). As in the proof of Lemma 1.2.B from [Gr] one
considers a very fine triangulation ofW and performs the extension to 0-dimensional,
then 1-dimensional, then 2-dimensional skeleta of the chosen triangulation of W . All
new vertices of the triangulation are being mapped first to the nearest points of f(X),
and then to K(⇡1(X), 1) via the classifying map Q. All 1-dimensional simplices are
first mapped to minimal geodesics between the images of their endpoints in f(X),
and then to K(⇡1(X), 1) using Q. Observe that the triangle inequality implies that
their images in f(X) have length  UWm�1(X)+ ", where " can be made arbitrarily
small by choosing a su�ciently fine initial triangulation of W . We observe that an
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easy compactness argument implies that there exists a positive � such that each
closed curve of length  3UWm�1(X) + � is still contractible. We choose " above
as �

3
. Now the boundary of each new 2-simplex in W has been already mapped to

a closed curve of length  3(UWm�1(X) + ") in X that is contractible in X. So,
we can map the corresponding 2-simplex in W by, first, contracting the image of
its boundary in f(X) to a point, and then mapping the resulting 2-disc in f(X) to
K(⇡1(X), 1) using the classifying map Q.

Finally, one argues that the extension to the skeleta of all higher dimensions is
always possible asK(⇡1(X), 1) is aspherical, as the corresponding obstructions live in
homology groups of the pair (W, f(X)) with coe�cients in trivial (higher) homotopy
groups of the target space K(⇡1(X), 1).

It remains to notice that this extension is impossible as the inclusion X⇥ {0} �!
W is homotopic to g = g1 � g2, and, therefore, induces trivial homomorphisms of all
homology groups in dimensions � m. Therefore, the existence of such an inclusion
would contradict the assumption that X is m-essential.
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