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CONFORMAL ASSOUAD DIMENSION AND MODULUS

S. Keith and T. Laakso

Abstract. Let α ≥ 1 and let (X, d, µ) be an α-homogeneous metric
measure space with conformal Assouad dimension equal to α. Then there
exists a weak tangent of (X, d, µ) with uniformly big 1-modulus.

1 Introduction

The existence of families of curves with non-vanishing modulus in a metric
measure space is a strong and useful property, perhaps most appreciated
in the study of abstract quasiconformal and quasisymmetric maps, Sobolev
spaces, Poincaré inequalities, and geometric rigidity questions. See for ex-
ample [BoK3], [BouP2], [Ch], [HK], [HKST], [K2,3], [KZ], [P1], [Sh], [T2]
and the many references contained therein. In this paper we give an exis-
tence theorem for families of curves with non-vanishing modulus in weak
tangents of certain metric measure spaces, and show that this existence is
fundamentally related to the conformal Assouad dimension of the underly-
ing metric space.
Theorem 1.0.1. Let α ≥ 1 and let (X, d, µ) be an α-homogeneous metric
measure space with conformal Assouad dimension equal to α. Then there
exists a weak tangent of (X, d, µ) with uniformly big 1-modulus.

The terminology of Theorem 1.0.1 will be explained in section 2, and
several applications will be given momentarily. For the moment we note
that the notion of uniformly big 1-modulus is new, and describes those
metric measure spaces that are rich in curves at every location and scale,
as measured in a scale-invariant way by modulus. We recall that a weak
tangent of a metric measure space is any metric measure space obtained
as a pointed measured Gromov–Hausdorff limit of a sequence of re-scalings
of the original metric measure space taken at various locations; and the
conformal Assouad dimension of a metric space (X, d) is defined as the
infimal Assouad dimension amongst all metric spaces quasisymmetrically
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homeomorphic to (X, d). Heinonen [H, Theorem 14.16] has shown that the
conformal Assouad dimension of a uniformly perfect complete metric space
(X, d), and in particular an Ahlfors regular complete metric space, can be
more familiarly expressed as the infimal Hausdorff dimension amongst all
Ahlfors regular subsets of Euclidean space quasisymmetrically homeomor-
phic to (X, d). Theorem 1.0.1 can be strengthened in this setting of Ahlfors
regular metric spaces by an argument involving a result of Tyson [T2] to
obtain the following.
Corollary 1.0.2. Let α ≥ 1 and let (X, d) be an Ahlfors α-regular
metric space. Then the conformal Assouad dimension of (X, d) is equal to
α if and only if there exists a weak tangent of (X, d) that has non-vanishing
p-modulus for some p ≥ 1. In this case there further exists a weak tangent
of (X, d) with uniformly big 1-modulus.

Theorem 1.0.1 can be applied to deduce stronger results for metric
spaces with sufficient symmetry. This is demonstrated in the following
corollaries.
Corollary 1.0.3. Let α ≥ 1, let (X, d, µ) be a compact α-homogeneous
metric measure space with conformal Assouad dimension equal to α, and
suppose that (X, d) admits a uniformly quasi-Möbius action G � X for
which the induced action on the space of distinct triples of X is cocom-
pact. Then there exists x ∈ X and a quasi-Möbius homeomorphism from
X \ {x} to an α-homogeneous metric measure space with uniformly big 1-
modulus. If we further assume that (X, d) is Ahlfors α-regular, then (X, d)
has uniformly big α-modulus.

Bonk and Kleiner [BoK2] have shown that an Ahlfors α-regular metric
space with non-vanishing α-modulus, α > 1, which admits a quasi-Möbius
action that is both fixed point free and has an induced cocompact action
on the space of distinct triples of X, is then Loewner; or equivalently by
Heinonen and Koskela [HK] admits a (1, α)-Poincaré inequality. Bonk and
Kleiner [BoK2] then applied Corollary 1.0.3 in conjunction with several
deep results to show that a Gromov hyperbolic group acts discretely, co-
compactly, and isometrically on hyperbolic 3-space if the following holds:
The boundary of the Gromov hyperbolic group is homeomorphic to the
2-sphere, and quasisymmetric homeomorphic to Ahlfors α-regular space
with conformal Assouad dimension α. A well-known conjecture of Can-
non [C] postulates that the same conclusion holds without the assumption
that the boundary is quasisymmetrically homeomorphic to an Ahlfors α-
regular space with conformal Assouad dimension α. We recall that solving
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Cannon’s conjecture would solve a large part of Thurston’s hyperbolization
conjecture; see [C].

Another notion of self-symmetry, expressed by big pieces of itself (BPI)
geometry, and introduced by David and Semmes [DS], describes those
Ahlfors regular metric spaces that possess certain quantitative bi-Lipschitz
self-similarity on sets of positive measure. There is a natural notion of BPI
equivalence amongst BPI metric spaces. An example of one such equiva-
lence class is given by uniformly α-rectifiable metric spaces, α ∈ N, which
are those BPI metric spaces that are BPI equivalent to Rα. The collec-
tion of BPI metric spaces exhibit a wide range of relations with modulus.
For example, there are BPI metric spaces (X, d) that have uniformly big
p-modulus for every p > α, but not for p = α, where α is the Hausdorff
dimension of (X, d). Nonetheless, the next corollary demonstrates that the
realm of BPI metric spaces is a natural setting for uniformly big 1-modulus.

Corollary 1.0.4. Let p ≥ 1. Every BPI metric space with non-vanishing
p-modulus is BPI equivalent to a BPI metric space with uniformly big 1-
modulus.

The quintessential example of a space with uniformly big 1-modulus is
the product of any Ahlfors regular metric space with the unit interval. By
this example we see that uniformly big 1-modulus is a weaker condition than
the (1, 1)-Poincaré inequality of Heinonen and Koskela [HK]. Nonetheless,
many properties that hold on spaces that exhibit a (1, 1)-Poincaré inequal-
ity also hold on spaces with uniformly big 1-modulus. In particular, qua-
sisymmetric maps between Ahlfors regular metric spaces with uniformly big
1-modulus exhibit certain quantitative bi-Lipschitz behavior, even when the
map is not defined on the whole space. This topic is studied in [KL] where
we answer and generalize related question of Semmes [S, Questions 4.8
and 4.9]. Corollary 1.0.4 plays a crucial role in this analysis.

The above applications of Theorem 1.0.1 involve exploiting the symme-
try of a metric space in order to establish the existence of curves. Theo-
rem 1.0.1 can also be applied in its contrapositive form to give upper bounds
for the conformal Assouad dimension of a metric space. The problem of
calculating the conformal Assouad dimension, or the conformal (Hausdorff)
dimension, of an arbitrary metric space has been considered in a variety of
circumstances. See for example [Bou], [BouP1], [BT], [G1], [P1], [T3] and
[H, Section 15]. Theorem 1.0.1 implies that the conformal Assouad dimen-
sion of certain metric measure spaces is strictly less than their Assouad
dimension whenever all the weak tangents of the given metric measure
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space do not have uniformly big 1-modulus. In practice this condition is
often simple to check, especially when the given metric space is sufficiently
self-similar. As an example consider the Sierpinski n-carpet, n ∈ N, which
is the classical fractal obtained by subdividing the cube [0, 1]n ⊂ Rn into 3n

congruent cubes, removing the middle cube, and continuing in a self-similar
manner.

Corollary 1.0.5. The conformal Assouad dimension, and therefore also
the conformal (Hausdorff) dimension, of the Sierpinski n-carpet is strictly
less than the Hausdorff dimension of the Sierpinski n-carpet, for every
n ∈ N.

As far as we know the above result is new for n ≥ 3 – Bruce Kleiner re-
cently informed us that he previously proved that the conformal Hausdorff
dimension of the Sierpinski square and Menger sponge is each strictly less
than their respective Hausdorff dimension. Our proof is general and can
be applied to most fractals in Euclidean space that are constructed by pro-
cesses similar to that of the Sierpinski carpet. For example, Theorem 1.0.1
can also be used to show that the conformal Assouad dimension of both the
Menger sponge and Sierpinski gasket (triangle) are strictly less than their
respective Hausdorff dimensions. Recently the second author has used other
means to show that the conformal Assouad dimension of the Sierpinski tri-
angle is equal to 1. The method of Theorem 1.0.1 can also be employed to
improve the upper bounds on the conformal Assouad dimension given in
Corollary 1.0.5. This application will be pursued elsewhere.

In this current paper, Theorem 1.0.1 is deduced from stronger results
that may be of independent interest. We now briefly describe these.

• Theorem 4.0.5 states that an α-homogeneous metric measure space,
α ≥ 1, with non-vanishing p-modulus, p ≥ 1, contains a Borel set A
of positive measure, such that every tangent of A with non-vanishing
measure, has uniformly big 1-modulus. Thus there is no need here
to use weak tangents. Theorem 4.0.5 is further quantified in Re-
mark 4.0.6.

• Theorem 5.0.10 outlines quantitative conditions which guarantee that
the Assouad dimension of a metric measure space can be reduced
through a quasisymmetric homeomorphism. Roughly speaking, the
condition specifies that at every location and scale there should be an
annulus, so that the discrete modulus of discrete curves connecting
the annulus’s inner and outer part is sufficiently small. Originally in
Proposition 3.3.3 this condition is expressed in terms of the (classical)
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modulus of certain annuli on weak tangents of the given metric mea-
sure space.

• Proposition 5.1.1 outlines general conditions that guarantee a metric
measure space is quasisymmetrically homeomorphic to a metric space
with Assouad dimension equal to α′, for any given fixed α′ > 0. See
also Remark 5.1.2.

• Both Theorem 4.0.5 and 5.0.10 rely on the notion of discrete modulus
that is developed in section 3. The idea of discretizing modulus is not
new. It was developed by Pansu [P1,2] and Tyson [T1,2] in its most
abstract form to-date on Ahlfors regular metric spaces. As far as we
understand, the particular technique of discretization developed in
this paper is different and new. This is partly evidenced by the fact
that it applies to a more general class of metric measure spaces than
previously.

1.1 Acknowledgments. The authors would like to thank Juha Hein-
onen and Mario Bonk for helpful discussions on the topic, and in particular
Juha Heinonen for his careful advice about the paper. The first author
would also like to thank the following institutions for their support during
the construction of this paper: the University of Helsinki, the University of
Michigan, the Center for Mathematics and its Application at the Australian
National University, and the Institut Henri Poincaré.

1.2 Outline. Theorem 1.0.1 and all the corollaries are easily deduced
in section 6 from Theorem 4.0.5 and Theorem 5.0.10. The proof of these
latter two theorems comprises most of the paper, and relies on the theory
of discrete modulus developed in section 3.

Concerning the proof of Theorem 5.0.10, we remark that a qualitative
constraint on all weak tangents of a metric spaces usually gives some sort of
uniform control. For example, a Lipschitz function whose weak tangents are
all injective, is necessarily bi-Lipschitz (see [DS, Section 14.3]). In our case,
the hypotheses of Theorem 5.0.10 gives a uniform control which we exploit
through the use of discrete modulus (see Proposition 3.3.3). This enables us
to conformally and semi-discretely deform the metric at every location and
scale in a way that decreases the measure while still preserving relatively
large distances (see Proposition 5.1.1). The desired quasisymmetric home-
omorphism is then constructed by simultaneously implementing each of
these conformal deformations (see Proposition 5.2.1). The above described
uniform control is encapsulated in the parameter Ψ. A similar theme occurs
in the proof of Theorem 4.0.5 where again the relevant parameter is Ψ.
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2 Preliminary Definitions and Remarks

In this section we recall standard terminology and make standard remarks.
With regards to language, we say α, β > 0 are comparable with compara-
bility constant C > 0, whenever C−1α ≤ β ≤ Cα. When we say C > 0
is a varying constant that depends only on some data D, this means that
C denotes a positive variable, whose value may vary between each usage,
but is then fixed and depends only on D. For example when we say that
property P holds whenever α < Cβ for some α, β ∈ R, we mean that there
exists L > 0 that depends only on D, such that property P holds whenever
α < Lβ. We let [r] denote the greatest integer less than r, for any r ∈ R.

2.1 Metric measure spaces and quasisymmetric maps. We refer
the reader to [H] for detailed discussion on all topics covered in this sub-
section. A ball in a metric space (X, d) centered at x ∈ X and with radius
r > 0, is a set of the form

B(x, r) =
{
y ∈ X : d(y, x) < r

}
.

An embedding f : X → Y between metric spaces (X, d) and (Y, ρ) is said to
be η-quasisymmetric (or just quasisymmetric), for some homeomorphism
η : [0,∞) → [0,∞), if

ρ(f(x), f(y))
ρ((f(x), f(z))

≤ η

(
d(x, y)
d(x, z)

)
,

for every x, y, z ∈ X with x �= z. A metric space (X, d) is called uniformly
perfect if there is a constant C ≥ 1 such that for each x ∈ X and r > 0, we
have

B(x, r) \ B(x, r/C) �= ∅ whenever X \ B(x, r) �= ∅ .

A metric measure space (X, d, µ) consists of a set X, a metric d on X,
and a Borel measure µ supported on X. A metric measure space (X, d, µ)
is said to be Ahlfors α-regular, for some α > 0, with constant C > 0 (which
we call the Ahlfors regularity constant of (X, d, µ)), if

C−1rα ≤ µ
(
B(x, r)

) ≤ Crα, (1)
for every x ∈ X and 0 < r < diam X. Any measure that satisfies (1) will
be comparable to the α-Hausdorff measure. Here we say that two Borel
measures µ and ν, defined on a space X, are comparable with constant C
to mean that C−1µ(A) ≤ ν(A) ≤ Cµ(A) for every Borel set A ⊂ X. Thus
Ahlfors regularity is in fact a metric condition, and so we describe a metric
space as being Ahlfors α-regular if the α-Hausdorff measure µ on (X, d)
satisfies (1) for every x ∈ X and 0 < r < diam X. In this case, and unless
otherwise specified, we always denote the α-Hausdorff measure on (X, d)
by µ.



1284 S. KEITH AND T. LAAKSO GAFA

The measure µ of a metric measure space (X, d, µ) is said to be α-
homogeneous (or homogeneous), for some α > 0, if there exists a constant
C > 0 (which we call an homogeneity constant) such that

µ(B(y, r))
µ(B(x,R))

≥ C
( r

R

)α
,

whenever 0 < r < R < diam X, x ∈ X, and y ∈ B(x,R). In this case
we also say that (X, d, µ), and also µ, is α-homogeneous. A measure is
homogeneous if and only if it is doubling; a measure is doubling if there
exists L > 0 such that

µ
(
B(x, 2r)

) ≤ Lµ
(
B(x, r)

)
,

for every x ∈ X and 0 < r < diam X. In this paper we prefer to use the
first definition because of the immediate relation to the Assouad dimension.

Recall that the Assouad dimension of a metric space is the infimum
of all numbers β > 0 such that there exists C > 0 so that every set of
diameter r can be covered by at most Cε−β sets of diameter at most εr.
If (X, d, µ) is α-homogeneous, then the Assouad dimension of (X, d) is at
most α. Conversely, Vol’berg and Konyagin [VK], and Luukkainen and
Saksman [LS], have shown that any complete metric space with Assouad
dimension equal to α0 ≥ 0 carries an α-homogeneous measure for every
α > α0. As mentioned in the introduction, the conformal Assouad di-
mension of a metric space is the infimal Assouad dimension amongst all
metric spaces quasisymmetrically homeomorphic to (X, d). The following
theorem demonstrates that the conformal Assouad dimension of a complete
uniformly perfect metric space (X, d), and in particular any Ahlfors regu-
lar metric space, can be more familiarly expressed as the infimal Hausdorff
dimension amongst all Ahlfors regular subsets of Euclidean space quasisym-
metrically homeomorphic to (X, d).
Theorem 2.1.1 (Heinonen [H, Theorem 14.16]). Let (X, d) be a complete,
uniformly perfect metric space of finite Assouad dimension α0. Then, for
each α > α0, there exists a quasisymmetric homeomorphism of X onto a
closed Ahlfors α-regular metric subset of some Euclidean space.

The notion of conformal Assouad dimension is related to Pansu’s con-
cept [P1] of conformal dimension defined as the infimal Hausdorff dimen-
sion amongst all metric spaces quasisymmetrically homeomorphic to (X, d).
To avoid confusion we will always refer to conformal dimension in Pansu’s
sense as conformal (Hausdorff) dimension.

2.2 Dyadic decompositions. David [D] and Christ [Chr] have con-
structed generalized dyadic decompositions for any homogeneous metric
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measure space. The existence of the dyadic decomposition described here
can easily be inferred from their constructions. Let (X, d, µ) be α-homogen-
eous, for some α > 0, and assume for the moment that (X, d) is unbounded.
Then a dyadic decomposition is a collection � = ∪j∈Z�j satisfying the fol-
lowing conditions. Each �j is a collection of cubes, each of which is an
ordered pair (A, j) where A is a Borel subset of X. We often identify
(A, j) with the set A when this causes no ambiguity. We define a function
rad : � → Z by rad(A, j) = 2−j , and call rad(A, j) the radius of (A, j). In
general the diameter of a cube can vanish, and so will not be comparable
to the radius. We now state the properties of �. There exists a constant
C > 0 that depends only on α and the homogeneity constant of µ such
that:

1. We have X =
⋃

Q∈�j
Q, for every j ∈ Z.

2. We have Q ∩ R = ∅ whenever j ∈ Z, and Q,R ∈ �j with Q �= R.

3. Let Q ∈ �j and R ∈ �k for some k ≤ j. Then either Q ⊂ R or
Q ∩ R = ∅.

4. For each Q ∈ �, there exists w ∈ Q such that

B(w,C−1 rad Q) ⊂ Q ⊂ B(w,C radQ) .

5. For each Q ∈ � and 0 < τ < 1, we have µ(∂τQ) ≤ Cτ1/C µ(Q),
where here and after we let

∂τQ =
{
x ∈ Q : dist(x,X \ Q) ≤ τ rad Q

}

∪ {
x ∈ X \ Q : dist(x,Q) ≤ τ radQ

}
,

and for future reference define ∂τ�j = ∪Q∈�j
∂τQ for every j ∈ Z.

6. For each Q ∈ �, the metric measure subspace (Q, d, µ) is α-homo-
geneous with homogeneity constant C.

Let
	� = sup

R∈�

{
diam R(rad R)−1

}
,

and observe that from the properties of the dyadic decomposition we have
	� ≤ C.

If (X, d) is bounded, there is a similar decomposition, except that we
restrict ourselves to j ∈ Z that satisfy j ≤ j0, where j0 ∈ Z is determined
by 2j0 ≤ diam X ≤ 2j0+1. In this case we take X to be the top cube of
the decomposition. We remark that in the case when (X, d) is unbounded,
we can exhaust (X, d, µ) by closed and bounded α-homogeneous metric
measure subspaces each of which has homogeneity constant bounded above
by C. This follows from property 6 of the dyadic decomposition, and can
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be seen by taking the closure of a union of a sufficiently large, but also
uniformly bounded in number, collection of cubes from each �j.

2.3 Modulus. We refer the reader to [H, Chapter 7] for a complete
discussion of the following topics. A curve in a metric space (X, d) is a
continuous map γ of an interval I ⊂ R into X, and is said to be rectifiable
if it has finite length, which we denote by 	(γ). For a given family Γ of
curves in a metric measure space (X, d, µ), and p ≥ 1, the p-modulus of Γ
is given by

modp(Γ) = inf
∫

X
ρp dµ ,

where the infimum is taken over all Borel functions ρ : X → [0,∞] that
satisfy ∫

γ
ρ ds ≥ 1 ,

for all locally rectifiable curves γ ∈ Γ. Such functions are said to be admis-
sible for Γ. A metric measure space (X, d, µ) is said to have non-vanishing
p-modulus if there exists a collection of non-constant curves in X with
positive p-modulus. Otherwise we say (X, d, µ) has vanishing p-modulus.
Unless otherwise specified, when speaking of modulus in relation to an
Ahlfors α-regular metric space, where α > 0, we assume that the measure
used in the calculation of modulus is the α-Hausdorff measure.

The following theorem of Tyson emphasizes the relation between qua-
sisymmetric homeomorphism and modulus, and will be utilized in our proof.

Theorem 2.3.1 (Tyson [H, Theorem 15.10]). Let α ≥ 1, and let (X, d)
be an Ahlfors α-regular metric space with non-vanishing α-modulus. Then
the conformal (Hausdorff) dimension of (X, d) is equal to α.

2.4 Convergence of metric (measure) spaces, tangents, and weak
tangents. We now briefly recall several notions of convergence for metric
spaces and metric measure spaces that are, up to a subsequence, equivalent
to the usual definition for Gromov–Hausdorff convergence and measured
Gromov–Hausdorff convergence. We review this topic in order to establish
a language for describing converging metric spaces that is convenient for
our application. See [G2], [Pe], [ChiY] for more information.

A sequence (Fn) of nonempty closed subsets of a metric space (Z, l) is
said to converge to another nonempty closed subset F ⊂ Z if

lim
n→∞ sup

z∈Fn∩B(q,R)
dist(z, F ) = 0 ,
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and
lim

n→∞ sup
z∈F∩B(q,R)

dist(z, Fn) = 0 ,

for all q ∈ Z and R > 0. These suprema are interpreted to vanish when
the relevant sets of competitors Fn ∩ B(z,R) and F ∩ B(z,R) are empty.
Recall that a metric space is said to be proper if the closure of every ball in
that space is compact. Such spaces are complete. A pointed metric space
consists of a metric space and a point in that space, and likewise a pointed
metric measure space consists of a metric measure space and a point in
that space. We denote the push-forward of a measure µ under a map ι
by ι∗µ. We say a sequence of measures (µn) defined on a topological space
X converges weakly to some measure µ if for every continuous compactly
supported function f : X → R, we have∫

X
f dµn →

∫

X
f dµ ,

as n → ∞.
Definition 2.4.1 (Convergence of compact metric measure spaces). A
sequence of compact metric measure spaces {(Xn, dn, µn)} is said to con-
verge to another compact metric measure space (X, d, µ) if the following
holds: There exists a compact metric space (Z, l) and isometric embeddings
ι : X → Z and ιn : Xn → Z, for each n ∈ N, such that (ιn(Xn)) converges
to ι(X) as subspaces of Z, and such that ((ιn)∗µn) converges weakly to ι∗µ.

Definition 2.4.2 (Convergence of proper pointed metric measure spaces).
A sequence of proper pointed metric measure spaces {(Xn, dn, µn, pn)} is
said to converge to another proper pointed metric measure space (X, d, µ, p)
if the following holds: There exists a proper pointed metric space (Z, l, q)
and isometric embeddings ι : X → Z and ιn : Xn → Z for each n ∈ N such
that ι(p) = ιn(pn) = q, such that (ιn(Xn)) converges to ι(X) as subspaces
of Z, and such that ((ιn)∗µn) converges weakly to ι∗µ.

We define the convergence for sequences of compact metric spaces and
proper pointed metric spaces in the same manner as above, except that we
omit mention of any measure. The following lemmas can be deduced from
variants of Gromov’s compactness theorem [G2, Proposition 5.2]; see also
[DS, Lemma 8.28], [ChiY, Theorem 2.1.7], [Fuk1, Proposition 2.10], and
[Fuk2, Lemma 2.4].
Lemma 2.4.3. Let {(Xn, dn, µn, pn)} be a sequence of α-homogeneous,
complete pointed metric measure spaces each with homogeneity constant C,
for some α,C > 0, and suppose that for every n ∈ N we have L−1 ≤
µn(B(pn, R)) ≤ L for some fixed R,L > 0. Then a subsequence of
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{(Xn, dn, µn, pn)} converges to a complete pointed metric measure space
that is α-homogeneous with homogeneity constant C.

Lemma 2.4.4. The collection of complete pointed metric measure spaces
that are Ahlfors α-regular with Ahlfors regularity constant C, for some
α,C > 0, is compact under the convergence of pointed metric measure
spaces.

We now recall the notion of tangents and weak tangents of metric mea-
sure spaces.

Definition 2.4.5 (Tangents of metric measure spaces). A complete pointed
metric measure space (Y, l, ν, y) is said to be a tangent of a metric measure
space (X, d, µ) if there exists sequences (rn) and (sn) of positive reals, where
(rn) converges to 0, such that {(X, d/rn, snµ, x)} converges to (Y, l, ν, y).
Here we denote the completion of X by X .

Definition 2.4.6 (Weak tangents of metric measure spaces). A pointed
metric measure space (Y, l, ν, y) is said to be a weak tangent of a metric
measure space (X, d, µ) if there exists a sequence (xn) ⊂ X and sequences
(rn) and (sn) of positive reals, where each 0 < rn < diam(X, d), such that
{(X, d/rn, snµ, xn)} converges to (Y, l, ν, y). (Notice that (rn) or (sn) need
not tend to zero.)

We define the tangents and weak tangents of a metric space as above,
except that we suppress any mention of a measure.

We now describe the notion of convergence for maps between converg-
ing metric spaces. Let (fn) be a sequence of maps given by fn : Xn → Yn

for each n ∈ N, where {(Xn, dn, pn)} and {(Yn, ln, qn)} are sequences of
pointed metric spaces that converge to (X, d, p) and (Y, l, q), respectively.
By saying (fn) converges to f , we mean that there exists isometric embed-
dings, like those described in Definition 2.4.2, that realize the convergence
of the relevant sequences of metric spaces such that the following holds:
After identifying each metric space with its image under each embedding,
we have lim fn(xn) = f(x) whenever (xn) is a sequence, with xn ∈ Xn for
each n ∈ N, that converges to some x ∈ X. The following lemma can be
deduced via a variant of the proof of the Arzelá–Ascoli theorem; compare
with [H, Corollary 10.30].

Lemma 2.4.7. Let {(Xn, dn, pn)} and {(Yn, ln, qn)} be sequences of proper
pointed metric spaces that converge to (X, d, p) and (Y, l, q), respectively.
Let fn : Xn → Yn be an η-quasisymmetric homeomorphism for each n ∈ N,
where η is fixed. Further suppose that fn(pn) = qn, that there exists C > 0,
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and that there exists a sequence (xn), where each xn ∈ Xn, such that

C−1 ≤ dn(pn, xn) ≤ C and C−1 ≤ ln
(
qn, f(xn)

) ≤ C ,

for every n ∈ N. Then, after passing to a subsequence, we have (fn)
converges to some η-quasisymmetric homeomorphism between X and Y .

3 Discrete Modulus

We now present a discretization of modulus, and establish upper semi-
continuity type relationships with the usual modulus.

3.1 Discrete curves and the definition of discrete modulus. A
finite sequence (xi)Ni=1 of points in a metric space (X, d) is a discrete ε-
curve (or just a discrete curve), where N ∈ N and ε > 0, if d(xi, xi+1) ≤ ε
whenever 1 ≤ i ≤ N − 1. We often write the elements of a discrete curve γ
as γ(1), . . . , γ(#γ) where #S denotes the cardinality of a set S; for example
#(xi)Ni=1 = N . We define the length of a discrete curve γ by

	(γ) =
#γ−1∑

i=1

d(xi, xi+1) .

A discrete curve is degenerate if it consists of only one member. A function
γ : [0, L) → X, where L > 0, is said to be a parameterization of a discrete
curve (xi)Ni=1 if there exists a sequence 0 = t1 ≤ t2 ≤ · · · ≤ tN = L such
that

d(xi, xi+1) = ti+1 − ti , (2)
for every 1 ≤ i ≤ N − 1, and such that γ(r) = xi whenever ti ≤ r < ti+1

and 1 ≤ i ≤ N − 1.
A sequence (γn) of discrete curves in (X, d) is said to converge to a

curve γ in (X, d) if the following holds: There exists L > 0, and there
exists parameterizations γ : [0, L) → X and γn : [0, L) → X for each
n ∈ N, such that when viewed as functions, we have (γn) converges to γ
uniformly. Given a sequence of families Γn of discrete curves, we define the
limit supremum of (Γn) (written as lim supn→∞ Γn) to be the collection of
all curves obtained as a limit of a subsequence of all such sequences (γn),
where γn ∈ Γn for each n ∈ N.

We call a discrete ε-curve (xi)Ni=1 properly discrete if d(xi, xi+1) ≥ ε/10
for every 1 ≤ i ≤ N − 1. We say that a sequence (γn) of properly discrete
ε-curves in (X, d), where ε > 0, converges to a properly discrete curve γ
in (X, d) if #γ = #γn for all but finitely many n ∈ N, and if (γn(i))
converges to γ(i) for every 1 ≤ i ≤ #γ. Given a sequence (Γn) of families
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of properly discrete ε-curves, we define the discrete limit supremum of (Γn)
(written as dis-lim sup n→∞Γn) to be the collection of properly discrete ε-
curves obtained as a limit of a subsequence of all sequences (γn), where
γn ∈ Γn for each n ∈ N.

To describe the convergence for sequences of curves, and sequences of
families of curves, between converging metric spaces, we embed the given
sequence of converging metric spaces into a proper metric space (Z, l), as
described in Definition 2.4.2, and then transfer the definitions across. In
this setting the definitions of convergence depend on the particular choice of
the space (Z, l) and the corresponding embeddings. In practice we always
assume one such embedding is chosen and fixed.

Definition 3.1.1 (Discrete modulus). Define the discrete p-modulus at
scale ε of a family Γ of discrete curves in a metric measure space (X, d, µ),
where ε > 0 and p ≥ 1, by

modp(Γ, ε) = inf
∫

X
ρp dµ ,

where the infimum is taken over all continuous functions ρ : X → [0,∞)
that satisfy

1 ≤
N−1∑

i=1

d(xi, xi+1) inf
y∈B(xi,ε)

ρ(y) ,

for every discrete ε-curve {xi}N
i=1 in Γ. Each such function ρ will be said

to be discretely admissible at scale ε for Γ. To simplify notation we define
the discrete p-modulus at scale ε of any set Γ to be the discrete p-modulus
at scale ε of the family of discrete curves contained in Γ.

3.2 Upper semi-continuity properties of discrete modulus. The
following proposition is applied in the proof of Theorem 1.0.1, specifically
in Lemma 4.0.7 and Lemma 3.3.3.

Proposition 3.2.1. Let p ≥ 1, and let {(Xn, dn, µn)} be a sequence of
compact metric measure spaces that converges to a compact metric measure
space (X, d, µ) with µ(X) < ∞. Then we have

modp

(
lim sup

n→∞
Γn

)
≥ lim sup

n→∞
modp(Γn, εn) , (3)

whenever (εn) is a sequence of positive reals that converges to 0 and where
(Γn) is a sequence of families of curves with each curve in Γn in (Xn, dn).
We also have

modp

(
dis-lim sup

n→∞
Λn, ε

)
≥ lim sup

n→∞
modp(Λn, ε) , (4)
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whenever ε > 0 and where (Λn) is a sequence of families of properly discrete
ε-curves with each discrete curve in Λn in (Xn, dn).

Remark 3.2.2. The definitions for the convergence of sequences of discrete
curves may appear cumbersome and overly restrictive. However, relaxing
these definitions would give weaker results in the above proposition. That
is, relaxing the definition of convergence would possibly increase the size of
dis-lim sup n→∞Λn, and thereby possibly increase the left-hand side of (3).

Remark 3.2.3. We now describe a useful consequence of the above
proposition for convergence involving metric spaces that are not necessar-
ily compact. Let {(Xn, dn, µn, xn)} be a sequence of proper pointed metric
measure spaces that converges to a proper pointed metric measure space
(X, d, µ, x) with µ finite on bounded sets. Further let yn ∈ Xn for each
n ∈ N, and suppose that (yn) converges to y ∈ X (here we have im-
plicitly adopted a collection of embeddings into some metric space (Z, l)
as described in Definition 2.4.2, and view this convergence as taking place
in (Z, l)). We can then apply Proposition 3.2.1 to conclude that (3) and (4)
hold whenever each Γn is now a family of discrete curves in Bn(yn, r), and
each Λn is now a family of properly discrete ε-curves in Bn(yn, r), where
ε, r > 0 are fixed. Here Bn(w, s) denotes the ball in (Xn, dn) with center
w ∈ Xn and radius s > 0.

To see this, pass to a subsequence of {(Xn, dn, µn, yn)} so that the
lim sup in the right-hand side of (3) is achieved, and let µ̂n = µ�Bn(yn, 3r)
be the restriction of µ to Bn(yn, 3r) for each n ∈ N. Pass to another sub-
sequence so that the sequence (Bn) comprised of the completion of each
Bn(yn, 4r) converges to some A ⊂ X and so that (µ̂n) converges weakly
to some Borel measure µ̂ on X. Observe that {(Bn, dn, µ̂n)} converges to
(A, d, µ̂), and also that µ(A) < ∞. It follows that (3) holds with the modu-
lus of Γ and each Γn calculated using the measures µ̂ and µ̂n, respectively.

Now each curve in Γ, where Γ = lim supn→∞ Γn, is contained in B(x, 2r)
for n sufficiently large, and moreover µ = µ̂ on B(x, 2r). Therefore modp(Γ)
is equivalently defined by both measures µ and µ̂. We conclude that (3)
holds with modulus for Γ and each Γn calculated using the measures µ
and µn, respectively. A similar argument can be used to verify (4) in this
setting. This completes the proof of the claim of this remark.

We now turn to the proof of Proposition 3.2.1. Assume the hypotheses of
Proposition 3.2.1, and let Γ = lim supn→∞ Γn and Λ = dis-lim sup n→∞Λn.
Fix a compact metric space (Z, l) and isometric embeddings ι : X → Z and
ιn : Xn → Z for each n ∈ N, that satisfy the conditions of Definition 2.4.1,
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and that realize ιΓ = lim supn→∞(ιΓn) and ιΛ = lim supn→∞(ιΛn). Iden-
tify all relevant sets, measures, and curves, with their images under ι and
each ιn.

Lemma 3.2.4. Let τ > 0, let g : Z → [0,∞) be continuous and admissible
for Γ, and suppose that Γ does not contain any constant curves. Then there
exists N ∈ N such that g + τ is admissible at scale εn for Γn whenever
n ≥ N .

Proof. In order to get a contradiction suppose that the lemma does not
hold. Then after passing to a subsequence we have g + τ is not admissible
at scale εn for Γn for every n ∈ N. Consequently there exists εn-curves
γn ∈ Γn for each n ∈ N such that

#γn−1∑

i=1

d(xi, xi+1)
(
τ + gn(xi)

)
< 1 , (5)

where gn : Z → [0,∞) is given by
gn(x) = inf

d(y,x)≤εn

g(y) ,

for every x ∈ Z. It follows that 	(γn) ≤ τ−1.
Pass to a subsequence so that (	(γn)) converges to some l ≥ 0, and let

L = supn 	(γn). Fix parameterizations γn : [0, 	(γn)) → X, and extend γn

to a function defined on [0, L), by defining it to be equal to the endpoint
of γn(#γn) on [	(γn), L). By a variant of the Arzelá–Ascoli theorem, and
using (2) from the definition of the parameterization of a discrete curve,
and the fact that Z is compact, we can again pass to a subsequence so that
(γn) converges uniformly to some 1-Lipschitz function γ : [0, L) → X. By
definition we have γ ∈ Γ, and thus from our assumption that Γ contains no
constant curve, we have l > 0.

Observe that for every n ∈ N we have
∫ �(γn)

0
gn ◦ γn(t)dt =

#γn−1∑

i=1

d(xi, xi+1)gn(xi) .

Recall that g is continuous and that (gn) converge uniformly to g. We
therefore have

∫ l

0
g ◦ γ(t)dt ≤ lim inf

n→∞

∫ l

0
gn ◦ γn(t)dt = lim inf

n→∞

∫ �(γn)

0
gn ◦ γn(t)dt .

Since γ is 1-Lipschitz, we have
∫

γ
g ds ≤

∫ l

0
g ◦ γ(t)dt .
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The last three inequalities together with (5) imply that∫

γ
g ds ≤ 1 − lτ < 1 .

Since γ ∈ Γ, this contradicts the fact that g is admissible for Γ. This
completes the proof. �

The proof of the following lemma is similar to the above proof, and so
omitted.

Lemma 3.2.5. Let τ > 0, let h : Z → [0,∞) be continuous and admissible
for Λ, and suppose that Λ does not contain any constant curves. Then
there exists N ∈ N such that h+ τ is admissible at scale ε for Λn whenever
n ≥ N .

In order to continue we need a result of the first author. To state
the result we recall that a sequence of rectifiable curves (γn) on a metric
space (Y, e) is said to converge to another curve γ contained in Y , if there
exist uniformly Lipschitz parameterizations of the given curves, all with the
same domain, so that when viewed as functions the sequence (γn) converges
uniformly to γ. Also, a family of curves is said to be closed if the limit of
every sequence of converging curves in the family, is again a member of the
family.

Proposition 3.2.6 [K3]. Let q ≥ 1, let Υ be a closed family of curves
contained in a proper metric measure space (Y, e, ν) with ν(Y ) < ∞, such
that there exists a bounded subset of Y that meets every curve in Υ, and let
τ > 0. Then there exists a continuous function h : Y → (0,∞) admissible
for Υ, such that ∫

Y
hq dµ ≤ modq(Υ) + τ .

The first claim of Proposition 3.2.1 is trivially true if Γ contains degen-
erate curves. (We use the convention here that inf ∅ = ∞). We therefore
exclude this case. Let τ > 0. Notice that Γ is necessarily closed, and that
by hypothesis we have µ(X) < ∞. Proposition 3.2.6 then asserts that there
exists a continuous function g : X → [0,∞) that is admissible for Γ, such
that ∫

Z
gp dµ ≤ modp(Γ) + τ . (6)

Since µ(X) < ∞, we can further assume that g is bounded away from 0.
Extend g to a continuous and non-negative function defined on Z, and so
that infZ g > 0. Lemma 3.2.4 asserts that there exists N ∈ N such that
(1 + τ)g is discretely admissible for Γn at scale εn whenever n > N . We
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therefore have
modp(Γn, εn) ≤

∫

Z
(1 + τ)pgp dµn .

It then follows from (6) and the weak convergence of (µn) to µ, that

lim sup
n→∞

modp(Γn, εn) ≤ (1 + τ)p
∫

X
gp dµ ≤ (1 + τ)p

(
modp(Γ) + τ

)
.

This completes the proof of (3). We can similarly deduce (4) from Lem-
ma 3.2.5. This completes the proof of Proposition 3.2.1.

3.3 Annulus systems with infinitesimally small modulus. In this
section we establish restraints in terms of discrete modulus for metric mea-
sure spaces whose weak tangents have quantitatively small modulus. Ul-
timately this will be used to build quasisymmetric homeomorphisms that
lower the Assouad dimension of the given metric measure space. We urge
the dispirited readers to skip the following definitions (on their first read-
ing), and replace the hypotheses of Proposition 3.3.3 by the simplified as-
sumptions that the given metric measure space (X, d, µ) is α-homogeneous,
for some α ≥ 1, and that all the weak tangents of (X, d, µ) have vanishing
p-modulus for some p ≥ 1.

Given 0 < t < T , and a point x in a metric space (X, d), define the
(x,t,T)-annulus by

A(x, t, T ) = B(x, T ) \ B(x, t) .

Also let Θ(x, t, T ) denote the family of both curves and discrete curves in
X that meet both

X \ B(x, T ) and
{
y ∈ X : d(x, y) ≤ t

}
.

We say that an annulus A(x, t, T ) in any weak tangent of a metric space
(X, d) is the re-scaled limit of {A(xn, tn, Tn)}, where (xn) ⊂ X and
(tn), (Tn) ⊂ (0,∞), if the following holds. We have (X∞, d∞, x∞) is the
limit of the sequence comprised of the completion of (X, d/rn, xn) for each
n ∈ N, for some sequence (rn) of positive reals, and for some (xn) ⊂ X,
and we have T = limn→∞ Tn/rn < ∞ and t = limn→∞ tn/rn > 0. (Here
we implicitly assume that the completion of each (X, d/rn) is proper.) If
(X, d, µ) is a metric measure space, then we say that a measure µ∞ on
(X∞, d∞, x∞) is associated to A(x∞, t, T ) if there exists a sequence of pos-
itive reals (sn) such that some subsequence of {(Xn, d/rn, µ/sn, xn)} con-
verges to (X∞, d∞, µ∞, x∞). We remark that the re-scaled limit of an
annulus is generally different from the generalized Hausdorff limit of a se-
quence of sets each given by the annulus.
Definition 3.3.1. A collection of annuli A in a metric space (X, d) is
called a λ-annulus system of (X, d) (or just an annulus system), for some
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0 < λ < 1, if for every x ∈ X and r > 0, there exists A(y, λs, s) ∈ A for
some y ∈ B(x, r) and λr ≤ s ≤ r. Furthermore, every annulus in A is of
this form.

Definition 3.3.2. An annulus system A of a metric measure space is
said to have infinitesimally small (η, p)-modulus, for some η > 0 and p ≥ 1,
if we have

modp

(
Θ(x, t, T )

) ≤ ην
(
B(x, T )

)
T−p,

whenever A(x, t, T ) is a re-scaled limit of a sequence of annuli in A, and
where ν is any non-vanishing measure associated to A(x, t, T ).

Proposition 3.3.3. Let η, σ > 0 and α, p ≥ 1, and let (X, d, µ) be an
α-homogeneous metric measure space that admits an annulus system A
with infinitesimally (η, p)-small modulus. Then there exists Ψ ≥ 1 such
that whenever A(x, t, T ) ∈ A for some x ∈ X and 0 < t < T , there exists a
continuous function g : X → [(ΨT )−1,ΨT−1] that is discretely admissible
at scale Ψ−1T for Θ(x, t, T ), such that∫

X
gp dµ ≤ (1 + σ)ηµ

(
B(x, T )

)
T−p. (7)

Proof. Without loss of generality we can assume that (X, d) is proper. (Ob-
serve that the hypotheses of Proposition 3.3.3 are preserved under comple-
tion. Whereas, a complete homogeneous metric measure space is necessar-
ily proper). In order to get a contradiction suppose that the conclusion of
the proposition is false. Then there exists a sequence of annuli given by
A(xn, tn, Tn) ∈ A for every n ∈ N, where (xn) ⊂ X and (tn), (Tn) ⊂ (0,∞),
such that the following holds. First we have λ = limn→∞ tn/Tn for some
λ > 0. More importantly we have that there is no continuous function
g : X → [(nTn)−1, nT−1

n ] that is discretely admissible at scale n−1Tn for
Θ(xn, tn, Tn), such that∫

X
gp dµ ≤ (1 + σ)ηµ

(
B(xn, Tn)

)
T−p

n .

For each n ∈ N, write Xn = X and define the metric dn on Xn by
dn = d/Tn. Let µn = µ/µ(B(xn, Tn)). We now rewrite the above statement
for the metric measure space (X, d, µ) in terms of the metric measure spaces
{(Xn, dn, µn)}. For every n ∈ N, there is no continuous function g : Xn →
[n−1, n] that is discretely admissible at scale n−1 for Θ(xn, λ, 1), such that∫

Xn

gp dµn ≤ (1 + σ)η .

The desired contradiction will be achieved by showing that this last state-
ment is false for some n ∈ N.
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Observe that {(Xn, dn, µn, xn)} is a sequence of α-homogeneous metric
measure spaces with uniform homogeneity constant. Thus by Lemma 2.4.3
we can pass to a subsequence so that {(Xn, dn, µn, xn)} converges to a weak
tangent (X∞, d∞, µ∞, x∞) of (X, d, µ, x). Fix a proper metric space (Z, l)
and isometric embeddings ι : X → Z and ιn : Xn → Z for each n ∈ N,
that realize this convergence (as described in Definition 2.4.2). Identify all
relevant sets, measures, and curves, with their images under ι and each ιn.

Let τ > 0. By assumption modp(Θ(x∞, λ, 1)) ≤ η. Therefore Proposi-
tion 3.2.6 provides a bounded and continuous function g : B∞(x∞, 2) → R
that is admissible for Θ(x∞, λ, 1), such that∫

B∞(x∞,2)
gp dµ∞ < η + τ .

Here B∞(y, r) denotes the ball in (X∞, d∞) with center y ∈ X∞ and radius
r > 0, and for each n ∈ N, we let Bn(w, r) denote the ball in (Xn, dn) with
center w ∈ Xn and radius r > 0. Since µ∞(B∞(x∞, 2)) < ∞ we can further
arrange for 1/M ≤ g ≤ M for some M ∈ N. Now extend g to a continuous
function on Z so that 1/M ≤ g ≤ M .

Since g is admissible for Θ(x∞, λ, 1), there exists N ∈ N such that
(1+τ)g is discretely admissible at scale n−1 for Θ(xn, λ, 1) whenever n ≥ N .
This follows from Lemma 3.2.4; see also Remark 3.2.3. It follows from the
weak convergence of (µn) to µ that

lim sup
n→∞

∫

Bn(xn,1)
(1 + τ)pgpdµn ≤

∫

B∞(x∞,2)
(1 + τ)pgpdµ ≤ (1 + τ)p(η + τ) .

For an appropriate choice of τ > 0 and then a sufficiently large choice of
n ∈ N, the above properties of g contradict the assumption on (Xn, dn, µn).
This completes the proof. �

4 Uniformly Big 1-modulus on the Tangent Space

We now define the notion of uniformly big modulus and then show that this
property occurs in a certain quantitative sense on tangents of homogeneous
metric measure spaces with non-vanishing modulus.
Definition 4.0.4. A metric measure space (X, d, µ) is said to have uni-
formly big p-modulus with constant δ, for some p ≥ 1 and δ > 0, if µ is
non-vanishing, and we have

modp(Γ) ≥ δµ
(
B(x, r)

)
r−p,

whenever x ∈ X and 0 < r ≤ diam X, and whenever Γ is the collection of
all curves in B(x, r) with diameter at least δr.
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We now list some immediate observations about uniformly big modulus.
Every homogeneous metric measure space that admits a (1, p)-Poincaré
inequality, for some p ≥ 1, as defined by Heinonen and Koskela [HK], has
uniformly big p-modulus (see [K3] for the proof of related claims). The
converse is not true, as demonstrated by the product of an Ahlfors regular
metric space with the unit interval. Like the Poincaré inequality, every
metric space with uniformly big p-modulus has uniformly big q-modulus
for q ≥ p. This follows from an application of Jensen’s inequality. In
particular the strongest of these conditions is to have uniformly big 1-
modulus. Again similar to the Poincaré inequality, and by an application of
a theorem of Tyson [T2, Theorem 6.4], the property of having uniformly big
α-modulus, for some α ≥ 1, is quantitatively preserved by quasisymmetric
homeomorphisms between Ahlfors α-regular metric spaces.
Theorem 4.0.5. Let α, p ≥ 1 and let (X, d, µ) be an α-homogeneous
metric measure space with non-vanishing p-modulus. Then there exists a
Borel set A ⊂ X of positive measure such that every tangent of (X, d, µ)
with non-vanishing measure, at any member of A, has uniformly big 1-
modulus.

Remark 4.0.6. Theorem 4.0.5 is quantitative in the following sense. First
assume that (X, d, µ) is a bounded and α-homogeneous metric measure
space, α ≥ 1, and that modp(Γ) > 0 for some τ > 0 and p ≥ 1, where Γ is
the collection of rectifiable curves in X with endpoints at least a distance
τ apart. Then there exists a Borel set A ⊂ X such that every tangent of
(X, d, µ) with non-vanishing measure, at any member of A, has uniformly
big 1-modulus. Moreover, both the uniformly big 1-modulus constant and
µ(A) depend only on p, τ , modp(Γ), diam X, µ(X), α, and the homogeneity
constant of µ.

Recall that every α-homogeneous metric measure space (X, d, µ) can be
exhausted by closed and bounded homogeneous metric measure subspaces
with uniform control on the homogeneity constants that depend only on α
and the homogeneity constant of (X, d, µ). Now observe that if (X, d, µ)
has non-vanishing p-modulus, then so too does one of these exhausting
subspaces. This is true because modulus is countably subadditive. Also
observe that when p = 1, we can obtain

mod1(Γ)qµ(X)1−q ≤ modq(Γ) ,

by an application of Jensen’s inequality, for every q ≥ 1, and for any family
Γ of curves in X. Finally notice that claims of Remark 4.0.6 are scale invari-
ant. We conclude that in order to prove Theorem 4.0.5, it suffices to verify
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Remark 4.0.6 for every α-homogeneous metric measure space (X, d, µ) with
diam X = 1 and µ(X) = 1, where α, τ > 0 and p > 1. We now do this.

Let C > 0 denote a varying constant whose value depends only on p,
τ , α, and the homogeneity constant of (X, d, µ). Let 0 < η ≤ 1, and make
the further assumption on X that there exists a Borel set E ⊂ X such that
µ(E) < η, and such that if F ⊂ X \E is a Borel set each of whose tangent
(with non-vanishing measure) has uniformly big 1-modulus with constant
at least Cη, then µ(F ) = 0. We shall deduce from this assumption that

modp(Γ) < CηC . (8)
This then verifies Remark 4.0.6 by the contrapositive. Recall here that Γ is
the collection of rectifiable curves in X with endpoints at least a distance
τ apart.

Given θ, ϑ > 0 and a subset E of a metric space, we let Λ(E, θ, ϑ) denote
the family of properly ϑ-discrete curves in E with diameter at least θ.
Let � = ∪n∈N�n be a dyadic decomposition of (X, d, µ). Next define a
function B : R+ × N → P(�) by setting B(Ψ,m), for Ψ ≥ 0 and m ∈ N,
to be the collection of maximal cubes in ∪k≥m�m such that

mod1

(
Λ(Q, η rad Q,Ψ rad Q),Ψ rad Q

)
< ηµ(Q)(rad Q)−1. (9)

(Here P(�) denotes the power set of �). The following two lemmas inde-
pendently establish results for B that are then applied in Lemma 4.0.9.

Lemma 4.0.7. We have

lim sup
Ψ→0

lim sup
m→∞

µ
(
X \ (∪B(Ψ,m) ∪ E)

)
= 0 . (10)

Proof. In order to get a contradiction suppose that (10) does not hold.
It follows that there exists σ > 0 and there exist sequences (Ψn), (mn) ⊂
(0,∞) that converge to 0 and ∞, respectively, such that for every n ∈ N,
we have µ(An) ≥ σ, where An is defined to consist of the points of den-
sity of X \ (∪B(Ψn,mn) ∪ E). (Here we use the fact that almost every
point of a measurable set is a point of density – this holds because µ is
doubling; see [H, Theorem 1.8].) By assumption µ(X) < ∞. Therefore
A = lim supn→∞ An is a Borel subset of X with µ(A) ≥ σ such that every
member of A is in turn a member of an infinite sub-collection of (An).

To complete the proof it suffices to show that every tangent of (X, d, µ)
with non-vanishing measure, at every member of A, has uniformly big 1-
modulus with constant Cη. This then contradicts our assumption on E.
Let a ∈ A and let (X∞, d∞, µ∞, a∞) be a tangent of (X, d, µ) at a with
non-vanishing measure. Then there exists sequences (rj) and (sj) of pos-
itive reals that converge to 0, such that {(Xj , dj , µj , aj)} converges to
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(X∞, d∞, µ∞, a∞), where Xj = X, dj = d/rj , µj = µ/sj and aj = a,
for each j ∈ N, and where µ∞ is non-vanishing.

Fix x ∈ X∞ and R > 0. In order to demonstrate (X∞, d∞, µ∞) has uni-
formly big 1-modulus with constant η, we need to show that the collection
of curves in B(x,CR) with diameter at least CηR has 1-modulus at least
Cηµ(B(x,CR))R−1. Due to Proposition 3.2.1 (see also Remark 3.2.3), this
will follow if we can demonstrate that

mod1

(
Λ(B(x,CR), CηR,CΨnR), CΨnR

) ≥ Cηµ
(
B(x,R)

)
R−1, (11)

for some subsequence of (Ψn).
Pass to a subsequence of (An) so that An has a point of density at a

for every n ∈ N, and then fix n ∈ N. Since a is a point of density of An,
and because µ is homogeneous, it is a standard fact that there exists a
sequence of points (xj) in An that converge to x (see [K1, Lemma 6.2.3]),
where we view xj ∈ Xj for each j ∈ N. Here we have implicitly adopted
a collection of embeddings as described in Definition 2.4.2. Now fix an
integer j ≥ mn and fix Q ∈ �[log2 Rrj ] that contains xj . It then follows
from xj ∈ X \ ∪B(Ψn,mn) that

mod1

(
Λ(Q, η2[log2 Rrj ],Ψn2[log2 Rrj ]),Ψn2[log2 Rrj ]

) ≥ Cηµ(Q)(Rrj)−1.

Observe also that Q ⊂ B(xj , CRrj). Consequently we can rewrite the above
inequality in terms of the metric measure space (Xj , dj , µj) to get

mod1

(
Λ(Bj(xj , CR), CηR,CΨnR), CΨnR

) ≥ Cηµj

(
B(xj, R)

)
R−1.

Here Bj(xj , CR) is the ball in (Xj , dj) centered at xj and with radius CR.
Since

µ∞
(
B(x,R)

) ≤ C lim sup
j→∞

µj

(
B(xj, R)

)
,

we can now apply Proposition 3.2.1 (see also Remark 3.2.3) to conclude
that (11) holds. This completes the proof. �

Lemma 4.0.8. Let Ψ ≤ η and Q ∈ �, and suppose that (9) holds. Then
there exists a continuous function g : Q → [0, 10Ψ−1] such that∫

Q
g dµ ≤ 2η , (12)

and such that for every curve γ in X that intersects Q \ ∂3ηQ and X \ Q,
there exists a subcurve γ′ of γ in Q such that∫

γ′
g ds ≥ radQ . (13)

Proof. It follows from (9) that there exists a continuous function h : Q →
(0,∞) that is (Ψ rad Q)-admissible for Λ(Q, η rad Q,Ψ rad Q), such that∫

Q
hdµ ≤ 2ηµ(Q)(rad Q)−1 .
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Since each curve in Λ(Q, η rad Q,Ψ rad Q) is properly (Ψ rad Q)-discrete,
we can further assume that suph ≤ 10(Ψ rad Q)−1. We emphasize that this
last estimate is crucial, and is the motivation behind our current use and
development of discrete modulus.

Let γ be a rectifiable curve in X that intersects Q \ ∂3ηQ and X \ Q,
and then let γ′ be a closed subcurve of γ in Q with diam γ′ ≥ 2η rad Q. We
would like to show that ∫

γ′
hds ≥ 1 . (14)

To do this we inductively define a discrete curve (xi)N ⊂ γ′ for some N ∈ N.
Let x1 = γ(0). Assume xi−1 has been chosen for some i ≥ 1, and let
xi = γ(t) where

t = sup
{
r ≥ 0 : γ(r) ∈ B(xi−1,Ψ rad Q)

}
.

We halt the inductive process when d(γ(t), γ(0)) ≥ η rad Q and then let
N = i. The inductive sequence will always halt because of the diameter
constraint for γ′. It follows by construction that d(xi, xi+1) = Ψ rad Q for
1 ≤ i ≤ N − 1. Consequently {xi}N

i=1 ∈ Λ(Q, η rad Q,Ψ rad Q). Due to the
discrete admissibility of h for this collection of discrete curves, we have

1 ≤
N−1∑

i=1

d(xi, xi+1) inf
y∈B(xi,Ψ radQ)

h(y) .

From this we conclude that (14) holds. The claim of the lemma can now
easily be verified for g : Q → R defined by g(x) = h(x) rad Q for every
x ∈ Q. This completes the proof. �

In the following we denote the characteristic function of any set U
by χU . Recall that Γ is the collection of rectifiable curves in X with end-
points at least a distance τ apart.

Lemma 4.0.9. There exists Ψ > 0 such that for every M ∈ N, there
exists m > M , there exists an open set U ⊂ X, and there exists ρ : X →
[0, 10Ψ−1], such that µ(U) < CηC , such that C(ρ+χU) is admissible for Γ,
and such that ∫

Q
ρ dµ ≤ Cη , (15)

for every Q ∈ ∪k≤m�k.

Proof. It follows Lemma 4.0.7 that there exists Ψ ≤ η such that for every
M ∈ N, there are integers l > m > M such that

µ
(
X \ (∪B ∪ E)

)
< η ,
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where
B = B(Ψ,m) ∩

⋃

k≤l

�k .

Since B is an essentially disjoint collection of cubes, it follows from the
properties of the dyadic decomposition that

µ
( ⋃

Q∈B
∂3ηQ

)
≤

∑

Q∈B
CηCµ(Q) ≤ CηC .

Also, by assumption we have µ(E) < η. Consequently there exists an open
set U ⊂ X such that µ(U) ≤ CηC , and such that

(
X \ ∪B) ∪ U ∪

⋃

Q∈B
∂3ηQ ⊂ U .

Recall that Ψ ≤ η. Therefore for every Q ∈ B there is a function
gQ : Q → [0, 10Ψ−1] that satisfies the assertions of Lemma 4.0.8. Define
ρ : X → [0, 10Ψ−1] by

ρ(x) =
{

gQ(x) , if x ∈ Q for some Q ∈ B ,
0 , otherwise .

Because of (12) we have (15) holds for every Q ∈ B. Also notice that
ρ vanishes on X \ ∪B. Finally recall that B ⊂ ∪k≥m�k. We therefore
conclude that (15) holds for every Q ∈ ∪k≤m�k.

To complete the proof it remains to establish that C(ρ + χU ) is ad-
missible for Γ. Fix γ ∈ Γ. We can assume that γ is closed, and write
γ : [0, L] → X for some L > 0. We now inductively define sequences
{bi}N

i=0, {ai}N+1
i=1 ⊂ [0, L] for some N ∈ N, to be used to decompose γ

into a consecutive union of paths, that are either deeply contained in some
Q ∈ B, or that live the entirety of their life on U . First let b0 = 0. Assume
that bi−1 is defined for some integer i ≥ 1 and then let

ai = inf
{
a > bi−1 : γ(a) ∈ ∪B \ U

}
.

Now let
bi = sup

{
b ≤ L : γ(b) ∈ Q

}
,

where Q is the unique cube in B that contains γ(ai). We halt the inductive
process when the infimum in the definition of ai is taken over an empty set,
and then let N = i and aN = L. The inductive process will always halt.
Otherwise each γ(ai) is contained in a distinct member of B for each i ∈ N,
whereas by construction the cardinality of B is finite.

From our construction of ρ and because of (13), we have that for each
1 ≤ i ≤ N − 1 there exists a subcurve γ′ of γ in Q such that

d
(
γ(ai), γ(bi)

) ≤ radQ ≤
∫

γ′
ρ ds .
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Whereas for each 0 ≤ i ≤ N we have γ((bi, ai+1)) ⊂ U and consequently
that

d
(
γ(bi), γ(ai+1)

) ≤ 	
(
γ((bi, ai+1))

) ≤
∫ γ(ai+1)

γ(bi)
χU ds ,

where the last integral is along the curve γ from γ(bi) to γ(ai+1). These
last two estimates together with the triangle inequality imply that

τ ≤ d
(
γ(0), γ(aN )

) ≤
N−1∑

i=1

d
(
γ(ai), γ(bi)

)
+

N−1∑

i=0

d
(
γ(bi), γ(ai+1)

)

≤
∫

γ
ρ + χU ds .

This completes the proof. �
We are now sufficiently equipped to prove (8) and thereby complete the

proof of Theorem 4.0.5. A consequence of Lemma 4.0.9 is that there ex-
ists a sequence (mn) ⊂ N that converges to ∞, there exists a sequence
(Un) in X , and there exists a sequence of nonnegative Borel functions
(ρn) defined on X, such that the following holds for every n ∈ N: We
have µ(Un) < CηC , we have C(ρn + χUn) is admissible for Γ, we have
supX ρn < 10Ψ−1, and we have∫

Q
ρn dµ ≤ Cη (16)

for every Q ∈ ∪k≤mn�k. In particular and since µ(X) < ∞, the sequences
(‖ρn‖p) and (‖χUn‖p) are uniformly bounded. By reflexivity there exists
ρ, h ∈ Lp(X) such that after passing to a subsequence, the sequences (ρn)
and (χUn) converge weakly in Lp(X) to ρ and h, respectively. A conse-
quence of a theorem of Fuglede [Fu, Theorem 3(f)] is that there exists
Γ′ ⊂ Γ with modp(Γ′) = 0, such that C(ρ+ h) is admissible for every curve
in Γ \ Γ′ (see the comments following the proof of [Fu, Theorem 3(f)]; see
also the proof of [HKST, Theorem 8.8]). The above argument is where
p > 1 is used.

Therefore in order to establish (8) it needs to be shown that∫

X
(ρ + h)p dµ ≤ CηC .

To see this holds observe that∫

X
hp dµ ≤ sup

n

∫

X
(χUn)p dµ = sup

n
µ(Un) ≤ CηC .

Whereas since (16) holds for every Q ∈ � whenever n ∈ N is sufficiently
large, we have ∫

Q
ρ dµ = lim

n→∞
1

µ(Q)

∫

X
ρnχQ dµ ≤ CηC ,
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and therefore ρ ≤ CηC almost everywhere in X. This establishes (8) and
thereby completes the proof of Remark 4.0.6 and Theorem 4.0.5.

5 Lowering the Assouad Dimension Through
Quasisymmetric Homeomorphisms

The proof of the following theorem is formally given in section 5.3, and
relies on the accumulating results of Proposition 3.3.3, Proposition 5.1.1,
and Proposition 5.2.1. The non-quantitative version of Theorem 5.0.10 is
applied in section 6 to prove Theorem 1.0.1. Like before we encourage the
dispirited readers to, on their first reading, replace the technical hypotheses
of the following theorem with the simplified assumptions that the given
metric measure space (X, d) is α-homogeneous for some α ≥ 1, and that
all the weak tangents of (X, d) have vanishing α-modulus.

Theorem 5.0.10. Let α, η > 0 and 0 < λ < 1, and let (X, d, µ) be an
α-homogeneous metric measure space that admits a λ-annulus system with
infinitesimally (η, α)-small modulus. Further suppose that η ≤ Lλ2α where
L > 0 is a constant that depends only on α and the homogeneity constant
of µ. Then there exists 0 < α′ < α such that (X, d) is quasisymmetrically
homeomorphic to a metric space with Assouad dimension equal to α′.

Remark 5.0.11. Observe that the hypotheses of the above theorem is triv-
ially satisfied if every weak tangent of the given metric space has vanishing
α-modulus. It is ultimately a consequence of Theorem 1.0.1 that every
weak tangent of a metric space (X, d) has vanishing modulus, whenever
(X, d) satisfies the hypotheses of Theorem 5.0.10 and is Ahlfors regular,
and η is small enough. Thus we see that for Ahlfors regular metric spaces
there is a clean dichotomy between admitting a weak tangent with uni-
formly big 1-modulus and admitting an annulus system with (sufficiently)
infinitesimally small modulus.

Remark 5.0.12. The hypotheses of the above theorem can be expanded to
include collections of α-homogeneous metric measure spaces X , as long as
we have the same homogeneity bounds for each member of X , and where
we have modulus estimates for those annuli obtained as generalized re-
scaled limits of sequences of annuli. By this we mean that the sequence
of annuli can be comprised of annuli from different members of X . The
conclusion is then that there exists 0 < α′ < α such that every member of
X is quasisymmetrically homeomorphic to some Ahlfors α′-regular metric
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space. This claim can be easily inferred from the proof of Theorem 5.0.10,
and we leave the details to the reader.

5.1 Discrete insulation. Given a dyadic decomposition � of a ho-
mogeneous metric measure space, we define a rough hyperbolic distance
function H : �×� → [0,∞) by

H(Q,R) = log
((

dist(Q,R)
rad(Q) + rad(R)

)
+ 2

)
+

∣
∣∣
∣log

(
rad(Q)
rad(R)

)∣
∣∣
∣ ,

for each Q,R ∈ �. Also define the φ-refinement of � for some φ ∈ N, to be
♦ = ∪n♦n where each ♦n = �nφ. We further denote ∂δ♦n = ∂δ�nφ and
∂δ♦ = ∪n∂δ♦n for every δ > 0. Recall that ∂δ� is defined in section 2.2.

Proposition 5.1.1. Assume the hypotheses of Theorem 5.0.10, further
suppose that diam X = 1, let Ψ > 0 be as determined by Proposition 3.3.3,
and fix a dyadic decomposition � of (X, d, µ). Then there exists δ,ϕ,φ0 > 0,
that depend only on the parameters of the hypotheses, such that for every
φ ∈ N that satisfies φ ≥ φ0, there exists 0 < α′ < α that depends only
on φ and the parameters of the hypotheses, and there exists a function
ρ : ♦ → [0,∞) where ♦ = ∪n∈N♦n is the φ-refinement of �, such that
following conditions hold.

1. We have ∑

T⊂Q
T∈♦n+1

ρ(T )α
′
µ(T )α

′/α = µ(Q)α
′/α, (17)

whenever n ∈ N and Q ∈ ♦n.

2. Let γ be a discrete 	�2−(n+1)φ+1-curve such that γ ∩ ∂δ♦n �= ∅, for
some n ∈ N. Then we have

d
(
γ(1), γ(#γ)

) ≤
#γ∑

i=1

d
(
γ(i), γ(i + 1)

)
min

T
ρ(T ) , (18)

where each minimum is taken over
{
T ∈ ♦n+1 : T ∩ B(γ(i), 	�2−(n+1)φ+2) �= ∅

}
. (19)

3. We have ∏

T∈♦
Q⊂T

ρ(T ) ≤ ϕH(Q,R)φ−1
∏

T∈♦
R⊂T

ρ(T ) ,

for every Q,R ∈ ♦. (We emphasize that ϕ depends on Ψ but not φ.)

Remark 5.1.2. The conditions set forth in Proposition 5.1.1 are sufficient
to guarantee the existence of a quasisymmetric homeomorphism that lowers
the Assouad dimension of the given metric space. Specifically, let δ, ϕ > 0
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and α ≥ α′ > 0, let (X, d, µ) be a bounded α-homogeneous metric mea-
sure space, and let ρ : � → [0,∞) be a function where � is some dyadic
decomposition of (X, d). Then there exists φ0 > 0 that depends only on
δ, ϕ, α and the homogeneity constant of (X, d), such that if for some inte-
ger φ ≥ φ0 we have the above conditions 1, 2 and 3 hold, then (X, d) is
quasisymmetrically homeomorphic to an α′-homogeneous metric measure
space. If we further suppose (X, d) is Ahlfors α-regular we can then get
that (X, d) is quasisymmetric to an Ahlfors α′-regular metric space. This
claim is essentially established in the proof of Proposition 5.2.1.

Proof. Let Ψ > 0 be as determined by Proposition 3.3.3, and let C > 0
denote a varying constant whose value depends only on λ,Ψ, α, and the
homogeneity constant of µ. Next fix 0 ≤ δ ≤ 1 that depends only on C,
so that for every Q ∈ �, there exists x ∈ Q so that B(x, δ2rad(Q)+4) ⊂ Q.
We will shortly construct the desired function ρ : ♦ → R where ♦ is a
φ-refinement of � for some φ ∈ N. During the construction we specify a
finite number of lower bounds for φ, that depend only on η and C, and
that guarantee ρ satisfies the claims of the proposition. We then implicitly
take φ0 > 0 to be the maximum of these bounds.

Let n ∈ N and Q ∈ ♦n. It follows from Proposition 3.3.3, the properties
of � and δ, and the definition of an annulus system, that there exists
w ∈ Q, and there exists g : X → [Ψ−1δ−12nφ,Ψ(λδ)−12nφ] such that
we have B(w, δ2−nφ+3) ⊂ Q, we have g is discretely admissible at scale
Ψ−1λδ2−nφ for Θ(w, λ2δ2−nφ, δ2−nφ), and we have∫

B(w,δ2−nφ+1)
gα dµ ≤ Cηµ

(
B(w, δ2−nφ)

)
(δ2−nφ)−α. (20)

Recall that Θ(x, t, T ) is a collection of curves, and A(x, t, T ) is an annulus,
both of which are defined in section 3.3. In our case above, we have that
the pertinent annulus provided by the annulus system with infinitesimally
small modulus is contained in A(w, λ2δ2−nφ, δ2−nφ).

We now let
E1 = A(w, λ2δ2−nφ−1, δ2−nφ+1) ,

E2 = X \ B(w, λ2δ2−nφ−1) ,

E3 = B(w, λ2δ2−nφ−1) ,
define h : X → R by

h(x) = max
{
δ2−nφ+2g(x)χ|E1(x), χ|E2(x), ωχ|E3(x)

}
,

for every x ∈ X, and let ρ(T ) = miny∈T h(y) for each T ∈ ♦n+1 contained
in Q. The value of ω ≥ η will momentarily be determined. In the meantime
we assume that ω = η.
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Notice that∑

T⊂Q

ρ(T )αµ(T ) ≤
∑

T∩E1 
=∅

ρ(T )αµ(T )+
∑

T∩E2 
=∅

µ(T )+
∑

T∩E3 
=∅

ηµ(T ) , (21)

where here and in the relevant equations below we only sum over T ∈ ♦n+1.
Due to (20), the first term on the right-hand side of the above equation is
dominated by ∫

B(w,δ−12−nφ+1)
(δ2−nφ+2g)αdµ ≤ Cηµ(Q) .

Using the homogeneity of µ, we now specify that φ is chosen sufficiently
large as determined by C, so that the second term on the right hand side
of (21) is dominated by (1 − C(λ2δ)α)µ(Q). By hypotheses we have that
η < Lλ2α holds with L > 0 sufficiently small as determined by α and the
homogeneity constant of µ, so that∑

T⊂Q

ρ(T )αµ(T ) ≤ (
1 − C(λ2δ)α + Cη

)
µ(Q) ≤ (1 − σ)µ(Q) ,

for some σ > 0 that depends only on C. From this we conclude that∑

T⊂Q

ρ(T )α
′
µ(T )α

′/αµ(Q)−α′/α

≤ max
R∈♦n+1

R⊂Q

{
ρ(R)α

′−αµ(R)
α′−α

α µ(Q)
α−α′

α
} ∑

T⊂Q

ρ(T )αµ(T )µ(Q)−1

≤ ηα′−α(C2φ)
α−α′

α (1 − σ) ,

for every positive α′ > α.
Choose 0 < α′ < α sufficiently close to α so that the right-hand side of

the above equation is at most 1. This choice of α′ depends on all of the
above parameters except Q. Now increase the value of ω so that η ≤ ω ≤ 1
and so that (17) holds. To see that we can do this observe that if ρ = 1
everywhere on Q then (17) would hold with “=” replaced by “≥”. Since
the choice of α′ did not depend on Q, the above argument defines a function
ρ : ♦ → R that satisfies (17) for every Q ∈ ♦. This completes the proof of
condition 1 of Proposition 5.1.1.

We now verify the remaining conditions of Proposition 5.1.1. Continue
to let n ∈ N , and let γ be a discrete 	�2−(n+1)φ+1-curve in X. We seek to
verify condition 2 of Proposition 5.1.1. To do so we require that φ satisfies

	�2−φ+4 ≤ Ψ−1λ2δ . (22)
This first guarantees that γ can be decomposed into a consecutive union
of discrete curves γi each of which has an endpoint in ∂δQ, and satisfies
γi ⊂ ∂δQ ∪ Q for some Q ∈ ♦n. It therefore suffices to assume that γ
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satisfies these same conditions. We continue to let w denote the center of
the annulus in Q, and let g denote the discretely admissible function on Q,
both defined in the first part of the proof. If γ ∩ B(w, λ2δ2−nφ) = ∅, it
then follows from (22) that ρ(T ) ≥ 1 whenever T is contained in the set
(19) and i = 1, . . . ,#γ. Thus in this case γ trivially satisfies (18).

Otherwise we define
a = min

{
i ∈ N : γ(i) ⊂ B(w, δ2−nφ+1)

}
,

b = max
{
i ∈ N : γ(i) ⊂ B(w, δ2−nφ+1)

}
.

Like before we have that the discrete curves γ(1),...,γ(a) and γ(b),...,γ(#γ)
satisfy (18). Therefore, to complete the proof of condition 2 of Propo-
sition 5.1.1, it remains to establish (18) for the discrete curve given by
β = {γ(i)}b

i=a. Observe that β ∈ Θ(w, λ2δ2−nφ, δ2−nφ). Inequality (22)
guarantees that g is discretely admissible at scale Ψ−1λδ2−nφ for {β}.
Therefore

1 ≤
b−1∑

i=a

d
(
γ(i), γ(i + 1)

)
inf

y∈B(γ(i),Ψ−1λδ2−nφ)
g(y) . (23)

Observe that
S ⊂ B

(
x, 	�2−(n+1)φ+3

)
whenever S ∩ B

(
x, 	�2−(n+1)φ+2

) �= ∅ ,

for every x ∈ X and S ∈ ♦n+1. For such x and S, it then follows from (22)
that S ⊂ B(x,Ψ−1λδ2−nφ) and therefore that

δ2−nφ+2 inf
y∈B(x,Ψ−1λδ2−nφ)

g(y) ≤ min
T

ρ(T ) ,

where the minimum on the right-hand side of the inequality is taken over
{
T ∈ ♦n+1 : T ∩ B(x, 2−(n+1)φ+2) �= ∅

}
.

This with (23) implies (18) and so completes the verification of condition 2
of Proposition 5.1.1.

In order to complete the proof it remains to establish condition 3 of
Proposition 5.1.1. To do this we use the following consequence from the
definition of ρ. If φ is sufficiently large depending on C (and in particular δ),
then ρ(S) = 1 whenever S ∩ ∂δT �= ∅, for every n ∈ N, S ∈ ♦n+1, and
T ∈ ♦n. Now fix 1 ≤ n ≤ m and let Q ∈ ♦n and R ∈ ♦m. To prove the
condition it suffices to show that

C−H(Q,R)φ−1
u(R) ≤ u(Q) ≤ u(R)CH(Q,R)φ−1

, (24)
where u : ♦ → R is given by

u(T ) =
∏

T∈♦
T⊂W

ρ(W )
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for every T ∈ �, and where here and below we further allow C > 0 to
depend on η.

Let S be the cube in ♦n that contains R. Notice that whenever l ∈ N
satisfies

l ≤ n − Cφ−1 log
(

dist(S,Q)
rad S

+ 2
)

, (25)

we have that either both S and Q are contained in the same member
of ♦l, or that both S and Q have a nontrivial intersection with ∂δ♦l.
Consequently for every l ∈ N that satisfies (25), and for every W,E ∈ ♦l

that contain Q and S, respectively, we have ρ(W ) = ρ(E). This with the
estimate max{ρ, ρ−1} ≤ C then implies that

C
−φ−1 log

(
dist(S,Q)

rad S
+2

)

u(S) ≤ u(Q) ≤ C
φ−1 log

(
dist(S,Q)

rad S
+2

)

u(S) .

Inequality (24) then follows because
dist(S,Q)

rad S
+ 1 and

(
dist(Q,R)

rad Q + radR

)
+ 1

are comparable with comparability constant that depends only on C, and
because

C− log( rad Q
rad R )φ−1

u(R) ≤ u(S) ≤ C log( rad Q
rad R )φ−1

u(R) .

This last inequality is a consequence of the fact that R ⊂ S and ρ ≤
max{C,C−1}. This completes the proof of condition 3 of Proposition 5.1.1
and therefore also Proposition 5.1.1. �
5.2 A weight-loss program. We now use the results of Proposition 5.1.1
to construct the desired quasisymmetric homeomorphism.
Proposition 5.2.1. Assume the hypotheses of Proposition 5.1.1. Then
there exists 0 < α′ < α, and there exists a metric θ on X such that (X, θ)
supports an α′-homogeneous measure ν, and such that the identity map
from (X, d) to (X, θ) is quasisymmetric. Moreover, the quasisymmetric
regularity function for this identity map, the homogeneity constant of ν,
and α′, depend only on the parameters of the hypotheses (which include Ψ).

We suppose without loss of generality that (X, d) is proper. (To see this
there is no loss of generality, observe that the hypotheses of Theorem 5.0.10
are preserved under completion. Whereas, a complete homogeneous metric
measure space is necessarily proper.) We continue with the notation estab-
lished in Proposition 5.1.1 and in particular suppose φ ∈ N is sufficiently
large as is required by Proposition 5.1.1. We also continue to specify lower
bounds for φ that depend only on the parameters of the hypotheses. To
realize the conclusion of the proof we then take φ to be fixed and greater
than this finite collection of lower bounds. Thus the value of φ and therefore
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also α′, and the value of the other variables in the proof that initially de-
pend on both φ and the parameters of the hypotheses of Proposition 5.2.1,
ultimately depend only on the parameters of the hypotheses. We now let
C > 0 denote a varying constant whose value depends only on the param-
eters of the hypotheses (and therefore not φ or α′).

Let H = X ×N and Hn = X ×{1, . . . , n} for every n ∈ N. We refer to
each H × {n} as a level of H. Define b : H → R by

b(x, k) = min
T

∏

T⊂R
R∈♦

ρ(R) ,

for every x ∈ X and k ∈ N, where the minimum is taken over
{
T ∈ ♦k : T ∩ B(x, 	�2−kφ+1) �= ∅

}
. (26)

We remark that we here define b as a minimum over nearby cubes, so that
later we can prove condition 3 of Lemma 5.2.3. Despite its convoluted
definition we still retain good estimates on b. The next estimate is a direct
consequence of the definition of b and condition 3 of Proposition 5.1.1.

Lemma 5.2.2. There exists σ ≥ 1 that depends only on C such that

b(x, k) ≤ max
{

σ, σ
|k−l|+log

(
d(x,y)1/φ

2−k+2−l +1
)}

b(y, l) ,

whenever x, y ∈ X and k, l ∈ N.

A finite sequence {(xj , kj)}N
j=1 ⊂ H, where N ∈ N, is said to be con-

ductible if for every 1 ≤ j ≤ N − 1, either

• we have d(xj , xj+1) ≤ 	�2−kjφ+1 and kj = kj+1, or
• we have xj = xj+1 and |kj − kj+1| = 1.

Define the ν-length of such sequences by

	ν

({(xj , kj)}N
j=1

)
=

N−1∑

j=1

ν
(
(xj , kj), (xj+1, kj+1)

)
,

where ν : H × H → R is defined by

ν
(
(x, k), (y, l)

)
=






d(x, y)min{b(x, k), b(y, k)} , if k = l ,

σ	�2−min{k,l}φb(x,max{k, l}) , if x=y and |k−l|=1 ,

0 , otherwise ,

whenever x, y ∈ X and k, l ∈ N. For x ∈ X and j ∈ N let (x, j)∗ = x and
(x, j)∗ = j, and given any sequence γ ⊂ H, let γ∗ denote the discrete curve
given by {γ(i)∗}#γ

i=1.
Roughly speaking, condition 1 of the following lemma requires that

conductible sequences which move from one cube to another in the same
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level of H, pass through the boundary of one of the cubes. Condition 2 is an
estimate that penalizes a conductible sequence for jumping between levels
of H. Condition 3 asserts that length 	ν is preserved for those conductible
sequences that are contained in one level of H (for example Hn+1 \ Hn),
that pass through boundary of a cube Q in the level above (that is, in ♦n),
and that remain inside the union of Q and its boundary.
Lemma 5.2.3. 1. Let n ∈ N and Q ∈ ♦n, and let γ ⊂ Hn+1 \ Hn be a
conductible sequence such that γ∗ ∩Q �= ∅, and such that γ∗ ∩ ∂δ♦n = ∅.
Then γ∗ ⊂ Q.

2. We have

ν
(
(x, n), (y, n)

) ≤ ν
(
(x, n), (x, n + 1)

)
,

whenever n ∈ N, Q ∈ ♦n and x, y ∈ Q.

3. Let Q ∈ ♦n, and let γ be a conductible sequence in Hn+1 \ Hn such
that γ∗(i) ∈ Q ∪ ∂δQ for all 1 ≤ i ≤ #γ, such that γ∗(i) ∈ ∂δQ for some
1 ≤ i ≤ #γ. Then

ν
(
(γ∗(1), n), (γ∗(#γ), n)

) ≤ 	ν(γ) .

Proof. Condition 1 of Lemma 5.2.3 can be seen to hold by specifying that
φ is sufficiently large as determined by δ and the dimension and homo-
geneity constant of (X, d, µ) (and therefore really just C). We now prove
condition 2 of Lemma 5.2.3. Observe that

b(x, n) ≤ σb(x, n + 1) and d(x, y) ≤ 	�2−nφ.

Consequently
ν
(
(x, n), (y, n)

) ≤ d(x, y)b(x, n)

≤ 	�2−nφσb(x, n + 1)
= ν

(
(x, n), (x, n + 1)

)
.

This proves condition 2 of Lemma 5.2.3.
We now prove condition 3 of Lemma 5.2.3. Fix x, y ∈ Q ∪ ∂δQ. By

definition we have
b(x, n + 1) =

∏

S⊂R
R∈♦

ρ(R) ,

for some S ∈ ♦n+1 that intersects B(x, 	�2−(n+1)φ+1). Observe then that
W ∩ B(y, 	�2−nφ+1) �= ∅ ,

where W ∈ ♦n is the cube that contains S. Consequently
min

T
ρ(T )b(y, n) ≤ ρ(S)

∏

W⊂R
R∈♦

ρ(R) = b(x, n + 1) , (27)
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where the minimum is taken over
{
T ∈ ♦n+1 : T ∩ B(x, 	�2−(n+1)φ+1) �= ∅

}
.

Now, by hypothesis we have γ∗ is a discrete 	�2−(n+1)φ+1-curve such
that γ ∩ ∂δ♦n �= ∅. Consequently from condition 2 of Proposition 5.1.1 we
have

d
(
γ∗(1), γ∗(#γ)

) ≤
#γ∑

i=1

d
(
γ∗(i), γ∗(i + 1)

)
min

T
ρ(T ) ,

where the minimum is taken over (19). Condition 3 of Lemma 5.2.3 now
follows from (27) applied with y = γ∗(1) or γ∗(#γ), and x = γ∗(i) or
γ∗(i + 1), for each of the terms in the summand. In order to apply (27) we
have here used the hypothesis that each γ∗(i) ∈ Q ∪ ∂δQ. This completes
the proof. �

The next lemma shows that the length of a conductible sequence does
not get shorter by travelling into deeper levels of H.

Lemma 5.2.4. Let n ∈ N and x1, x2 ∈ X, and let γ be a conductible
sequence in Hn+1 that begins at (x1, n + 1) and ends at (x2, n + 1), such
that γ∗∩∂δ♦n �= ∅. Then there exists a conductible sequence β in Hn that
begins at (x1, n) and ends at (x2, n), such that 	ν(β) ≤ 	ν(γ).

Proof. We begin by inductively defining increasing sequences (ai)N+1
i=1 ,

(bi)Ni=0 ⊂ N for some N ∈ N, that will be used to decompose γ into
more manageable subsequences. Let a1 = 1 and i ≥ 1 be an integer, and
suppose that ai has been defined. Then let

bi = min
{
i > ai : γ(i) ∈ Hn or i = #γ

}
,

ai+1 = min
{
i ≥ bi : γ(i + 1) ∈ Hn+1 \ Hn

}
.

We terminate the process when bi = #γ. Next let γi = (γ(ai), . . . , γ(bi))
for 1 ≤ i ≤ N , and δi = (γ(bi), . . . , γ(ai+1)) for 1 ≤ i ≤ N − 1.

We claim and will soon prove that for every 1 ≤ i ≤ N , there exists a
conductible sequence βi ⊂ Hn such that βi(1) = (γ∗

i (1), n) and βi(#β) =
(γ∗

i (#γi), n), and such that 	ν(βi) ≤ 	ν(γi). A consequence of the claim is
that

β = β1 ∪ δ1 ∪ β2 ∪ δ2 ∪ · · · ∪ δN−1 ∪ βN ⊂ Hn

is conductible, and begins at (x1, n) and ends at (x2, n). The assertion of
the lemma will then follow from the estimate

	ν(β) =
N∑

i=1

	ν(βi) +
N∑

i=1

	ν(δi) ≤
N∑

i=1

	ν(γi) +
N∑

i=1

	ν(δi) = 	ν(γ) .
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We now prove the claim. Fix 1 ≤ i ≤ N . Consider the case when
γi ∩ ∂δ♦n = ∅. It follows from condition 1 of Lemma 5.2.3 that γ∗(ai) and
γ∗(bi) are both contained in the same member of ♦n. Consequently

βi =
(
(γ∗(ai), n), (γ∗(bi), n)

)

is conductible. From our hypotheses we also see that γi �= γ, and therefore
either γ(ai) or γ(bi) is contained in Hn. We can now safely apply condition 2
of Lemma 5.2.3 to see that 	ν(βi) ≤ 	ν(γi). We conclude that βi satisfies
the properties described in the claim.

Now consider the case when γi∩∂δ♦n �= ∅. Condition 1 of Lemma 5.2.3
permits us to obtain an increasing sequence (kj)Mj=1 ⊂ N for some M ∈ N

• such that k1 = 1 and kM = #γi,
• such that γ∗

i (kj) ∈ ∂δ♦n for every 2 ≤ j ≤ M − 1, and
• such that d(γ∗

i (kj), γ∗
i (kj+1)) ≤ 	�2−nφ+1 for every 1 ≤ j ≤ M − 1.

The point here is that condition 1 of Lemma 5.2.3 prevents γi from passing
through a cube of ♦n without intersecting the boundary of that cube.
Through successive application of condition 3 of Lemma 5.2.3 to each of
the conductible sequences (γi(l))

kj+1

l=kj
, we see that

	ν(βi) =
M−1∑

j=1

ν
(
βi(j), βi(j + 1)

) ≤
M−1∑

j=1

	ν

(
(γi(l))

kj+1

l=kj

)
= 	ν(γi) ,

where βi = {(γi(kj), n)}M
j=1. Again βi satisfies the properties described in

the claim. This completes the proof of the claim and therefore the lemma. �

For every n ∈ N, define a function θn : Hn × Hn → [0,∞) by
θn

(
(x, k), (y, l)

)
= inf

γ
	ν(γ) ,

for every x, y ∈ X and 1 ≤ k, l ≤ n, where the infimum is taken amongst
all conductible sequences γ in Hn that contain (x, k) and (y, l). Notice
that every two members of Hn are mutually contained in some conductible
sequence of Hn. Therefore θn is well defined as a function with bounded
range. Moreover, from the definition of ν-length, and because ν is symmet-
ric, we see that θn is symmetric and observes the triangle inequality. Since
θn only vanishes on the diagonal, we conclude that θn is a metric on Hn.

The next two lemmas give estimates needed to obtain the desired met-
ric θ and the quasisymmetric bounds. Roughly speaking, the next lemma
makes use of the fact that the penalty was not too severe for those con-
ductible sequences that jump between levels of H. In order to proceed
we require that φ be chosen sufficiently large as determined by C so that
2−φσ < 1/2.
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Lemma 5.2.5. Let 1 ≤ m ≤ n and x1, x2 ∈ X, and suppose that

d(x1, x2) ≤ 2−mφ.

Then we have
θn

(
(x1, n), (x2, n)

) ≤ Cb(x1,m)2−mφ.

Proof. To prove the result we obtain an appropriate upper bound for the
ν-length of the conductible sequence given by

γ =
(
(x1, n), (x1, n − 1), . . . , (x1,m), (x2,m), (x2,m − 1), . . . , (x2, n)

)
.

First observe that from the definition of ν we have
ν
(
(x1,m), (x2,m)

) ≤ b(x1,m)2−mφ.

Whereas from the definition of ν and Lemma 5.2.2, we have
ν
(
(xj , k), (xj , k + 1)

)
= σ	�2−kφb(xj, k + 1)

≤ C2−kφσk−mb(x1,m) ,
(28)

for every m ≤ k ≤ n and j = 1, 2. Since 2−φσ < 1/2, we conclude that

	ν(γ) = ν
(
(x1,m), (x2,m)

)
+

2∑

j=1

n∑

k=m

ν
(
(xj , k), (xj , k + 1)

)

≤ Cb(x1,m)2−mφ

(
1 +

2∑

j=1

∞∑

k=m

(2−φσ)k−m

)

≤ Cb(x1,m)2−mφ.

This completes the proof. �

Lemma 5.2.6. Let 1 ≤ m ≤ n and x1, x2 ∈ X, and suppose that

2−mφ ≤ d(x1, x2) ≤ 2−(m−1)φ.

Then we have

θn

(
(x1, n), (x2, n)

) ≥ Cb(x1,m)d(x1, x2) .

Proof. Let γ be a conductible sequence in Hn that begins at (x1, n) and
ends at (x2, n). Since d(x1, x2) ≥ 2−mφ, there exists a positive integer
l ≤ m + C such that x1 and x2 are contained in different cubes in ♦l.
For the case when l > n, we set l = n. Through successive application of
Lemma 5.2.4 to γ, we obtain a conductible sequence β ⊂ Hl such that β
begins at (x1, l) and ends at (x2, l), and such that 	ν(β) ≤ 	ν(γ) (or if l = n
we let β = γ). To complete the proof it suffices to show that

b(x1,m)d(x1, x2) ≤ C	ν(β) . (29)
Observe that either
• there exists 1 ≤ i ≤ #β − 1 such that β∗(i) = l and β∗(i + 1) = l− 1,

and such that d(β∗(i), x1) ≤ 	�2−mφ+2, or
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• there exists 1 ≤ a ≤ #β such that β′∗ ⊂ B(x1, 	�2−mφ+2), such that
diam β′∗ ≥ 2−mφ, where β′ = (β(1), β(2), . . . , β(a)), and such that
β′∗(i) = l for 1 ≤ i ≤ a.

In the first case, it follows from the definition of ν and ν-length that
b(β(i))2−lφ ≤ Cν

(
β(i), β(i + 1)

) ≤ C	ν(β) .

Moreover, we can apply Lemma 5.2.2 to see that b(x1,m) ≤ Cb(β(i)).
Inequality (29) then follows from fact that l ≤ m + C.

In the second case we infer from Lemma 5.2.2 that
b(x1,m) ≤ Cb

(
β′(j)

)
,

for every 1 ≤ j ≤ a. It then follows from the triangle inequality, and the
definition of ν-length, that

d(x1, x2)b(x1,m) ≤ C

#β′−1∑

j=1

d
(
β′∗(j), β′∗(j+1)

)
min

{
b(β′(j)), b(β′(j+1))

}

= C	ν(β′) ≤ C	ν(β) .

This completes the proof. �
From here on we keep φ fixed. Thus φ depends only on C, that

is, the value of φ depends only on the parameters of the hypotheses of
Proposition 5.2.1. We now allow future uses of C to depend not only on
the parameters of the hypotheses of Proposition 5.2.1 as before, but also
on φ and α′.

Let x, y ∈ X and n ∈ N satisfy n ≥ − log2φ d(x, y). It follows from
Lemma 5.2.5 with m = [− log2φ d(x, y)], Lemma 5.2.2 with l = 0 and
k = m, and the fact that σ2−φ < 1/2, that

θn

(
(x, n), (y, n)

) ≤ Cη
(
d(x, y)

)
,

where the function η : (0, 1] → (0,∞) is defined by the formula
η(t) = 2− log

2φ (t−1+2).

Observe that η(t) → 0 as t → 0. We can therefore apply the Arzelá–
Ascoli theorem to obtain θ : X × X → (0,∞) as a limit of a subsequence
of (θn|(X,n)×(X,n)). By Lemma 5.2.6 we see that θ vanishes only on the
diagonal. We can now safely conclude that θ is a metric on X. It further
follows from Lemma 5.2.5 together with Lemma 5.2.6 that

θ(x, y) ≈ b
(
x, [− log2φ d(x, y)]

)
d(x, y) , (30)

for every x, y ∈ X. Here and below we write s ≈ r, for some s, r > 0, to
mean that s and r are comparable with comparability constant C.
Lemma 5.2.7. The identity map from (X, d) to (X, θ) is quasisymmetric
with quasisymmetric regularity depending only on C.



Vol. 14, 2004 CONFORMAL ASSOUAD DIMENSION AND MODULUS 1315

Proof. Let x, y, z ∈ X with x �= z. It then follows from (30) that
θ(x, y)
θ(x, z)

≈ b(x, [− log2φ d(x, y)])d(x, y)
b(x, [− log2φ d(x, z)])d(x, z)

. (31)

In case d(x, y) ≤ d(x, z), it follows from Lemma 5.2.2 that

b
(
x, [− log2φ d(x, y)]

) ≤ Cσ
log

2φ

(
d(x,z)
d(x,y)

+2
)

b
(
x, [− log2φ d(x, z)]

)
.

Consequently the right-hand side of (31) is bounded by

Cσ
log

2φ

(
d(x,z)
d(x,y)

+2
)

2−φ log
2φ

(
d(x,z)
d(x,y)

)

≤ Cη

(
d(x, y)
d(x, z)

)
.

If d(x, y) ≥ d(x, z), it follows from Lemma 5.2.2 that
b(x, [− log2φ d(x, y)])
b(x, [− log2φ d(x, z)])

≤ Cσ
log

2φ

(
d(x,y)
d(x,z)

+2
)

≤ C

(
d(x, y)
d(x, z)

)C

.

Consequently the right-hand side of (31) is bounded by
(

d(x, y)
d(x, z)

)C

.

This completes the proof. �

To complete the proof of Proposition 5.2.1 it remains to show that (X, θ)
admits an α′-homogeneous measure with homogeneity constant C. This is
achieved in the following two lemmas. Define a function κ : ♦ → R by

κ(Q) = µ(Q)α
′/α

∏

R∈♦
Q⊂R

ρ(R)α
′
,

for every Q ∈ ♦.

Lemma 5.2.8. The function κ extends to a Borel measure on (X, θ).

Proof. For every A ⊂ X and δ > 0 let

κδ(A) = inf
G

∑

Q∈G
κ(Q) ,

where the infimum is taken over all covers G ⊂ ♦ of A such that each
member of G has diameter at most δ (say with respect to the metric d,
although in what follows we could also use θ). By the Carathéodory
construction [F, 2.10.1] there exists a Borel measure κ′ on (X, θ) given
by κ′(A) = limδ→0+ κδ(A) for every A ⊂ X. We need to show that
κ(Q) = κ′(Q) for every Q ∈ ♦. This is a consequence of the fact that
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for every n ∈ N and Q ∈ ♦n we have

κ(Q) = µ(Q)α
′/α

∏

R∈♦
Q⊂R

ρ(R)α
′

=
∑

T⊂Q
T∈♦n+1

µ(T )α
′/αρ(T )α

′ ∏

R∈♦
Q⊂R

ρ(R)α
′

=
∑

T⊂Q
T∈♦n+1

µ(T )α
′/α

∏

R∈♦
T⊂R

ρ(R)α
′

=
∑

T⊂Q
T∈♦n+1

κ(T ) .

Here we used condition 1 of Proposition 5.1.1 to get the second equality.
This completes the proof. �

Here and after we let Bθ(y, s) denote the ball in (X, θ) with center y ∈ X
and radius s > 0.

Lemma 5.2.9. We have
κ(Bθ(y, r))
κ(Bθ(x,R))

≥ C
( r

R

)α′
, (32)

whenever 0 < r < R < diam X, x ∈ X, and y ∈ Bθ(x,R).

Proof. Fix x, y, r and R as above. Using the fact that (X, d) is proper, we
fix a, b ∈ X such that

d(a, y) = min
{
d(w, y) : w ∈ X and θ(w, y) ≥ r

}
and θ(a, y) ≥ r ,

d(b, y) = max
{
d(w, y) : w ∈ X and θ(w, y) ≤ 2R

}
and θ(b, y) ≤ 2R .

Then we have
B

(
y, d(a, y)

) ⊂ Bθ(y, r) and Bθ(x,R) ⊂ B
(
y, 2d(b, y)

)
.

Now fix Q ∈ ♦ such that rad Q ≥ Cd(a, y) and Q ⊂ B(y, d(a, y)), and let

W =
⋃{

T ∈ ♦[− log
2φ d(b,y)] : T ∩ B(y, 2d(b, y)) �= ∅

}
.

Then we have
Q ⊂ Bθ(y, r) and Bθ(x,R) ⊂ W . (33)

From the properties of the dyadic decomposition we have that the union
defining W is a union of at most C cubes. It then follows from the definition
of κ and b and by Proposition 5.1.1.3 that

κ(Q)
κ(W )

≈ µ(Q)α
′/αb(y, [− log2φ d(a, y)])α

′

µ(W )α′/αb(y, [− log2φ d(b, y)])α′ .
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Whereas, from the homogeneity of µ we get
µ(Q)
µ(W )

≥ C

(
d(a, y)
d(b, y)

)α

.

Finally, it follows from (30) and the choice of a and b that
d(a, y)b(y, [− log2φ ]d(a, y))
d(b, y)b(y, [− log2φ ]d(b, y))

≈ θ(a, y)
θ(b, y)

≥ C
r

R
.

The last three inequalities together with (33) imply (32). This completes
the proof. �

This completes the proof of Proposition 5.2.1.

5.3 Proof of Theorem 5.0.10. First apply Proposition 3.3.3. This
determines Ψ > 0 that depends only on (X, d, µ), and which will be used
in future applications of Proposition 5.2.1. Fix x ∈ X and r > 0 so that
diam B(x, r) > 0. Recall that since (X, d) is a complete α-homogeneous
metric measure space, we can exhaust X by a sequence of compact α-
homogeneous metric measure subspaces X1 ⊂ X2 ⊂ . . . , with homogeneity
constant uniformly bounded above by a bound that depends only on α
and the homogeneity constant of µ. We organize this exhaustion so that
B(x, r) ⊂ Xn for every n ∈ N. Fix n ∈ N. Proposition 5.2.1 together with
a re-scaling argument provides an α′-homogeneous metric measure space
(Yn, ln, κn), and a quasisymmetric homeomorphism fn : Xn → Yn, where
0 < α′ < α depends only on Ψ and the parameters of our hypotheses.

From Proposition 5.2.1 we have that the homogeneity constant of κn,
and the quasisymmetric regularity of fn, are uniformly controlled. Since
B(x, r) �= {x} and fn is a homeomorphism, we can re-scale ρn so that
diam fn(B(x, r)) = 1. Normalize each of the measures κn, and then pass
to a subsequence so that {(Yn, ln, κn, yn)} converges to an α′-homogeneous,
complete pointed metric measure space (Y, l, κ, y). Since κ is α′-homogene-
ous, the Assouad dimension of (Y, l) is at most α′, and therefore strictly
less than α. Now apply Lemma 2.4.7 to conclude that a subsequence of
(fn) converges to some quasisymmetric homeomorphism f : X → Y . This
completes the proof.

6 The Proof of Theorem 1.0.1 and the Corollaries

Proof of Theorem 1.0.1. It follows from the contrapositive of Theo-
rem 5.0.10 that there exists a weak tangent of (X, d, µ) with non-vanishing
α-modulus. Theorem 4.0.5 then implies that a tangent of this weak tangent,



1318 S. KEITH AND T. LAAKSO GAFA

and therefore a weak tangent of (X, d, µ) has uniformly big 1-modulus. This
completes the proof. �

Proof of Corollary 1.0.2. Theorem 5.0.10 proves the first “only if” part of
Corollary 1.0.2. To see the converse implication suppose that a weak tan-
gent of (X, d) has non-vanishing p-modulus for some p ≥ 1. Theorem 4.0.5
then asserts that there is a tangent of this weak tangent, and hence a weak
tangent of (X, d), that has uniformly big 1-modulus. This proves the last
claim of Corollary 1.0.2.

Suppose that (X, d) has conformal Assouad dimension strictly less
than α. To complete the proof we need to show that every weak tan-
gent of (X, d) has vanishing p-modulus for every p ≥ 1. By Theorem 2.1.1
there exists a quasisymmetric homeomorphism from (X, d) to an Ahlfors
α′-regular metric space for some α′ < α. It then follows from Lemma 2.4.4
and Lemma 2.4.7 that every weak tangent of (X, d) is quasisymmetrically
homeomorphic to an Ahlfors α′-regular metric space. In particular we
have that each weak tangent of (X, d) has conformal Assouad dimension at
most α′, and therefore conformal (Hausdorff) dimension at most α′. Since
α′ < α, Theorem 2.3.1 of Tyson implies that each weak tangent of (X, d)
has vanishing α-modulus. Thus by Theorem 4.0.5, and using the fact that
a weak tangent of a weak tangent is a weak tangent of the original metric
space, we see that every weak tangent of (X, d) has vanishing p-modulus
for every p ≥ 1. This completes the proof. �

Proof of Corollary 1.0.3. We refer the reader to the work of Bonk and
Kleiner [BoK1,2] for the definition and relevant properties of a uniformly
quasi-Möbius action G � X for which the induced action on the space of
distinct triples of X is cocompact. Of significance here are the following
two properties which hold for every non-compact weak tangent (Y, l) of
(X, d) that contains at least three points.

• There exists x∈X and a quasi-Möbius homeomorphism f : X\{x}→Y
that restricts to a quasisymmetric map, with uniform quasisymmetric
regularity, on every ball B(y, r) where y ∈ X and r = d(x, y)/2.

• If (X, d) and (Y, l) are Ahlfors α-regular, then for every family of
curves Γ in Y , we have

modα(Γ) ≤ C modα

({f−1 ◦ γ : γ ∈ Γ}) ,

where C is a constant that depends only on X, Y , and the quasi-
Möbius regularity of f .

This last result is a special case of Theorem [BoK2, Theorem 2.7], which
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in turn follows from more general results of Tyson [T2, Theorem 6.4 and
Lemma 9.2].

Assume the hypothesis of Corollary 1.0.3. Theorem 1.0.1 implies there
exists a weak tangent of (X, d, µ) with uniformly big 1-modulus. We can
apply Theorem 4.0.5 in order to get a non-compact weak tangent (Y, l, ν)
with the same property. The first claim of Corollary 1.0.3 therefore follows
from the first property listed above. For the case when (X, d) is Ahlfors
α-regular, we claim that there exists δ > 0 so that the collection of curves
of diameter at least δr, contained in any ball B(y, r) in X, where y ∈ X
and r = d(x, y)/4, has α-modulus at least δ. This then implies (X, d) has
uniformly big α-modulus. Fix such a ball. As mentioned above, we have f
restricts to a quasisymmetric map on B(y, 2r) with uniform quasisymmetric
regularity. This and the fact that (Y, l) is Ahlfors regular with uniformly
big 1-modulus implies there exists δ > 0, independent of y and r, such
that the collection of curves in f(B) with diameter at least δ diam f(B)
has α-modulus at least δ. The claim then follows from the second property
of quasi-Möbius maps given above. This completes the proof. �

Proof of Corollary 1.0.4. A key property of BPI metric spaces is that they
are BPI equivalent to all of their weak tangents (see [DS, Corollary 9.9]).
Since BPI spaces are by definition Ahlfors regular, Corollary 1.0.4 then
follows from Corollary 1.0.2. This completes the proof. �

Proof of Corollary 1.0.5. Let (X, d) be the Sierpinski n-carpet for some
n ∈ N, and observe that (X, d) is Ahlfors regular. It is a simple procedure to
show that (X, d) has vanishing 1-modulus (see [S, pp. 29–34] for discussion
on a similar topic), and moreover that every weak tangent of (X, d) contains
a re-scaled isometric copy of (X, d). Therefore no weak tangent of (X, d) has
uniformly big 1-modulus. Now apply Corollary 1.0.2 to conclude that the
conformal Assouad dimension of (X, d) is strictly less than the Hausdorff
dimension of (X, d). This completes the proof. �
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une surface, Rev. Mat. Iberoamericana 4:1 (1988), 73–114.

[DS] G. David, S. Semmes, Fractured Fractals and Broken Dreams, The
Clarendon Press Oxford University Press, New York, 1997.

[F] H. Federer, Geometric Measure Theory, Springer-Verlag New York Inc.,
New York, 1969.

[Fu] B. Fuglede, Extremal length and functional completion, Acta Math. 98
(1957), 171–219.

[Fuk1] K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of
Laplace operator, Invent. Math. 87:3 (1987), 517–547.

[Fuk2] K. Fukaya, Hausdorff convergence of Riemannian manifolds and its ap-
plications, Recent topics in differential and analytic geometry, Adv. Stud.
Pure Math. 18, Academic Press, Boston, MA (1990), 143–238.

[G1] M. Gromov, Asymptotic invariants of infinite groups, Geometric Group
Theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser. 182,
Cambridge Univ. Press, Cambridge (1993), 1–295.

[G2] M. Gromov, Metric Structures for Riemannian and Non-Riemannian
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