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EXTENDABILITY OF LARGE-SCALE LIPSCHITZ MAPS

URS LANG

Abstract. Let X, Y be metric spaces, S a subset of X, and f : S → Y a
large-scale lipschitz map. It is shown that f possesses a large-scale lipschitz
extension f̄ : X → Y (with possibly larger constants) if Y is a Gromov hy-
perbolic geodesic space or the cartesian product of finitely many such spaces.
No extension exists, in general, if Y is an infinite-dimensional Hilbert space.
A necessary and sufficient condition for the extendability of a lipschitz map
f : S → Y is given in the case when X is separable and Y is a proper, convex
geodesic space.

1. Introduction

A well-known fact due to E. J. McShane [M] states that every lipschitz map
f : S → R defined on a subset of a metric space X possesses an extension f̄ : X → R
(i.e. f̄ |S = f) satisfying the same lipschitz condition. Another classical result of
this type is Kirszbraun’s theorem [K] which applies to lipschitz maps f : S → Rn,
S ⊂ Rm, for m, n ≥ 1. Recently, V. Schroeder and the author [LS] proved a gen-
eralization of Kirszbraun’s theorem in the context of metric spaces with curvature
bounds in the sense of A. D. Alexandrov. A trimmed, riemannian version of this
result reads:

Theorem 1.1 ([LS]). Let X be a complete riemannian manifold with sectional cur-
vature KX ≥ −a2, a ≥ 0, and Y a simply connected, complete riemannian manifold
of curvature KY ≤ −b2, b ≥ 0. Whenever S ⊂ X and f : S → Y is a λ-lipschitz
map with λb ≥ a, then there exists a λ-lipschitz extension f̄ : X → Y of f .

As in the classical statement the dimensions of both X and Y are irrelevant (and
may as well be infinite). A common feature of these results is that the lipschitz
constant of the extension f̄ is still the same as for the original map f . The aim of the
present paper is to enlarge the scope of the above statements—with regard to the
geometry of the underlying spaces—at the cost of a weaker property of the extended
map. We consider the following large-scale lipschitz condition: a (not necessarily
continuous) map f : X → Y between two metric spaces (X, d) and (Y, d) is called
(λ, ε)-lipschitz for λ, ε ≥ 0 if

d(f(x), f(x′)) ≤ λd(x, x′) + ε

for all x, x′ ∈ X . Then f is said to be a (λ, ε)-quasi-isometric embedding if also
d(x, x′) ≤ λd(f(x), f(x′)) + ε for all x, x′ ∈ X . We generalize McShane’s lemma to
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hyperbolic target spaces in the sense of Gromov [G1] (see section 2 for the definition
of δ-hyperbolicity used here).

Theorem 1.2. Let X be a metric space and Y a complete, δ-hyperbolic geodesic
space. Then every (λ, ε)-lipschitz map f : S → Y defined on a subset of X possesses
a (λ, ε + 3δ)-lipschitz extension f̄ : X → Y .

For Y = R (hence δ = 0) and ε = 0, the presented proof reduces to a variant of
the simple argument of [M]. For the case δ = 0 (i.e. if Y is an R-tree) and ε = 0,
the result was also proved in [LS], as a by-product of the methods developed there.
Theorem 1.2 implies that the image of a quasi-isometric embedding h : Y → X of a
δ-hyperbolic geodesic space Y into a metric space X is a large-scale lipschitz retract
in X (compare the question and remark on p. 56 in [G2]; the former is answered
affirmatively by Theorem 1.1). In particular, one obtains the following corollary in
terms of geometric group theory (see section 2 for detailed comments).

Corollary 1.3. Let G be a finitely generated group and H ⊂ G a finitely generated
subgroup. If H is word hyperbolic, then H admits a lipschitz retraction ρ : G → H
if and only if H has bounded distortion in G.

A simple consequence of McShane’s lemma is that every λ-lipschitz map f : S →
Rn defined on a subset of a metric space X possesses a

√
nλ-lipschitz extension

f̄ : X → Rn. Similarly, Theorem 1.2 can be formulated for cartesian products
Y = Y1 × . . . × Yn of finitely many δ-hyperbolic spaces (cf. Corollary 2.3) and
Corollary 1.3 extends to products H = H1 × . . .×Hn of word hyperbolic groups.

Now let Y be an n-dimensional Hadamard manifold, i.e. a simply connected,
complete riemannian manifold of curvature KY ≤ 0. Let f : S → Y be a (λ, ε)-
lipschitz map defined on a subset of a metric space X . The above results produce
a somewhat inhomogeneous picture: f possesses a (

√
nλ,

√
nε)-lipschitz extension

f̄ : X → Y if Y = Rn, and a (λ, ε+3δ)-lipschitz extension if Y is δ-hyperbolic. One
may ask the following:

Question 1.4. In the general case, does there exist a (λ̄, ε̄)-lipschitz extension
f̄ : X → Y of f for some λ̄, ε̄ depending only on λ, ε and n?

In fact, a scaling argument shows that if this is true, then one may as well take
λ̄ = µλ for some µ depending only on n. It seems likely that the answer to this
question is positive, and that µ =

√
n serves the purpose as in the case Y = Rn,

but we do not know how to prove this. In view of Theorem 1.1 for a = b = 0 one
may even ask if the dependence of µ on n is necessary at all. This is answered by
the following result which is proved in section 3. Given a metric space (Y, dY ), we
call another metric space (X, dX) an extension of Y if X ⊃ Y and dX |Y ×Y = dY .

Theorem 1.5. For every n ≥ 2 there exists a metric space extension Xn of the
euclidean Rn such that there is no (λ, ε)-lipschitz retraction ρ : Xn → Rn with
λ < n1/4 and ε ≥ 0. Moreover, there exists an extension X∞ of the separable
Hilbert space R∞ such that there is no large-scale lipschitz retraction ρ : X∞ → R∞
at all.

Here the word “retraction” simply refers to the property ρ(x) = x for x ∈
Rn and does not include the continuity of ρ. (In other words, ρ : Xn → Rn is
an extension of the identity on Rn.) The spaces Xn are obtained by attaching
particular examples of metrized (combinatorial) graphs to Rn. Generalizing this
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procedure we formulate a necessary condition for the extendability of a lipschitz
map f : S → Y in the case when X ⊃ S is separable and Y is a proper metric
space; cf. Proposition 3.2. Moreover, in Theorem 4.4, the obtained condition is also
shown to be sufficient provided Y is a locally compact Hadamard space in the sense
of Busemann. The discussion extends to large-scale lipschitz maps and yields an
equivalent reformulation of Question 1.4 for separable X ; cf. Theorem 4.5.

2. Maps into hyperbolic spaces

In this section we first recall some definitions, then we prove Theorem 1.2 and
discuss the corollaries mentioned in the introduction.

Given a metric space Y , a (continuous) curve σ : [a, b] → Y is called a geodesic
if there exists a constant s ≥ 0 (the speed of σ) such that d(σ(t), σ(t′)) = s|t − t′|
for all t, t′ ∈ [a, b]. Then L(σ) = d(x, y), where L denotes arc length and x := σ(a),
y := σ(b). Conversely, every continuous curve σ′ : [a′, b′] → Y of minimal length
L(σ′) = d(x, y) connecting x and y can be reparameterized so that it becomes a
geodesic. A metric space Y is called a geodesic space if every pair of points x, y ∈
Y can be connected by some geodesic. For instance, every complete riemannian
manifold is a geodesic space. The image of a geodesic from x to y is denoted [x, y]
(which is ambiguous as there may exist different such segments).

Gromov’s seminal work [G1] contains several definitions of hyperbolicity for met-
ric spaces, and more have emerged since; see e.g. [B]. However, for geodesic spaces
all of them are equivalent up to adjustment of the data describing the hyperbolicity.
The most convenient definition for our purposes follows [G1, 6.3]. We abbreviate

(y · y′)y0 := [d(y, y0) + d(y′, y0)− d(y, y′)]/2

if y0, y, y′ are points in a metric space Y . Note that (y · y′)y0 + (y0 · y′)y = d(y, y0).
By a hinge in a geodesic space Y we mean a pair of geodesic segments [y0, y], [y0, y

′]
with a common endpoint y0.

Definition 2.1. Let δ ≥ 0. A geodesic space Y is called δ-hyperbolic if the fol-
lowing holds: whenever [y0, y], [y0, y

′] is a hinge in Y , and p ∈ [y0, y], p′ ∈ [y0, y
′]

satisfy d(p, y0) = d(p′, y0) ≤ (y · y′)y0 , then d(p, p′) ≤ δ.

In particular, if [y0, y], [y0, y
′], [y, y′] is a geodesic triangle in a δ-hyperbolic space

Y , and if p ∈ [y0, y], then there exists a point q ∈ [y0, y
′] ∪ [y, y′] with d(q, p) ≤ δ

(and either d(q, y0) = d(p, y0) or d(q, y) = d(p, y)). Conversely, it is easily shown
that if in a geodesic space Y every geodesic triangle has the property that each of its
sides lies within distance δ′ of the union of the other two, then Y is 4δ′-hyperbolic
in the sense of Definition 2.1. For instance, every simply connected, complete
riemannian manifold Y with curvature KY ≤ −b2, b > 0, is δ-hyperbolic for δ =
b−1 arcosh(3/2). A 0-hyperbolic geodesic space Y is called an R-tree (see [MoSh]
for other characterizations of R-trees).

Now we prove Theorem 1.2. As mentioned in the introduction, the proof extends
the simple argument of McShane [M]. The completeness of Y is only used in the
case δ = 0.

Proof of Theorem 1.2. We fix a reference point y0 ∈ Y and abbreviate ‖y‖ :=
d(y, y0) and

(y · y′) := (y · y′)y0 = [‖y‖+ ‖y′‖ − d(y, y′)]/2
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for y, y′ ∈ Y . For x ∈ X and z ∈ S we define

µ(x, z) := max{0, ‖f(z)‖ − λd(x, z)− ε/2}
and µ̄(x) := supz∈S µ(x, z). Note that µ̄(x) < ∞ since

µ(x, z) ≤ max{0, ‖f(y)‖+ d(f(y), f(z))− λd(x, z) − ε/2}
≤ max{0, ‖f(y)‖+ λd(y, z) + ε− λd(x, z)− ε/2}
≤ ‖f(y)‖+ λd(x, y) + ε/2

for all y, z ∈ S. Moreover, the triangle inequality yields µ̄(x) + λd(x, x′) ≥ µ̄(x′)
whenever x, x′ ∈ X , thus µ̄ : X → R is λ-lipschitz. For every z ∈ S we choose a
geodesic segment s(z) = [y0, f(z)] ⊂ Y , and for every pair (x, z) ∈ X × S we let
p(x, z) ∈ s(z) denote the point with ‖p(x, z)‖ = µ(x, z). By the definition of µ we
have d(p(x, z), f(z)) = λd(x, z) + ε/2 unless p(x, z) = y0. We claim that

d(p(x, z), p(x′, z′)) ≤ max{|µ(x, z)− µ(x′, z′)|+ δ, λd(x, x′) + 2δ}(1)

whenever x, x′ ∈ X and z, z′ ∈ S. If µ(x, z) ≤ (f(z) · f(z′)) or µ(x′, z′) ≤ (f(z) ·
f(z′)), then clearly

d(p(x, z), p(x′, z′)) ≤ |µ(x, z)− µ(x′, z′)|+ δ.

In the remaining case we choose a segment [f(z), f(z′)] and let q, q′ ∈ [f(z), f(z′)]
be the points with d(q, f(z)) = d(p(x, z), f(z)) and d(q′, f(z′)) = d(p(x′, z′), f(z′)).
Then d(p(x, z), p(x′, z′)) ≤ d(q, q′) + 2δ, and

d(q, q′) = d(f(z), f(z′))− d(p(x, z), f(z))− d(p(x′, z′), f(z′))

≤ λd(z, z′) + ε− λd(x, z)− ε/2− λd(x′, z′)− ε/2

≤ λd(x, x′),

which proves the claim. Next we construct a (λ, 2δ)-lipschitz map p̄ : X → Y
satisfying d(p̄(y), f(y)) ≤ ε/2 + δ for y ∈ S. Consider first the case δ = 0. For
a given x ∈ X we choose a sequence z1, z2, . . . in S such that limi→∞ µ(x, zi) =
µ̄(x). It follows from (1) that the points p(x, zi) form a Cauchy sequence. By the
completeness of Y this sequence possesses a limit p̄(x) ∈ Y which does not depend
on the choice of the points zi. Using (1) again we see that the map p̄ obtained this
way is λ-lipschitz since µ̄ is. Let y ∈ S. If p̄(y) ∈ s(y), then

d(p̄(y), f(y)) = ‖f(y)‖ − µ̄(y) ≤ ‖f(y)‖ − µ(y, y) ≤ ε/2.

If p̄(y) 6∈ s(y), then we pick z1, z2, . . . in S such that p(y, zi) → p̄(y) as i →∞ and
p(y, zi) 6∈ s(y) for each i. Since Y is an R-tree we get

d(p(y, zi), f(y)) = d(f(y), f(zi))− d(p(y, zi), f(zi))

≤ λd(y, zi) + ε− λd(y, zi)− ε/2

= ε/2,

hence d(p̄(y), f(y)) ≤ ε/2. Now consider the case δ > 0. For every x ∈ X we choose
a point zx ∈ S such that µ(x, zx) ≥ µ̄(x)− δ, and for y ∈ S we assume additionally
that µ(y, zy) ≥ µ(y, y). Then we put p̄(x) := p(x, zx). For x, x′ ∈ X we have

|µ(x, zx)− µ(x′, zx′)| ≤ |µ̄(x) − µ̄(x′)|+ δ ≤ λd(x, x′) + δ,
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thus p̄ is (λ, 2δ)-lipschitz due to (1). Let y ∈ S. If ‖p̄(y)‖ = µ(y, zy) ≤ (f(y)·f(zy)),
then clearly

d(p̄(y), f(y)) ≤ ‖f(y)‖ − µ(y, zy) + δ

≤ ‖f(y)‖ − µ(y, y) + δ

≤ ε/2 + δ.

Similarly, if ‖p̄(y)‖ > (f(y) · f(zy)), then

d(p̄(y), f(y)) ≤ d(f(y), f(zy))− d(p(y, zy), f(zy)) + δ

≤ λd(y, zy) + ε− λd(y, zy)− ε/2 + δ

= ε/2 + δ.

Hence, in both cases, p̄ has the desired properties. Finally, we define f̄ : X → Y
such that f̄ = p̄ on X \ S and f̄ = f on S; we know that both f̄ |X \ S and f̄ |S are
(λ, ε + 2δ)-lipschitz. Let x ∈ X \ S and y ∈ S. Then

d(f̄(x), f̄ (y)) ≤ d(p̄(x), p̄(y)) + d(p̄(y), f(y))

≤ λd(x, y) + 2δ + ε/2 + δ,

thus f̄ is a (λ, ε + 3δ)-lipschitz extension of f .

We note that the above argument contains a proof of the following approximation
result which is clearly optimal.

Lemma 2.2. Let X be a metric space, Y a complete R-tree, and f : X → Y a
(λ, ε)-lipschitz map. Then there exists a λ-lipschitz map f ′ : X → Y with

d(f ′(x), f(x)) ≤ ε/2

for all x ∈ X.

Next we discuss Corollary 1.3. Let G be a finitely generated group and A ⊂ G a
finite generating system with A = A−1, i.e. a ∈ A if and only if a−1 ∈ A. For g ∈ G
one denotes by ‖g‖A the length of a shortest word over A representing g (where
‖e‖A := 0 for the neutral element of G). The word metric on G with respect to
A is the left-invariant metric defined by dA(g, g′) := ‖g−1g′‖A for g, g′ ∈ G. Now
let H ⊂ G be a subgroup with a finite generating system B = B−1. Clearly there
exists a constant λ ≥ 1 such that ‖h‖A ≤ λ‖h‖B for all h ∈ H (one can take λ = 1
if B ⊂ A). On the other hand, τ : R → R is called a distortion function for H in G
(with respect to A, B) if

‖h‖B ≤ τ(‖h‖A)‖h‖A

for all h ∈ H . Then H is said to have bounded distortion in G if, for some generating
sets A ⊂ G and B ⊂ H , H admits a bounded distortion function; polynomial or
exponential distortion are defined analogously. In fact, since a change of generators
results in a bilipschitz transformation of the word metric, this is then true for every
choice of A and B. Clearly the existence of a lipschitz retraction ρ : (G, dA) →
(H, dB) implies that H has bounded distortion in G. Corollary 1.3 asserts that the
converse is also true provided H is word hyperbolic, i.e. the Cayley graph ΓB(H)
of H is δ-hyperbolic for some δ ≥ 0. ΓB(H) is a geodesic space containing an
isometrically embedded copy of (H, dB), we may thus denote the metric on ΓB(H)
by dB as well. The construction of the Cayley graph depends on the generating
system for H , but the property of being word hyperbolic is, in fact, independent of
the choice of B (cf. [G1]).
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Proof of Corollary 1.3. We may choose the generating sets A ⊂ G and B ⊂ H so
that B ⊂ A; then ΓB(H) may be considered as a subspace of ΓA(G). If H has
bounded distortion in G, then there exists a constant λ ≥ 1 such that dB(x, x′) ≤
λdA(x, x′) for all x, x′ ∈ ΓB(H). Thus, if ΓB(H) is δ-hyperbolic, the identity
f : ΓB(H) → ΓB(H) possesses a (λ, 3δ)-lipschitz extension f̄ : (ΓA(G), dA) →
(ΓB(H), dB) by Theorem 1.2. Viewing the groups G and H as discrete subsets
of their Cayley graphs we find a (λ, 3δ + 1)-lipschitz retraction ρ : G → H . Since
dA(g, g′) ≥ 1 for g 6= g′, ρ is a (λ + 3δ + 1)-lipschitz map.

It would be interesting to know if (or in what cases) the above retraction ρ : G →
H can be made H-equivariant, i.e. such that ρ(hg) = hρ(g) for all g ∈ G and h ∈ H
(compare [G2, 3.L]). For recent results on subgroup distortion we also refer to [F]
and [V].

We conclude this section with another consequence of Theorem 1.2.

Corollary 2.3. Let X be a metric space and Y = Y1 × . . . × Yn the cartesian
product of n complete, δ-hyperbolic geodesic spaces. Then every (λ, ε)-lipschitz map
f : S → Y defined on a subset of X possesses a (

√
nλ,

√
n(ε+3δ))-lipschitz extension

f̄ : X → Y .

Similarly, Corollary 1.3 extends to products H = H1× . . .×Hn of finitely many
word hyperbolic groups.

Proof. Every component fi : S → Yi of f is (λ, ε)-lipschitz and hence admits a
(λ, ε+3δ)-lipschitz extension f̄i : X → Yi by Theorem 1.2. Then f̄ := (f̄1, . . . , f̄n) :
X → Y is an extension of f , and

d(f̄(x), f̄ (x′))2 =
n∑

i=1

d(f̄i(x), f̄i(x′))2

≤
n∑

i=1

[λd(x, x′) + ε + 3δ]2

= n[λd(x, x′) + ε + 3δ]2

for x, x′ ∈ X , thus f̄ is (
√

nλ,
√

n(ε + 3δ))-lipschitz.

In particular, if Y equals the euclidean Rn (or the cartesian product of n complete
R-trees), then there exists a (

√
nλ,

√
nε)-lipschitz extension f̄ of f .

3. Tight immersions of graphs

Now we focus on Question 1.4. The concluding result of this paper, Theorem 4.5,
provides an equivalent reformulation of the problem in the case when X ⊃ S is a
separable metric space. This criterion relies on the notion of tight immersions of
finite (combinatorial) graphs which is introduced in Definition 3.1 below. Using
this terminology we first formulate a necessary condition for the extendability of
certain 1-lipschitz maps; cf. Proposition 3.2. Then we construct an example of a
tight graph in Rn which, together with the argument proving Proposition 3.2, yields
Theorem 1.5 stated in the introduction.

For our purposes a finite graph G is a pair (V (G), E(G)), where V (G) is a non-
empty finite set and E(G) is a set of subsets of cardinality two of V (G) whose union
equals V (G). The elements of V (G) and E(G) are called vertices and edges of G
respectively. A vertex v ∈ V (G) is a terminal of G if it belongs to exactly one edge,
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Figure 1. A graph in R2 which is partially tight but not tight.

otherwise v is called an interior point of G (note that, according to our definition,
G possesses no isolated vertices). Let T (G) and I(G) denote the respective subsets
of V (G). A path in G is an ordered tuple (v0, v1, . . . , vl) of vertices such that
{vi−1, vi} ∈ E(G) for i = 1, . . . , l, where l ≥ 0. A finite graph G is said to be
connected if for every pair of vertices v, w ∈ V (G) there exists a path (v0, . . . , vl)
in G from v to w, i.e. with v0 = v and vl = w. A subgraph G′ of G is a graph
with E(G′) ⊂ E(G); note that then I(G′) ⊂ I(G). Given a graph G, we call a map
g : V (G) → Y into a set Y an immersion of G if g(v) 6= g(w) for all {v, w} ∈ E(G).

Definition 3.1. Let G be a finite graph and Y a metric space. We call an im-
mersion g : V (G) → Y partially tight if there is no map g′ : V (G) → Y with
g′(v) = g(v) for v ∈ T (G) and d(g′(v), g′(w)) < d(g(v), g(w)) for all {v, w} ∈ E(G).
We say that g is tight if there is no map g′ : V (G) → Y with g′(v) = g(v) for v ∈
T (G), d(g′(v), g′(w)) ≤ d(g(v), g(w)) for all {v, w} ∈ E(G), and d(g′(v), g′(w)) <
d(g(v), g(w)) for at least one edge {v, w} ∈ E(G).

Figure 1 shows an example of a graph G embedded in R2 such that the embedding
g : V (G) → R2 is partially tight but not tight.

Note that if g : V (G) → Y is a partially tight immersion, then there is a connected
component G0 of G (i.e. a maximal connected subgraph) such that g|V (G0) is
still partially tight. Moreover, g|T (G0) assumes at least two distinct values; in
particular, G0 (and hence G) possesses two or more terminals. If g is tight, then
g|V (G0) is tight for every connected component G0 of G.

Now we formulate a necessary condition for the extendability of a 1-lipschitz map
f : S → Y in the case when X ⊃ S is separable and Y is a proper metric space, i.e. all
closed bounded subsets are compact. (Every locally compact, complete geodesic
space is proper. A proper metric space is separable.) We will show in Theorem 4.4
that the given condition is also sufficient, provided Y is a convex metric space. Note
that the discussion extends to λ-lipschitz maps by scaling.

Proposition 3.2. Let Y be a proper metric space and γ ≥ 1. Then the following
assertions satisfy (E) ⇔ (F) ⇒ (G).
(E) Every 1-lipschitz map f : S → Y defined on a subset of a separable metric

space X possesses a γ-lipschitz extension f̄ : X → Y .
(F) As (E), but for finite X.
(G) If g : V (G) → Y is a partially tight immersion of a finite graph G, then there

exists a path (v0, . . . , vl) in G with
l∑

i=1

d(g(vi−1), g(vi)) ≤ γd(g(v0), g(vl)),

where v0 and vl are two distinct terminals of G.



3982 URS LANG

Proof. Since Y is proper, a diagonal sequence argument shows that (F) ⇒ (E), and
the converse is trivial.

We prove that (E) ⇒ (G). Let G be a finite graph and g : V (G) → Y a partially
tight immersion. We may assume G to be connected. Since g is an immersion, we
can equip V (G) with a metric d∗ by defining d∗(v, v′) to be the infimum of

l∑
i=1

d(g(vi−1), g(vi))

taken over all paths (v0, . . . , vl) in G with v0 = v and vl = v′. Since G is finite, the
infimum is always attained. Then we put

c := min{d∗(v, v′)/d(g(v), g(v′)) : v, v′ ∈ T (G), g(v) 6= g(v′)}.
In order to bring (E) into play we construct a metric space X by attaching a suitably
rescaled copy of (V (G), d∗) to Y . To this end we first let d′ denote the maximal
pseudometric on Y ∪ V (G) satisfying d′|Y × Y ≤ d, d′|V (G)× V (G) ≤ c−1d∗, and
d′(g(v), v) = 0 for v ∈ T (G). Since d(g(v), g(v′)) ≤ c−1d∗(v, v′) for v, v′ ∈ T (G)
it follows that actually d′|Y × Y = d. Then we define (X, d) as the metric space
obtained from (Y ∪ V (G), d′) by identifying points at distance zero. X is a finite
extension of Y , in particular, X is separable since Y is. Thus, the identity on Y ⊂ X
extends to a γ-lipschitz retraction ρ : X → Y by (E). We also have a canonical map
i : V (G) → X such that

d(i(v), i(w)) = d′(v, w) ≤ c−1d∗(v, w) = c−1d(g(v), g(w))(2)

for {v, w} ∈ E(G). The map ρi : V (G) → Y satisfies ρi(v) = g(v) for v ∈ T (G).
Since g is partially tight, there exists an edge {v, w} ∈ E(G) with d(ρi(v), ρi(w)) ≥
d(g(v), g(w)). Using the fact that ρ is γ-lipschitz we get

d(g(v), g(w)) ≤ d(ρi(v), ρi(w)) ≤ γd(i(v), i(w)).(3)

By (2) and (3) we have c ≤ γ. Hence, (G) holds by the definition of c.

Combining the final remark in section 2 with Proposition 3.2 we get

Corollary 3.3. Let G be a finite graph and g : V (G) → Rn a partially tight im-
mersion. Then there exists a path (v0, . . . , vl) in G with

l∑
i=1

|g(vi−1)− g(vi)| ≤
√

n|g(v0)− g(vl)|,

where v0 and vl are distinct terminals of G.

In view of Theorem 4.5, at the end of the paper it would be interesting to find a
more direct (algorithmic) proof of this fact. Then one might try to generalize the
argument to n-dimensional Hadamard manifolds; this would answer Question 1.4.

Next we describe a particular example of a tight graph in Rn.

Example/Lemma 3.4. For n ≥ 2 let G be the graph with

I(G) = {x = (x1, . . . , xn) ∈ Rn : |xi| = 1 for i = 1, . . . , n},
T (G) = {x = (x1, . . . , xn) ∈ Rn : |xi| = 2 for i = 1, . . . , n},



EXTENDABILITY OF LARGE-SCALE LIPSCHITZ MAPS 3983

�
�

�

@
@

@

�
�

�

@
@

@

••

• •

••

• •

Figure 2. The graph of Example 3.4 for n = 2.

and {x, y} ∈ E(G) if and only if x, y ∈ V (G) = I(G) ∪ T (G) and either |x− y| = 2
or y = 2x (see Figure 2 for n = 2). Then the inclusion g : V (G) → Rn is tight, and
whenever (x0, . . . , xl+2) is a path in G with x0, xl+2 ∈ T (G) and x0 6= xl+2, then

l+1∑
i=0

|xi − xi+1| ≥ n1/4|x0 − xl+2|.

Thus, the optimal constant measuring the distortion of the path in Corollary 3.3
lies between n1/4 and n1/2. The proof of 3.4 exploits the symmetry of G.

Proof. We show that the inclusion g : V (G) → Rn is tight. Let G denote the set of
maps g′ : V (G) → Rn with g′(y) = y for y ∈ T (G) and |g′(x) − g′(y)| ≤ |x − y| for
{x, y} ∈ E(G). Define L : G → R by

L(g′) =
∑

{x,y}∈E(G)

|g′(x) − g′(y)|.

Note that L(g′) ≤ L(g) for all g′ ∈ G. Clearly there exists a g0 ∈ G which minimizes
L; our aim is to prove that g0 = g. First we show that g0(x) ∈ Rx for all x ∈ I(G).
For a fixed x0 ∈ I(G) we pick an isometry f of Rn such that f(V (G)) = V (G),
f(rx0) = rx0 for r ∈ R, and f(y) 6= y for y 6∈ Rx0. It is readily checked that both
fg0f

−1|V (G) and
g′0 := [g0 + fg0f

−1|V (G)]/2

are elements of G. Now suppose that g0(x0) 6∈ Rx0. Then fg0f
−1(x0) = fg0(x0) 6=

g0(x0) by the choice of f . Since |fg0f
−1(x0)− 2x0| = |g0(x0)− 2x0| it follows that

|g′0(x0)−2x0| < |g0(x0)−2x0|. Using this inequality one shows that L(g′0) < L(g0),
in contradiction to the choice of g0. Therefore g0(x) ∈ Rx for all x ∈ I(G). In fact,
since |g0(x) − 2x| ≤ |x − 2x| = |x|, we see that g0(x) ∈ [x, 3x] for all x ∈ I(G).
Now g0(x0) 6= x0 for some x0 ∈ I(G) would imply |g0(x0) − g0(y)| > |x0 − y|
for all y ∈ I(G) with {x0, y} ∈ E(G), hence g0 = g. In particular, if g′ ∈ G, then
L(g) ≥ L(g′) ≥ L(g0) = L(g) and thus |g′(x)−g′(y)| = |x−y| for all {x, y} ∈ E(G).
This shows that g is tight, in fact it follows that G = {g}.

To prove the claimed inequality it suffices to consider paths (x0, . . . , xl+2) with
x1, . . . , xl+1 ∈ I(G). Then clearly

l+1∑
i=0

|xi − xi+1| = |x0 − x1|+ |xl+1 − xl+2|+
l∑

i=1

|xi − xi+1| = 2(
√

n + l)
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and |x0 − xl+2| ≤ 4
√

l. One checks that qn(l) := (
√

n + l)/(2
√

l) ≥ qn(
√

n) = n1/4

for all l > 0, which yields the claim.

In order to prove Theorem 1.5 stated in the introduction, we use the procedure
described in the proof of Proposition 3.2 to attach larger and larger copies of the
above examples to Rn and R∞ respectively. In the latter case the dimension is
increased as well. We leave the details to the reader.

4. Maps into convex spaces

The main purpose of this last section is to prove the “missing” implication in
Proposition 3.2; to this end we assume Y to be a convex metric space. This means
that Y is geodesic and for every pair of (constant speed) geodesics σ, σ′ : [0, 1] → Y ,

d(σ(t), σ′(t)) ≤ (1− t)d(σ(0), σ′(0)) + td(σ(1), σ′(1))

for all t ∈ [0, 1]. In particular, it follows that for every pair of points x, y ∈ Y there
is actually a unique geodesic σ : [0, 1] → Y from x to y. The class of convex metric
spaces was first studied by Busemann [Bu] and includes Hadamard manifolds, or
Hadamard spaces in the sense of Alexandrov, and Banach spaces with a strictly
convex norm.

The following fact is well-known, cf. [Bu, (36.6)] or [J].

Lemma 4.1. Let Y be a convex metric space and σ1, σ2 : [0, 1] → Y two geodesics
with σ1(0) = σ2(0) =: z, im σ1 6⊂ im σ2 and im σ2 6⊂ im σ1. Let m be the midpoint
between σ1(1) and σ2(1). Then d(m, z) < [d(σ1(1), z) + d(σ2(1), z)]/2.

Proof. Since im σ1 6⊂ im σ2 and imσ2 6⊂ im σ1 there exist t1, t2 ∈ [0, 1) such that
σ1(t1) = σ2(t2) =: y and σ1((t1, 1])∩σ2((t2, 1]) = ∅. Then at least one of the points
y1 := σ1((t1 + 1)/2) and y2 := σ2((t2 + 1)/2) does not lie on the segment [y, m],
hence

2d(y, m) < d(y, y1) + d(y1, m) + d(y, y2) + d(y2, m).
By convexity, d(y1, m) ≤ d(y, σ2(1))/2 and d(y2, m) ≤ d(y, σ1(1))/2. It follows that

2d(y, m) < d(y, σ1(1)) + d(y, σ2(1)),

which implies the claim.

The next two results provide some additional information about (partially) tight
immersions of a finite graph into a convex metric space; they are included for
illustration and will not be used in the sequel.

Lemma 4.2. Let G be a finite graph and g : V (G) → Y an immersion into a
convex metric space Y . Then g is tight if and only if the following holds: whenever
g′ : V (G) → Y is a map with g′(v) = g(v) for v ∈ T (G) and d(g′(v), g′(w)) ≤
d(g(v), g(w)) for {v, w} ∈ E(G), then g′ = g.

Proof. If the given condition holds, then g is obviously tight. Conversely, if g
is tight, and if g′ : V (G) → Y is a map with g′(v) = g(v) for v ∈ T (G) and
d(g′(v), g′(w)) ≤ d(g(v), g(w)) for {v, w} ∈ E(G), then actually d(g′(v), g′(w)) =
d(g(v), g(w)) for all {v, w} ∈ E(G). Suppose that g′(v0) 6= g(v0) for some v0 ∈ I(G).
Since g is tight, the connected component G0 of G containing v0 possesses a terminal
v̄. Picking a path (v0, . . . , vl) with vl = v̄ we find an index i such that g′(vi) 6= g(vi)
and g′(vi+1) = g(vi+1). Using the convexity of Y and Lemma 4.1 we see that the
map m : V (G) → Y averaging g and g′ satisfies d(m(v), m(w)) ≤ d(g(v), g(w)) for
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all {v, w} ∈ E(G) and d(m(vi), m(vi+1)) < d(g(vi), g(vi+1)), which is impossible
since g is tight. Therefore g′ = g.

Lemma 4.3. Let G be a finite graph and g : V (G) → Y a partially tight immersion
into a convex metric space Y . Then G contains a connected subgraph G0 such that
T (G0) ⊂ T (G) and g|V (G0) is tight.

Proof. Let F ⊂ E(G) be a maximal set (not contained in a bigger one) with
the property that there exists a map g′ : V (G) → Y such that g′(v) = g(v) for
v ∈ T (G), d(g′(v), g′(w)) ≤ d(g(v), g(w)) for {v, w} ∈ E(G), and d(g′(v), g′(w)) <
d(g(v), g(w)) for {v, w} ∈ F . Since g is partially tight, F 6= E(G). Consider the
graph G′ with edge set E(G′) = E(G) \ F ; it follows easily from the finiteness
of G and the maximality of F that T (G′) ⊂ T (G). We show that g|V (G′) is
tight. Suppose this is not the case. Then there exists a map g′′ : V (G′) → Y with
g′′(v) = g(v) for v ∈ T (G′), d(g′′(v), g′′(w)) ≤ d(g(v), g(w)) for {v, w} ∈ E(G′),
and d(g′′(v′), g′′(w′)) < d(g(v′), g(w′)) for some {v′, w′} ∈ E(G′). By the convexity
of Y we may assume that d(g′′(v), g(v)) < ε/2 for all v ∈ V (G′), where ε is chosen
such that

d(g′(v), g′(w)) ≤ d(g(v), g(w)) − ε

for all {v, w} ∈ F . Then we extend g′′ to all of V (G) by defining g′′(v) = g(v) for
v ∈ V (G) \ V (G′). Note that

d(g′′(v), g′′(w)) < d(g(v), g(w)) + ε

for all {v, w} ∈ E(G). The map m : V (G) → Y sending v to the midpoint between
g′(v) and g′′(v) satisfies

d(m(v), m(w)) ≤ [d(g′(v), g′(w)) + d(g′′(v), g′′(w))]/2

for all {v, w} ∈ E(G). It follows that d(m(v), m(w)) ≤ d(g(v), g(w)) for {v, w} ∈
E(G) and d(m(v), m(w)) < d(g(v), g(w)) for {v, w} ∈ F or {v, w} = {v′, w′}. Since
m(v) = g(v) for v ∈ T (G), this contradicts the choice of F . Therefore g|V (G′) is
tight. Finally, we pick an arbitrary connected component G0 of G′. Then g|V (G0)
is still tight, and T (G0) ⊂ T (G′) ⊂ T (G).

Now we prove

Theorem 4.4. Let Y be a proper, convex metric space and γ ≥ 1. Then the
assertions (E), (F), and (G) of Proposition 3.2 are equivalent.

Proof. It remains to show that (G) implies (F). Let f : S → Y be a 1-lipschitz map
defined on a subset S of a finite metric space X . We denote the elements of X \ S
by x1, . . . , xm. Let β ≥ 0. We define

Aβ := {(y1, . . . , ym) ∈ Y m : d(yi, yj) ≤ βd(xi, xj) for 1 ≤ i < j ≤ m},
and for z ∈ S we put

Bβ(z) := {(y1, . . . , ym) ∈ Y m : d(yi, f(z)) ≤ βd(xi, z) for 1 ≤ i ≤ m}.
Finally, we let

Cβ := Aβ ∩
⋂
z∈S

Bβ(z).

We claim that, due to assertion (G), Cγ 6= ∅. If this is true, then we may pick
a point ȳ = (y1, . . . , ym) ∈ Cγ and extend f to X by defining f̄(xi) := yi for
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i = 1, . . . , m; then clearly f̄ is γ-lipschitz and (F) holds. It is easily seen that Cβ is
non-empty for β sufficiently large. Let

γ′ := inf{β ≥ 0 : Cβ 6= ∅}.
Since Y is proper the sets Cβ are compact, moreover Cβ′ ⊂ Cβ for β′ ≤ β, and
Cγ′ =

⋂∞
i=1 Cγ′+1/i. From this we see that Cγ′ 6= ∅; it remains to show that γ′ ≤ γ.

We suppose that γ′ > 0 and choose a point ȳ = (y1, . . . , ym) ∈ Cγ′ . Denoting
the elements of S by z1, . . . , zn we construct a finite graph G with vertex set

V (G) ⊂ V̄ := {vik : i = 1, . . . , m, k = 0, . . . , n}
and edge set E(G) given as follows:

(a) if 1 ≤ i < j ≤ m and d(yi, yj) = γ′d(xi, xj), then {vi0, vj0} ∈ E(G),
(b) if 1 ≤ i ≤ m, 1 ≤ k ≤ n, and d(yi, f(zk)) = γ′d(xi, zk), then {vi0, vik} ∈

E(G),
and this determines already all elements of E(G). Then we define g : V (G) → Y
by g(vi0) = yi and g(vik) = f(zk) for k ≥ 1. Note that g is an immersion of G
since γ′ > 0. Assume that one of the vertices vi0 ∈ V (G) belongs to exactly one
edge {vi0, w} ∈ E(G). Then we can choose a point y′i 6= yi on the geodesic segment
[yi, g(w)] such that ȳ′ := (y1, . . . , yi−1, y

′
i, yi+1, . . . , ym) still belongs to the set Cγ′ ,

and, if we repeat the above construction of G with ȳ replaced by ȳ′, the resulting
graph G′ is a subgraph of G with vi0 6∈ V (G′). This shows that we may assume
every vertex vi0 ∈ V (G) to be an interior point of G. On the other hand, the
vertices vik ∈ V (G) with k ≥ 1 are terminals of G.

We claim that g is partially tight. If not, then there exists a map g′ : V (G) → Y
with g′(v) = g(v) for v ∈ T (G) and d(g′(v), g′(w)) < d(g(v), g(w)) for {v, w} ∈
E(G). Since Y is a convex space we may assume that d(g′(v), g(v)) < α for all
v ∈ V (G), where we choose α such that the following holds:

(a) if 1 ≤ i < j ≤ m and {vi0, vj0} 6∈ E(G), then d(yi, yj) ≤ γ′d(xi, xj)− α,
(b) if 1 ≤ i ≤ m, 1 ≤ k ≤ n, and {vi0, vik} 6∈ E(G), then d(yi, f(zk)) ≤

γ′d(xi, zk)− α.
We extend g′ to all of V̄ by defining g′(vi0) = yi for vi0 6∈ V (G) and g′(vik) = f(zk)
for vik 6∈ V (G) and k ≥ 1. It is not difficult to check that then (g′(v10), . . . , g′(vm0))
belongs to Cβ for some β < γ′, which contradicts the definition of γ′. Therefore g
is a partially tight immersion.

According to assertion (G), there exists a path (v0, . . . , vl) in G with
l∑

i=1

d(g(vi−1), g(vi)) ≤ γd(g(v0), g(vl)),(4)

where v0 and vl are distinct terminals of G. Let h : V (G) → X be defined by
h(vi0) = xi and h(vik) = zk for k ≥ 1. Since the vertices vi0 ∈ V (G) are interior
points of G, we have v0 = vi(0)k(0) and vl = vi(l)k(l) for some k(0), k(l) ≥ 1.
Therefore fh(v0) = f(zk(0)) = g(v0) and fh(vl) = g(vl). Hence, using the fact that
f is 1-lipschitz and the triangle inequality for X , we get

d(g(v0), g(vl)) ≤ d(h(v0), h(vl)) ≤
l∑

i=1

d(h(vi−1), h(vi)).(5)

On the other hand, by the definition of the graph G, we have

d(g(vi−1), g(vi)) = γ′d(h(vi−1), h(vi))(6)
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for i = 1, . . . , l. Combining (4), (5), and (6) we see that γ′ ≤ γ.

We conclude this paper with an equivalent reformulation of Question 1.4 in terms
of assertion (G). A family Y of metric spaces is called scale invariant if (Y, d) ∈ Y
implies that (Y, c · d) ∈ Y for all c > 0.

Theorem 4.5. Let Y be a scale invariant family of proper, convex metric spaces.
Then the following are equivalent:

(i) For all λ, ε there exist λ̄, ε̄ such that if X is a separable metric space and
Y ∈ Y, then every (λ, ε)-lipschitz map f : S → Y with S ⊂ X possesses a
(λ̄, ε̄)-lipschitz extension f̄ : X → Y .

(ii) There exists a constant µ ≥ 1 such that (i) holds for λ̄ = µλ and ε̄ = µε.
(iii) There exists a constant γ ≥ 1 such that assertion (G) of Proposition 3.2 holds

for all Y ∈ Y.

This applies, for instance, if Y is the class of all Hadamard manifolds of a fixed
dimension n.

Proof. From Theorem 4.4 we know that (iii) is equivalent to the following:
(iv) There exists a constant γ ≥ 1 such that if X is a finite metric space and

Y ∈ Y, then every 1-lipschitz map f : S → Y with S ⊂ X possesses a γ-
lipschitz extension f̄ : X → Y .

The implication (ii) ⇒ (i) is trivial; we prove that (i) ⇒ (iv). If f is given as
in (iv), then by (i) there exists a (γ, δ)-lipschitz extension f̄ : X → Y of f , where
γ = λ̄(1, 0) and δ = ε̄(1, 0). In fact, by multiplying the metric on both X and Y
by a factor c > 1, applying this result, and scaling back, we can replace δ by δ/c.
Since X is finite and Y proper, we can as well achieve that δ = 0.

It remains to show that (iv) ⇒ (ii). First we note that, due to (iv), every (λ, ε)-
lipschitz map f : S → Y defined on a subset of a finite metric space X can be
extended to a (γλ, γε)-lipschitz map f̄ : X → Y . This follows easily by looking
at the metric d′ on X satisfying d′(x, x′) = λd(x, x′) + ε for x 6= x′. Now let f
be given as in (ii). Since X is separable and Y is proper, a diagonal sequence
argument produces a (γλ, γε)-lipschitz map f ′ : C → Y , where C is a countable
dense subset of X , C ∩ S is dense in S, and f ′|(C ∩ S) = f |(C ∩ S). Thus, if
ε = 0, then f ′ possesses a unique γλ-lipschitz extension f̄ : X → Y which is also an
extension of f . If ε > 0, we pick an α > 0 together with a map h : X → C satisfying
d(h(x), x) ≤ α for all x and h(z) ∈ C ∩ S for z ∈ S. Then we define f̄ : X → Y so
that f̄ |(X \ S) = f ′h|(X \ S) and f̄ |S = f . If x, x′ ∈ X \ S, then

d(f̄ (x), f̄(x′)) = d(f ′h(x), f ′h(x′))

≤ γλd(h(x), h(x′)) + γε

≤ γλd(x, x′) + 2γλα + γε.

For x ∈ X \ S and z ∈ S,

d(f̄(x), f̄ (z)) ≤ d(f ′h(x), f ′h(z)) + d(fh(z), f(z))

≤ γλd(h(x), h(z)) + γε + λd(h(z), z) + ε

≤ γλd(x, z) + 2γλα + γε + λα + ε.

Hence, choosing µ > γ + 1, we conclude that f̄ is a (µλ, µε)-lipschitz extension of
f for α sufficiently small.
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Switzerland

E-mail address: lang@math.ethz.ch


