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Comparison Geometry for the

Smooth Metric Measure Spaces

Guofang Wei ∗ Will Wylie †

Abstract

For smooth metric measure spaces the Bakry-Emery Ricci tensor is a
natural generalization of the classical Ricci tensor. It occurs naturally in
the study of diffusion processes, Ricci flow, the Sobolev inequality, and
conformal geometry. Recent developments show that many topological
and geometric results for Ricci curvature can be extended to the Bakry-
Emery Ricci tensor. In this article we survey some of these results.
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1. Introduction

A smooth metric measure space is a Riemannian manifold with a
measure conformal to the Riemannian measure. Formally it is a triple
(Mn, g, e−fdvolg), where M is a complete n-dimensional Riemannian
manifold with metric g, f is a smooth real valued function on M , and
dvolg is the Riemannian volume density on M . This is also sometimes
called a manifold with density.

A basic principle in classical Riemannian geometry is that a lower
bound on the Ricci curvature implies that the Riemannian measure is
bounded above by the measure in a corresponding model space. There
are various ways to expand this principle to the setting of smooth metric
measure spaces. In this paper we will consider the corresponding Ricci
tensor to be the N -Bakry-Emery Ricci tensor

RicN
f = Ric + Hessf − 1

N
df ⊗ df for N > 0. (1.1)
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As we will discuss below, N is related to the dimension of the model
space. We allow N to be infinite, in this case we denote Ricf = Ric∞f =
Ric + Hessf . Note that when f is a constant function RicN

f = Ric for
all N and we can take N = 0 in this case. Moreover, if M ≥ N then
RicN

f ≥ RicM
f so that RicN

f ≥ λg implies Ricf ≥ λg.

The Bakry Emery Ricci tensor (for N finite and and infinite) has
a natural extension to non-smooth metric measure spaces [19, 30, 31]
and diffusion operators [4]. Moreover, the equation Ricf = λg for some
constant λ is exactly the gradient Ricci soliton equation, which plays an
important role in the theory of Ricci flow. See [7] for a modification of
the Ricci tensor which is conformal invariant.

We are interested in investigating what geometric and topological
results for the Ricci tensor extend to the Bakry-Emery Ricci tensor. This
was studied by Lichnerowicz [17, 18] almost forty years ago, though this
work does not seem to be widely known. Recently this has been actively
investigated and there are many interesting results in this direction which
we will discuss below, see for example [15, 27, 20, 5, 26, 6, 14, 24, 25, 10,
33, 32]. In this note we first recall the Bochner formulas for Bakry-Emery
Ricci tensors (stated a little differently from how they have appeared
in the literature). The derivation of these from the classical Bochner
formula is elementary, so we present the proof. Then we quickly derive
the first eigenvalue comparison from the Bochner formulas as in the
classical case. In the rest of the paper we focus on mean curvature and
volume comparison theorems and their applications. When N is finite,
this work is mainly from [27, 6], and when N is infinite, it’s mainly from
our recent work [32].

2. Bochner formulas for the N-Bakry-Emery
Ricci tensor

Comparison theorems for lower bound on Ricci curvature can be
derived from the Bochner formula for the usual Laplace-Beltrami opera-
tor ∆. Recall that for any smooth function u on a complete Riemannian
manifold (Mn, g) the Bochner formula is

1
2
∆|∇u|2 = |Hess u|2 + 〈∇u,∇(∆u)〉+ Ric(∇u,∇u). (2.1)

Applying the Schwarz inequality |Hess u|2 ≥ (∆u)2

n we obtain the follow-
ing inequality

1
2
∆|∇u|2 ≥ (∆u)2

n
+ 〈∇u,∇(∆u)〉+ Ric(∇u,∇u). (2.2)
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If Ric ≥ (n− 1)H, then

1
2
∆|∇u|2 ≥ (∆u)2

n
+ 〈∇u,∇(∆u)〉+ (n− 1)H|∇u|2. (2.3)

In fact, this inequality characterizes a lower bound on Ricci cur-
vature for Riemannian manifolds. Namely, if (2.3) holds for all func-
tions u ∈ C3(M), then Ric ≥ (n − 1)H. This can be seen as follows.
Given any x0 ∈ M and v0 ∈ Tx0M , let u be a C3 function such that
∇u(x0) = v0 and Hess u(x0) = λ0In. Then from (2.1) and (2.3), we have
Ric(v0, v0) ≥ (n− 1)H|v0|2, so Ric ≥ (n− 1)H.

With respect to the measure e−fdvol the natural self-adjoint f -
Laplacian is ∆f = ∆−∇f · ∇. In this case we have

∆f |∇u|2 = ∆|∇u|2 − 2Hess u(∇u,∇f),
〈∇u,∇(∆fu)〉 = 〈∇u,∇(∆u)〉 −Hess u(∇u,∇f)−Hessf(∇u,∇u).

Plugging these into (2.1) we immediately get the following Bochner for-
mula for the N -Bakry-Emery Ricci tensor.

1
2
∆f |∇u|2 = |Hess u|2+〈∇u,∇(∆fu)〉+RicN

f (∇u,∇u)+
1
N
|〈∇f,∇u〉|2.

(2.4)
When N = ∞, we have

1
2
∆f |∇u|2 = |Hess u|2 + 〈∇u,∇(∆fu)〉+ Ricf (∇u,∇u). (2.5)

This formula is virtually the same as (2.1) except for the important fact
that tr(Hess u) = ∆u not ∆f (u). In the case where N is finite, however,
we can get around this difficulty by using the inequality

(∆u)2

n
+

1
N
|〈∇f,∇u〉|2 ≥ (∆f (u))2

N + n
(2.6)

which implies

1
2
∆f |∇u|2 ≥ (∆f (u))2

N + n
+ 〈∇u,∇(∆fu)〉+ RicN

f (∇u,∇u). (2.7)

In other words, a Bochner formula holds for RicN
f that looks like the

Bochner formula for the Ricci tensor of an n + N dimensional manifold.
Note that (2.6) is an equality if and only if ∆u = n

N 〈∇f,∇u〉, so equality
in (2.7) is seldom achieved when f is nontrivial. When f is constant, we
can take N = 0 so (2.7) recovers (2.2).
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3. Eigenvalue and Mean Curvature Compar-
ison

From the Bochner formulas we can now prove eigenvalue and mean
curvature comparisons which generalize the clasical ones. First we con-
sider the eigenvalue comparison.

Let Mn be a complete Riemannian manifold with RicN
f ≥ (n −

1)H > 0. Applying (2.7) to the first eigenfunction u of ∆f , ∆fu = −λ1u,
and integrating with respect to the measure e−fdvol, we have

0 ≥
∫

M

(
(λ1u)2

N + n
− λ1|∇u|2 + (n− 1)H|∇u|2

)
e−fdvol.

Since
∫

M
|∇u|2e−fdvol = λ1

∫
M

u2e−fdvol, we deduce the eigenvalue
estimate [3]

λ1 ≥ (n− 1)H
(

1 +
1

N + n− 1

)
. (3.1)

When f is constant, taking N = 0 gives the classical Lichnerowicz’s first
eigenvalue estimate λ1 ≥ nH [16]. When N = ∞, we have [4]

λ1 ≥ (n− 1)H. (3.2)

This also can be derived from (2.5) directly. One may expect that the
estimate (3.2) is weaker than the classical one. In fact (3.2) is optimal
as the following example shows.

Example 3.1 Let M = R1×S2 with standard product metric g0, f(x, y) =
1
2x2. Then Hessf( ∂

∂x , ∂
∂x ) = 1 and zero on all other directions. We have

Ricf = 1g0. Now for the linear function u(x, y) = x, ∆fu = −x. So
λ1 = 1.

On the other hand (3.2) is never optimal for compact manifolds since
equality in (3.2) implies Hess u = 0. Note that Ricf ≥ (n − 1)H > 0
on a compact manifold implies RicN

f ≥ (n − 1)H ′ > 0 for some N big,
hence one can use estimate (3.1).

Now we turn to the mean curvature (or Laplacian) comparison.
Recall that the mean curvature measures the relative rate of change of
the volume element. Therefore, for the measure e−fdvol, the associated
mean curvature is mf = m− ∂rf, where m is the mean curvature of the
geodesic sphere with inward pointing normal vector. Also mf = ∆f (r),
where r is the distance function.

Let mk
H be the mean curvature of the geodesic sphere in the model

space Mk
H , the complete simply connected k-manifold of constant cur-

vature H. When we drop the superscript k and write mH we mean
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the mean curvature from the model space whose dimension matches the
dimension of the manifold. Since Hess r is zero along the radial direc-
tion, applying the Bochner formula (2.4) to the distance function r, the
Schwarz inequality |Hessr|2 ≥ (∆r)2

n−1 and (2.6) gives

m′
f ≤ − (mf )2

n + N − 1
− RicN

f (∂r, ∂r). (3.3)

Thus, using the standard Sturm-Liouville comparison argument, one has
the mean curvature comparison [6].

Theorem 3.2 (Mean curvature comparison for N-Bakry-Emery)
If RicN

f ≥ (n + N − 1)H, then

mf (r) ≤ mn+N
H (r). (3.4)

Namely the mean curvature is less or equal to the one of the model with
dimension n+N . This does not give any information when N is infinite.

In fact, such a strong, uniform estimate is not possible when N is
infinite. To see this note that, when H > 0, the model space Mn+N

H is a
round sphere so that mn+N

H (r) goes to −∞ as r goes to π√
H

. Thus (3.4)

implies that if N is finite and RicN
f ≥ λ > 0 then M is compact (See

Theorem 4.5 in the next section for the diameter bound). On the other
hand, this is not true when N = ∞ as the following example shows.

Example 3.3 Let M = Rn with Euclidean metric g0, f(x) = λ
2 |x|

2.
Then Hessf = λg0 and Ricf = λg0.

Thus, when N is infinite, one can not expect such a strong mean
curvature comparison to be true. However, we can show a weaker,
nonuniform estimate and also give some uniform estimates if we make
additional assumptions on f such as f being bounded or ∂rf bounded
from below. In these cases we have the following mean curvature com-
parisons [32] which generalizes the classical one.

Theorem 3.4 (Mean Curvature Comparison for ∞-Bakry-Emery)
Let p ∈ Mn. Assume Ricf (∂r, ∂r) ≥ (n− 1)H,
a) given any minimal geodesic segment and r0 > 0,

mf (r) ≤ mf (r0)− (n− 1)H(r − r0) for r ≥ r0. (3.5)

b) if ∂rf ≥ −a along a minimal geodesic segment from p (when H > 0
assume r ≤ π/2

√
H) then

mf (r)−mH(r) ≤ a (3.6)
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along that minimal geodesic segment from p. Equality holds if and only
if the radial sectional curvatures are equal to H and f(t) = f(p)− at for
all t < r.
c) if |f | ≤ k along a minimal geodesic segment from p (when H > 0
assume r ≤ π/4

√
H) then

mf (r) ≤ mn+4k
H (r) (3.7)

along that minimal geodesic segment from p. In particular when H = 0
we have

mf (r) ≤ n + 4k − 1
r

(3.8)

See [32] for the proof. When H = 0, Fang, Li, and Zhang [9] also prove
the estimate

mf (r) ≤ n− 1
r

− 2
r
f(r) +

2
r2

∫ r

0

f(t)dt. (3.9)

These mean curvature comparisons can be used to prove some My-
ers’ type theorems for Ricf , and is related to volume comparison theo-
rems, both of which we discuss in the next section.

4. Volume Comparison and Myers’ Theorems

For p ∈ Mn, we use exponential polar coordinates around p and
write the volume element d vol = A(r, θ)dr ∧ dθn−1, where dθn−1 is the
standard volume element on the unit sphere Sn−1(1). Let Af (r, θ) =
e−fA(r, θ). By the first variation of the area

A′

A
(r, θ) = (ln(A(r, θ)))′ = m(r, θ). (4.1)

Therefore
A′f
Af

(r, θ) = (ln(Af (r, θ)))′ = mf (r, θ). (4.2)

And for r ≥ r0 > 0
Af (r, θ)
Af (r0, θ)

= e
R r

r0
mf (r,θ)

. (4.3)

Combining this equation with the mean curvature comparisons we obtain
volume comparisons. Let Volf (B(p, r)) =

∫
B(p,r)

e−fdvolg, the weighted

(or f -)volume, VolkH(r) be the volume of the radius r-ball in the model
space Mk

H .

Theorem 4.1 (Volume comparison for N-Bakry-Emery) [27] If
RicN

f ≥ (n + N − 1)H, then Volf (B(p,R))

Voln+N
H (R)

is nonincreasing in R.



Comparison Geometry for the Smooth Metric Measure Spaces 7

In [20] Lott shows that if M is compact (or just |∇f | is bounded)
with RicN

f ≥ λ for some positive integer 2 ≤ N < ∞, then, in fact, there
is a family of warped product metrics on M × SN with Ricci curvature
bounded below by λ, recovering the comparison theorems for RicN

f .
When N = ∞ we have the following volume comparison results

which generalize the classical one. Part a) is originally due to Morgan
[23] where it follows from a hypersurface volume estimate(also see [24]).
For the proofs of parts b) and c) see [32].

Theorem 4.2 (Volume Comparison for ∞-Bakry-Emery) Let
(Mn, g, e−fdvolg) be complete smooth metric measure space with Ricf ≥
(n− 1)H. Fix p ∈ Mn.
a) If H > 0, then Volf (M) is finite.
b) If ∂rf ≥ −a along all minimal geodesic segments from p then for
R ≥ r > 0 (assume R ≤ π/2

√
H if H > 0) ,

Volf (B(p, R))
Volf (B(p, r))

≤ eaR VolnH(R)
VolnH(r)

. (4.4)

Moreover, equality holds if and only if the radial sectional curvatures are
equal to H and ∂rf ≡ −a. In particular if ∂rf ≥ 0 and Ricf ≥ 0 then
M has f-volume growth of degree at most n.
c) If |f(x)| ≤ k then for R ≥ r > 0 (assume R ≤ π/4

√
H if H > 0),

Volf (B(p, R))
Volf (B(p, r))

≤ Voln+4k
H (R)

Voln+4k
H (r)

. (4.5)

In particular, if f is bounded and Ricf ≥ 0 then M has polynomial
f-volume growth.

Part a) should be viewed as a weak Myers’ theorem for Ricf .
Namely if Ricf > λ > 0 then the manifold may not be compact but
the measure must be finite. In particular the lifted measure on the uni-
versal cover is finite. Since this measure is invariant under the deck
transformations, this weaker Myers’ theorem is enough to recover the
main topological corollary of the classical Myers’ theorem.

Corollary 4.3 If M is complete and Ricf ≥ λ > 0 then M has finite
fundamental group.

Using a different approach the second author has proven that the
fundamental group is, in fact, finite for spaces satisfying Ric + LXg ≥
λ > 0 for some vector field X [33]. This had earlier been shown under
the additional assumption that the Ricci curvature is bounded by Zhang
[35]. See also [25]. When M is compact the finiteness of fundamental
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group was first shown by X. Li [15, Corollary 3] using a probabilistic
method.

On the other hand, the volume comparison Theorem 4.1 and The-
orem 4.2 Part c) also give the following generalization of Calabi-Yau’s
theorem [34].

Theorem 4.4 If M is a noncompact, complete manifold with RicN
f ≥ 0,

assume f is bounded when N is infinite, then M has at least linear f-
volume growth.

Theorem 4.2 Part a) and Theorem 4.4 then together show that any
manifold with RicN

f ≥ λ > 0 and f bounded if N is infinite must be
compact. In fact, from the mean curvature estimates one can prove this
directly and obtain an upper bound on the diameter. For finite N this
is due to Qian [27], for Part b) see [32].

Theorem 4.5 (Myers’ Theorem) Let M be a complete Riemannian
manifold with RicN

f ≥ (n− 1)H > 0,

a) when N is finite, then M is compact and diamM ≤
√

n+N−1
n−1

π√
H

.
b) when N is infinite and |f | ≤ k then M is compact and diamM ≤

π√
H

+ 4k
(n−1)

√
H

.

For some other Myers’ Theorems for manifolds with measure see
[10] and [24]. The relative volume comparison Theorem 4.2 also implies
the following extensions of theorems of Gromov [11] and Anderson [2].

Theorem 4.6 For the class of manifolds Mn with Ricf ≥ (n − 1)H,
diamM ≤ D and |f | ≤ k (|∇f | ≤ a), the first Betti number b1 ≤ C(n +
4k, HD2) (C(n, HD2, aD)).

Theorem 4.7 For the class of manifolds Mn with Ricf ≥ (n − 1)H,
Volf ≥ V , diamM ≤ D and |f | ≤ k (|∇f | ≤ a) there are only finitely
many isomorphism types of π1(M).

5. Splitting theorem and excess estimate

An important application of the mean curvature comparison is the
extension of the Cheeger-Gromoll splitting theorem. When N is finite
and RicN

f ≥ 0, (3.4) gives

mf (r) ≤ n + N − 1
r

.

Using this, or (3.9) when N is infinite, and Bochner formulas for the
Bakry-Emery Ricci tensor, and the arguments of the original proof of
Cheeger-Gromoll’s splitting theorem one can show the following splitting
theorem.
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Theorem 5.1 (Splitting Theorem) Suppose M contains a line and
RicN

f ≥ 0. When N is infinite, assume also f is bounded from above.
Then M = Nn−1 × R and f is linear along the line.

This version is due to Fang, Li, and Zhang [9]. In the case N is infinite
if one assumes a two sided bound on f the splitting theorem was proven
earlier by Lichneorwicz [17, 18]. Also see [32].

The following example shows that the upper bound on f is neces-
sary for the theorem.

Example 5.2 Let M = Hn be hyperbolic space. Fix any p ∈ M and let
f(x) = (n − 1)r2 = (n − 1)d2(p, x). Hess r2 = 2|∇r|2 + 2rHessr ≥ 2I,
therefore Ricf ≥ (n− 1) and the space has many lines that do not split.

Using the clever covering arguments in [8], Theorem 5.1 implies the
following structure theorem for compact manifolds with Ricf ≥ 0, which
is a weaker assumption than RicN

f ≥ 0 for finite N .

Theorem 5.3 [17] If M is compact and Ricf ≥ 0 then M is finitely
covered by N ×T k where N is a compact simply connected manifold and
f is constant on the flat torus T k.

Theorem 5.3 has the following topological consequences.

Corollary 5.4 [17] Let M be compact with Ricf ≥ 0 then

1. b1(M) ≤ n.
2. π1(M) has a free abelian subgroup of finite index of rank ≤ n.
3. b1(M) or π1(M) has a free abelian subgroup of rank n if and only

if M is a flat torus and f is a constant function.
4. π1(M) is finite if Ricf > 0 at one point.

For noncompact manifolds with positive Ricci curvature the split-
ting theorem has been used by Cheeger and Gromoll [8] and Sormani
[29] to give some other topological obstructions. These results also can
be extended.

Theorem 5.5 Suppose M is a complete manifold with RicN
f > 0, when

N is infinite, assume f is bounded from above, then

1. M has only one end and
2. M has the loops to infinity property.

In particular, if M is simply connected at infinity then M is simply
connected.

The mean curvature comparisons can also be used to prove excess
estimates. Recall that for p, q ∈ M the excess function is ep,q(x) =
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d(p, x) + d(q, x)− d(p, q). Let h(x) = d(x, γ) where γ is a fixed minimal
geodesic from p to q, then (3.8) along with the arguments in [1, Propo-
sition 2.3] imply the following version of the Abresch-Gromoll excess
estimate.

Theorem 5.6 (Excess Estimate) Let Ricf ≥ 0, |f | ≤ k and h(x) <
min{d(p, x), d(q, x)} then

ep,q(x) ≤ 2
(

n + 4k − 1
n + 4k − 2

) (
1
2
Chn+4k

) 1
n+4k−1

where

C = 2
(

n + 4k − 1
n + 4k

) (
1

d(p, x)− h(x)
+

1
d(q, x)− h(x)

)
The version for RicN

f ≥ 0 and N finite is exactly the same, if we
replace 4k by N . Example 5.2 shows that the assumption of bounded f
is necessary.

Theorem 5.6 gives extensions of theorems of Abresch-Gromoll [1]
and Sormani [28] to RicN

f .

Theorem 5.7 Let be M a complete noncompact manifold with RicN
f ≥

0 and assume f is bounded when N is infinite.

1. If M has bounded diameter growth and sectional curvature bounded
below then M is homeomorphic to the interior of a compact man-
ifold with boundary.

2. If M has sublinear diameter growth then M has finitely generated
fundamental group.

6. Scalar Curvature and Comments

For a compact manifold Corollaries 4.3 and 5.3 show that the topo-
logical obstructions on the fundamental group to having a metric with
positive or nonnegative Ricf are the same as for positive or nonnegative
Ric. This raises the following question.

Question 6.1 If Mn is a compact Riemannian manifold with a measure
such that Ricf ≥ (>)0, does Mn have a metric on it with Ric ≥ (>)0?

There are compact shrinking soliton metrics which are not Einstein,
but these examples have positive Ricci curvature. One could try to see if
the K3 surface has a metric with Ricf > 0. If this were true it would give
a negative answer to Question 6.1 because a K3 surface can not have a
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metric on it with positive scalar curvature. Thus, it is also natural to
consider the scalar curvature with measure.

As pointed out by Perelman in [26, 1.3], in order for the Lich-
nerovicz formula to hold, the corresponding scalar curvature equation
is Sf = 2∆f − |∇f |2 + S. Note that this is different than taking the
trace of Ricf which is ∆f + S. Even though the Lichnerovicz theorem
naturally extends to Sf , Ricf ≥ 0 doesn’t immediately imply Sf ≥ 0 so
we have the following question.

Question 6.2 If Mn is a compact spin manifold with Ricf > 0, is the
Â-genus zero?

An affirmative answer to this question would show that a K3 surface does
not have a metric on it with Ricf > 0. We note that compact shrinking
solitons have positive scalar curvature, so the answer to Question 6.2 is
clearly yes for solitons.

In [21] Lott studied the N dimensional scalar curvature

SN
f = Sf −

1
N
|∇f |2.

He showed that analog of O’Neill’s theorem holds for these modified
scalar curvatures.
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