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I N T R O D U C T I O N  

IT is well known that the Betti numbers of any fiber p-  1 (~) of a polynomial mapping p: 
R" ~ R TM are bounded by some constants, depending only on n, m and the degree ofp  (see e.g. 
[7] ). 

Now let f be a k times differentiable mapping of a bounded domain, with all the 
derivatives of order k bounded by a constant Mk. We can think of Mk as a measure of the 
deviation o f f  from a polynomial mapping of degree k - 1; as far as the deviation in a CLnorm 
is concerned, j ___ k -  1, the Taylor formula gives the precise expression for it. 

The important general phenomenon is that also in much more delicate questions, 
concerning the topology and the geometry of the mapping f, its "deviation" from the 
"polynomial behavior" can be bounded in terms of M k. 

In [11] this fact was established for the structure of critical points and values off,  and in 
[12] for some geometric properties of its fibers. 

The aim of the present paper is to extend in the same spirit to k-smooth mappings the 
property of polynomial ones, given above: the boundness of the Betti numbers of the fibers. 

Clearly it is impossible to bound the Betti numbers of each fiber: any closed set can be the 
set of zeroes ofa  C~-smooth function. So the proper way to generalize the above property of 
polynomials is the following: 

First, we prove for any f the existence of fibers with the Betti numbers bounded by 
constants, depending only on M k (and, of course, on k and on the dimensions and the size of 
the domain and image of f ) .  

Secondly, we estimate, in the same terms, the integrals over the image oftbe Betti numbers 
of the fibers off. In particular, we answer a question concerning the conditions of integrability 
of the Banach indicatrix of a differentiable mapping, which was open for a long time (see [1], 
[2], [9]). 

All the inequalities below have the following form: they consist of a term, corresponding 
to the case of polynomials, and of a "correction term", containing the factor M k. Thus, for M k 
= 0, i.e. for f a polynomial of degree k - 1, we obtain, up to constants, the usual bounds. 

The results below, as well as the results of [11] and [12] can be considered as the 
description of "the worst" possible behavior of k-smooth mappings. However, mainly they 
intend to answer another question: what can be said about the topology of a smooth or 
polynomial (of high degree) mapping, if the only information on its derivatives of order ~ k 
(where k is fixed and "small") we want to use, concerns their uniform bounds. 

Thus, we can reformulate most of results below (and of [11], [12] ) for polynomials only, 
without mentioning differentiable functions at all. In this setting they show how to work with 
polynomials of high degree, as if they were polynomials of low degree. 

Another important remark concerns the existence results below: in many cases we prove 
the existence of at least one value ~ in the image off,  for which the Bctti numbers of the fiber 
f - t  (~) are bounded by suitable constants. Although we do not touch in this paper the 
question of explicitly finding such values, we should mention that the corresponding results 
can be brought to a rather effective form: for instance, we can prove that in any regular net 
with a sufficiently small (explicitly given) step, there are points ~ with the required properties. 

The author would like to thank the Max-Planck-Institut for Mathematik, where this 
paper was written, for its support and kind hospitality. 
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§1. CONNECTION BETWEEN TOPOLOGY OF FIBERS AND GEOMETRY OF CRITICAL VALUES 

Although all the results below remain valid, with minor  modifications, for any compact  
manifold,  we shall consider only mappings defined on a closed ball Br" o f  radius r in R". In this 
case all the constants involved can be given explicitly. 

We say that the mapping f :  B7 ~ R ~ is q-smooth,  where q = p + ~, p __> I an integer, 0 < 
___ 1, i f f i s  p times continuously differentiable on BT, and the pth derivative d "fsatisfies on B," 
the H61der condition: 

II dvf(x)  -d~ f (Y ) I I  < LIIx -Yll ~, (1) 

with some constant L. 

Let M , ( f )  = max Ild'f(y)ll, ! = 0, 1 . . . . .  p, 
ye/i~, 

M q ( f )  = infinum of  L in (1), and let Rj ( f )  = M~(f)rJ, j = O, 1 . . . .  , p, q. (All the Euclidean 
spaces R ~ and the spaces o f  their linear and multilinear mappings are considered with the 
usual Euclidean norms). 

We always assume below that n > m. Let l~(f) be the set o f  critical points off ,  i.e. o f  points 
x ~ BT, where rank df(x) < m, or, if x belongs to the boundary  S,"- 1 o f  B,", rank d( / /S~-  1 ) 
< m. Let A( f )  = F (Y. ( f ) )  ~ R m be the set o f  critical values o f f .  

Fo r  ~ ~ R m we denote by Y¢ the fiber f -~ (~ )  o f f  over ~. If  ~ is a regular value o f f ,  i.e. 
~ A(fl ,  Y¢ is a compact  n - m-dimensional manifold. We denote by b i (Y¢), i = 0 . . . . .  n - m, 

the ith Betti number  of  Y~. 
Let p(~) = d(~, A(f ) )  be the distance f rom ~ to A(f).  

THEOREM 1.I. Let f :  B~ -~ R ~ be a q-smooth mapping, q = p + o~. Then for any regular value 
~ e R  ~ off ,  and i = 0 , . . . , n - m ,  

B,, p(~) _>_ g~ ( f )  
b~( Y¢) <= [ Bi(Rq(f)/p(~) )~/, ' P(~) <-_ R, ( f ) ,  

where the constants Bi, i = 0 . . . . .  n - m ,  depend only on n, m and p. 

Proof. Below K~ denote  constants depending only on n, m, p. We also omit  sometimes the 
index f i n  the notat ions o f  A(f) ,  M i ( f  ) and Ri( f ) .  

Denote  by B an open ball of  radius p(~), centered at the given regular value ~ e R m - A (f).  
All the points ~' e B are regular values both  o f f  and o f  the restrictionf/S~ - 1. Hence f :  N ~ B, 
where N = f -  1 (B), is a trivial fibration, and, in particular, we can find a retraction n: N ~ Y~, 
1z/Y= Id. 

We shall construct  a semialgebraic set S c N, containing Y~, such that the Betti numbers  
of  S satisfy inequalities of  theorem 1.1. The  existence o f  a retraction n: S ~ Y~ then shows that 
the Betti numbers  of  Y~ do not  exceed those o f  S. 

t~ For  a given ~ > 0 let lk~...k, be the cube {x = (x 1 . . . . .  x , ) ~ R " / k j 6  <= xj <= (k~ + 1)6, 
j = 1 . . . .  , n}, k j e Z .  Let I~, fl = 1 . . . . .  K(6), be those of  the cubes I~ . . . k , ,  which intersect 
B,". Clearly, for 6 = r, K(6) __< K t (r/t~)". 

For  each fl = 1 , . . . ,  K(tS), take some point x~El~ c~ B~, and let P~ be the Taylor  
polynomial  o f  degree p o f  f a t  x~. By Taylor  formula we have for each x ~ I~: IIf(x) - P~ (x)II 
<= K2M,t6q. 

Now take ¢5 = rain (r, (p(~)/4K2Mq) 1/~) and let 

S~ : {x~I~  nBT / l lP~(x ) -~ l l  ~ ½P(~)}, S = U Sp. 
l _ ~ _  g(~) 

S is a semialgebraic set and we have Y~ c S c N .  Indeed, by the choice o f  6, Ill(x) - P ~  (x)ll 
=<14P(~) for  x e l~  riB,". Hence, i fx  e Y~ ca Ig, IIPg(x)- ~ll--Ilpg(x)-f(x)ll <=¼p(~),i.e.xeSp 
c S .  

Conversely, for  x ~ S~, Ill(x) - ~ II --< Ill(x) - ~ (x)II + II P~ (x) - ~ II <= ¼p(~) + ½p(~) < p(~). 
i.e. x e N .  
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It remains to estimate the Betti numbers of S. Each Sp is defined by polynomial 
inequalities, whose number depends only on n, and whose degrees do not exceed 2p. 

The same is true for any nonempty intersection of Sp (which occurs only if the 
corresponding cubes I~ intersect). Hence for each i = 0 . . . . .  n - m, b~ (Sa~ c~ . . . n S/Q ~ B'i, 
where the constants B'~ depend only on n, m and p (Some explicit estimates of B'~ can be found 
by the methods of [6], [7], [8] or [10] ). 

Using the Mayer-Vietoris sequence, we obtain immediately that b~(S)< B;KaK(~5) 
<__ B'iK~K ~ (r/tS)" = B'iKaK~ (4K2) "/~ (Mqr~/p(~) )"/~ = B i(R~/p(~) )"/L 

These computations are valid for p(~)<__Rq<=4K2R ~, since in this case r 
>= (p(~)/4K2M~) ~/~, and we take t$ equal to the last number. But for p(~) > R~ we can restrict 
our consideration to the ball of radius R~ at ~. Theorem 1.1 is proved. 

Easy examples show that the bound of theorem 1.1 is sharp, up to constants. 

§2. EXISTENCE OF FIBERS WITH SIMPLE TOPOLOGY 

In this section we combine the result of theorem 1.1 with the information on the geometry 
of critical values off ,  obtained in [11]. 

For a q-smooth f:  B",--,R m define R l a ( f  ) as follows: R l q ( f ) = 2 ( V = A ( R I ( f )  
+ R~ (f))m- t Rq (f))t/m, where V= is the volume of the unit ball in R m, and A = A (n, m, p), 
depending only on n, m, p, is twice the maximum of the constants A~ (n, m, p), i -- 0 . . . . .  m, 
defined in theorem 1.1, [11]. 

Denote n - m + 1 by s. Below we assume that the smoothness q o f f  is greater than s, and 
hence, by the Sard theorem, almost all values o f f  are regular. 

THEOREM 2.1. Let f :  B", ~ R m be a q-smooth mapping, q > s. Then in any set G ~ R m with 
m(G) > 0 there is a reoular value ~ off,  such that for i = 0 . . . . .  n - m ,  

Bi, = m(G) >_ RTq (f) 
bi(Y~)  <-- [ B,(Rt~(f)/m(G))' / 'q- ') ,  re(G) < Rl~(f), 

where m(G) denotes the Lebesgue measure of G. 

Proof, Let G c R m with re(G) = r />  0 be given. According to theorem 1.1, it is sufficient 
to find a point ~ e G, which is "far away" from A(f). 

We shall use theorem 1.1, [11], which gives an upper bound for the e entropy of A(f) (see 
[2] ), or, which is the same, for the minimal number M(e, A(f)) of balls of a given radius e > 0, 
covering A(f). The following form of this bound, which can be deduced easily from the 
original general one, is appropriate for our case: For any e < Rq (f), 

M(e, A(f)) < A(1/e) =-1 (Rq (f)/e)'/* (R 1 (f)  + Rq (f))=-  1. (2) 

Now let e > 0, e < Rq, be fixed. Cover A by M(e,A) balls of radius e, and let fl, be the 
union of open balls of radius 2e, centered at the same points, f~, contains an e neighborhood of 
A, and hence for any ~ E/~=\ f~,, d(~,A) ~ e and by theorem 1.1, bi(Y~) < Bi(R,/e) "/q. 

Denote by Ci (t) the set of points ~ s R m, for which bi(Y~) > t. We obtain C i (B i (Rq/e) ~/~) 
fl,, for e < R~, or Ci(t) c t~to, where e(t) = Rq(Bdt)  q/", t > B i. 
By (2) for the measure of ~,  we have: m(f~<= V,~2"emM(e,A)< V~2=A(e/R~) 1-~/~ 

(R 1 + R ~ ) ' -  1 Rq, or 

m(n,)  < RTq (e/gq) 1 -'/q (3) 

Substituting here the value of e(t) as above, we obtain the following: 

PROPOSITION 2.2. 

V.  R T, 
m(Cl (t) ) < ( R~q (Bi/t) ~q- s,/,, 

O<=t < B  i, 

t>=B i 
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The first inequality here means simply, that b~( I 0 > 0 only for ~ ef(B;) ,  andf(B'~) clearly 
is contained in a ball of  radius R~. 

Now ifm(Ci (t)) < r /=  re(G), then G contains some points ~ ¢ Ci (t), i.e. with b~ (Y¢) < t. It 
remains to note that by propoposition 2.2, m(Ci (t)) < r/is satisfied for t = B~, if r />  R~'q, and 
for any t > Bi(R'~/rl) ~/~-~, for r /<  R'i'q. Theorem 2.1 is proved. 

Notice that the use of  the e-entropy of critical values instead of  the Lebesgue or the 
Hausdorff measure, and, respectively, the use of  the stronger theorem 1.1 [11] instead of the 
Sard theorem, is the crucial point here: no bounds on the measure of  A(f)  allow to find points 
"far away" from this set. 

The fiber Y~ in theorem 2.1 can be empty, for instance, if all the points of B, ~ are critical for 
fi Now we consider situations where nonempty fibers with simple topological structure can be 
found. 

COROLLARY 2.3. Let f:  B"~ --+ R" be q-smooth, q > s, and let m( f ( B'~ ) ) = ~l > O. Then there 
exists a nonempty fiber Y~ o f f  with 

~ Bi, t I >= R~q ( f )  
bi (Yg) <= ~ Bi (R7~ (f)/tl)"/~q-~), ~/=< R 1~ (f) .  

These inequalities have specially simple form in the case m = l: 

COROLLARY 2.4. Let f:  B~ -~ R be a q-smooth function, q > n. Then in any set G c R with 
re(G) > 0, there is a point c with 

B~, m(G) >= 4Ag~(f)  
bi (Yc) <-_ [ B, (4ARq (f)/m(G) )nl~- ~," m(G) <__ 4Agq (f)  

In particular, for a = min f, b = max f ,  there is c, a < c < b, such that 

~ B i, b - a  ~_ 4ARq(f) 
bi(Yc) < 

= ( Bi (4ARq ( f ) / ( b  - a) ~/q- n, b - a < 4 A R q  (f) .  

Let us formulate separately one important special case: 

COROLLARY 2.5. Let f:  R~-+ R be a q-smooth function, q > n, and let m a x f - m i n f  
>= 4ARq (f). Then there exists c, min f < c < max f, such that bi( Yc) <- Bi, where the constants 
B i depend only on n and p. 

This corollary can be interpreted as the appearance o fa  "near-polynomiality" effect: iffis 
sufficiently close to a polynomial, in the sense that R~ ( f )  is sufficiently small with respect to 
max f - r a i n  f, then the Betti numbers of  at least one nonempty fiber o f f  satisfy exactly the 
same kind of inequalities as the Betti numbers of the polynomial fibers. 

It is interesting to compare this fact with the result of  [12], which indicates another 
appearance of the same effect: if for a q-smooth f,  max f -  m i n f  = 2 q + 1 R~ (f), then any fiber 
Y~ of f i s  similar to the fibers of a polynomial of degree p in the following sense: Y~ is contained 
in a countable union of compact smooth hypersurfaces in R n, "many" straight lines cross Y~ in 
at most p points, and the n - 1 volume v(Y~) is bounded by Kr n- 1, where K depends only on n 
and p. However, easy examples show that the Betti numbers of some fibers o f f  can be infinite. 

The inequality of  theorem 2.1 is rather precise. In example 1, §6, VI, [2], for any n and 
q > n the function f:  B~ -+ R is built with the following properties: 

(i) f is q-smooth. 
(ii) For  any ~/> 0 there is an interval 

I~ c R of length ~/, such that for any c e i l ,  bi(Y~) >= K(1/~l) ~/~, i = 0 . . . . .  n - I. 
Hence the degree of  1~re(G) in the bounds for bl cannot be smaller than n/q. Our value 

n/q - s  is "asymptotically" sharp, for q -+ ~ .  
Theorem 2.1 implies also the following fact: if there is at least one point x e B~", where the 

rank of df(x)  is maximal (equal to m), then the Betti numbers of some nonempty fibers o f f  
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can be effectively bounded. As usual in our "quantitative" approach, we must not simply 
assume the nondegeneracy of the differential of f ,  but measure the degree of this 
nondegeneracy. 

For a linear mapping L: R" ~ R m, let oJ(L) be the minimal semiaxis of the ellipsoid L(B~) 
R m. For a smooth f :  B," --¢ R = define y(f)  as r max o~(df(x) ). We also denote by R t 2~ (f) the 

x e ~ ,  

constant ~/(20) (1/V=) 1/2, (Rtq ( f )R 2 (f))l/2. 
To simplify the expressions below, we assume, that ?(f)  6 R 2 (f). 

THEOREM 2.6. Let f:  B~ -~ R = be a q-smooth mapping, q > s, with 0 < ?(f) < R 2 (f). 
Then there exists a nonempty fiber Y~ of f with 

Bi, ?(f) ~_ Rlz~(f)  
bi(Y~) < [ Bi(R12q(f)/?(f))2m,/q-s, ?(f) < Rt2q(f) 

Proof Fix some x • B," with to = to(df(x)) maximal. Now let P be some m-dimensional 
plane through x, for which co(df(x)/P) = ta. 

Easy estimates, repeating the proof of the inverse function theorem, show that the ball of 
radius ta/3M 2 in P (or the part of this ball, containing in B,') is mapped byfdiffeomorphically, 
and its image contains the ball of radius to2/20M2 = y(f)2/20R2(f). Hence m(f(B~)) 
> Vm[y(f)2/2OR2 (f)]m 
. Substituting this value in the inequality of corollary 2.3, we obtain the required result. 

Studying in more detail the structure of f in the case when rank d f  < m everywhere, one 
can prove the existence of a nonempty fiber of f with Betti numbers bounded by constants 
depending only on Rq (f)  and the geometry of the image f(B,'), for any sufficiently smooth 
mapping f :  B," ~ R =, with no assumptions of nondegeneracy. This proof requires consider- 
ations somewhat different from the ones used in this paper, and it. will appear separately. 

§3. AVERAGE COMPLEXITY OF THE FIBERS 

In this section we give the bounds for the integrals of bi(Y~), when ~ runs over R ~. 

THEOREM 3.1. Let f :  B", ~ R ~ be  a q-smooth mapping, q > s, and let t~ > 0 be given. Then 
for i = O  . . . . .  n - m ,  

~m m I a° b~' (Y¢)d~ < B~' [ VMR~ ( f  ) + R ta ( f  ) d ' (1/t )q -s/n° dt ]" 

Proof By the Fubini theorem, Sk.b~ (Y~)d~ = So m(C, (tl/U))dt, and by proposition 2.2, 
the last integral is bounded by 

f " ~ (1/t')q-s/nudt'. V=R~ dt + jBp 1 RTq(Bdtl/u) q-S/" dt = B~ VmR T + B i Rlq 

Theorem 3.1 is proved. 

THEOREM 3.1 in particular answers the following question, which sometimes is called 
the question of integrability of the Banach indicatrix: for given n ~ m and u > 0 to find 
q(n,m,v) such that for any q-smooth mapping f :  R " ~ R  m with compact support, q 

> q (n, m, u), S b~ (Y~) de < oo (and, in particular, to prove the existence of such a q (n, m, v)). 
R - 

Some special cases have been settled: the case m = u = 1, n arbitrary--in [9], the case 
m = 1, n and u arbitrary--in [21 the cases v = 1, n > m arbitrary and n = m, v arbitrary--in 
[1]. 

Theorem 3.1 implies immediately the following: 
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COROLLARY 3.2. For]) B~ ~ R" - a  q-smooth mapping, q > s, and]br a given t), 0 < u 
< q - s/n, 

= < 0 ( 3 .  b?(Y~)d~ < B VmRr(f)+ R~(f)q-nu-s 

In particular, q (n, m, u) < un + s = (u + 1) n - m + 1. 
Examples of  [2] show, that q(n ,m ,u )>  un, so our bound for q(n,m,u) is sharp 

asymptotically, for u ~ oo. 

§4.  V O L U M E  O F  T H E  F I B E R S  

In this section, using the results of  §3, we study the distribution of the volume of  regular 
fibers o f f .  Here it is convenient first to obtain average bounds, and then to deduce the 
existence of fibers with "small" volume. 

Let for ~ a regular value off :  B7 --, R% v(Y~) denote the n -m-dimensional volume of the 
compact n -  m-dimensional submanifold Y¢ in R". 

THEOREM 4.1. Let.(: B7 ~ R m be a q-smooth mapping, u > 1. Assume that q > mt~ + 1. 
Then 

fR [v(y~)]U d~ < B~CU r(n_m)u[ V,.R~ ( f ) +  R,~,(f  ) mu ] = m < 0 0 ,  

- q - m u  - 1  

where the constant C depends only on n and m. 

Proof By the standard integral-geometric formula, v(Y¢) = S6.bo(Y¢ c3 L)dL, where G," 
is the space of all the m-dimensional planes in R n with the standard measure dL. bo(Y ~ c~ L) 
here for almost all L is simply the number of  points in Y¢ c~ L. 

The integration above runs, in fact, only over the set H c G m of  planes L intersecting the 
ball Br", and the measure of H in G m is equal to Cr ~-% where C depends only on n and m. 

Hence fR [v(Y:)]°d~= fR d~[f bo(Y¢nL)dL] ~ 
By the HSlder inequality, 

bo(Y¢c~L)dL <_ - [bo(Y~nL)]UdL l d L  
H 

1: 
where t~' = . Hence 

v - 1  

b o (Y¢ c~ L ) d L  <= C U-1 r (n-ml(U-l) [bo(Y ¢ c~ L)]~dL, 

and by the Fubini theorem 

fR" [v(Yc)]u d~--< dLfa" [b° (Y¢ c~ L)]U d~" 

Now since L c~ B~ is the ball of  radius __< r in L ~ R m and since all the derivatives of  the 
restriction f / L  do not exceed those off ,  we have by corollary 3.2: 

- : - - m u  - 1  ' 

and 

~a [v(Y~)]Ud~ < CVr(n-m)UB°IV.R"/+R"~qq mu 1 
. = - m o  - 1  " 
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Theorem 4.1 is proved. 
The question ofintegrability of v(Y~)~was also studied for a long time: for n = 2, m = 1 it 

was settled in [4], and in a general case in [5]. However, our estimate of maximal u, for which 
the integral ~a.[v(Y~)]Vd~ converges, namely, t) = q - l/m, is very close to the best possible, 
u ~_ q/m, and is approximately twice better than the Merkov's one [5]: u < q/2m + 1. 

Using the inequality of theorem 4.1, we can obtain the existence of regular fibers with the 
"small" volume: 

THEOREM 4.2. Let f :  B n ~ R "  be a q-smooth mapping, q > m + 1. Then for any fl < 
q - l/m, there is a constant K, depending only on Rx (f), Rq(f), fl, n, m and p, such that in any G 

R m there is ~ with 

v(Y~) <= K (1/m(G)) '/p. 

Proof It follows immediately from the inequality of theorem 4.1, if we put 

mfl ]l/p. 
K = Cr"-mBo V,.R'~ + R~, q _ ~ - ~ _  1 

The results of  this section include the situations where the smoothness q of the mapping f 
is smaller than s = n - m + 1. In these cases all the values o f f  may be critical and, respectively, 
all the fibers Y~ o f f  may not be the regular n - m-dimensional manifolds. Here we understand 
v(Y~) as the n - m-dimensional Hausdorff measure. 

§5. SOME INEQUALITIES BETWEEN THE DERIVATIVES OF f 

In this section we show that all the constants in the inequalities above can be expressed in 
terms of the only two parameters of the mapping f :  B," --, R m: the remainder term Rq (f)  and 
the diameter Ro( f )  of the image f ( B ,  ~) c R m. 

PROPOSITION 5.1. There are constants N j , j  = 1 . . . .  , p, depending only on n, m and p, such 
that for any q = p + a-smooth mapping f :  B~ --, R m, 

R j ( f )  <- N i ( R o ( f ) + R , ( f ) ) ,  j = 1 . . . . .  p. 

Proof For any polynomial mapping h: B, ~ ~ R m of degree p the following Markov 
inequality is satisfied (see e.g. [3]): 

t Rj(h) <= N ~Ro(h), j = l, . . . , p. (.) 

Now let h be the Taylor polynomial of f a t  the center of B, ~. The Taylor formula shows 
that 

RAh ) - N ;  R ,  ( f )  <_ R A f  ) ~_ R~(h) + NyR~ ( f ) , j  = 1 . . . . . .  p. (**) 
Combining (.) and (**), we obtain the required inequalities. 

COROLLARY 5.2. There is a constant D, depending only on n, m, p, such that for any q = p 
+ a-smooth mapping f :  B~ ~ R ~ 

(a) If  R o (f)  _~ Rq (f), then 

R 1, (f)  ~- D [R'~- 1 ( f )R,  ( f ) ]  '/% 

R, 2, ( f )  - D [R 20m - x ( f )  R, ( f )  ]'/2 m. 

(b) If  R 0 (f)  ~ R, (f), then 

R, ,  ( f )  <__ D R , ( f ) ,  

R12 ~ ( f )  <- DR, ( f ) .  
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