GLOBAL BOUNDS FOR THE BETTI NUMBERS OF REGULAR FIBERS OF DIFFERENTIABLE MAPPINGS

Y. Yomdin
(Received 19 December 1983)

INTRODUCTION

It is well known that the Betti numbers of any fiber $p^{-1}(\xi)$ of a polynomial mapping p : $R^{n} \rightarrow R^{m}$ are bounded by some constants, depending only on n, m and the degree of p (see e.g. [7]).

Now let f be a k times differentiable mapping of a bounded domain, with all the derivatives of order k bounded by a constant M_{k}. We can think of M_{k} as a measure of the deviation of f from a polynomial mapping of degree $k-1$; as far as the deviation in a C^{j}-norm is concerned, $j \leqq k-1$, the Taylor formula gives the precise expression for it.

The important general phenomenon is that also in much more delicate questions, concerning the topology and the geometry of the mapping f, its "deviation" from the "polynomial behavior" can be bounded in terms of M_{k}.

In [11] this fact was established for the structure of critical points and values of f, and in [12] for some geometric properties of its fibers.

The aim of the present paper is to extend in the same spirit to k-smooth mappings the property of polynomial ones, given above: the boundness of the Betti numbers of the fibers.

Clearly it is impossible to bound the Betti numbers of each fiber: any closed set can be the set of zeroes of a C^{∞}-smooth function. So the proper way to generalize the above property of polynomials is the following:

First, we prove for any f the existence of fibers with the Betti numbers bounded by constants, depending only on M_{k} (and, of course, on k and on the dimensions and the size of the domain and image of f).

Secondly, we estimate, in the same terms, the integrals over the image of the Betti numbers of the fibers of f. In particular, we answer a question concerning the conditions of integrability of the Banach indicatrix of a differentiable mapping, which was open for a long time (see [1], [2], [9]).

All the inequalities below have the following form: they consist of a term, corresponding to the case of polynomials, and of a "correction term", containing the factor M_{k}. Thus, for M_{k} $=0$, i.e. for f a polynomial of degree $k-1$, we obtain, up to constants, the usual bounds.

The results below, as well as the results of [11] and [12] can be considered as the description of "the worst" possible behavior of k-smooth mappings. However, mainly they intend to answer another question: what can be said about the topology of a smooth or polynomial (of high degree) mapping, if the only information on its derivatives of order $\geq k$ (where k is fixed and "small") we want to use, concerns their uniform bounds.

Thus, we can reformulate most of results below (and of [11], [12]) for polynomials only, without mentioning differentiable functions at all. In this setting they show how to work with polynomials of high degree, as if they were polynomials of low degree.

Another important remark concerns the existence results below: in many cases we prove the existence of at least one value ξ in the image of f, for which the Betti numbers of the fiber $f^{-1}(\xi)$ are bounded by suitable constants. Although we do not touch in this paper the question of explicitly finding such values, we should mention that the corresponding results can be brought to a rather effective form: for instance, we can prove that in any regular net with a sufficiently small (explicitly given) step, there are points ξ with the required properties.

The author would like to thank the Max-Planck-Institut für Mathematik, where this paper was written, for its support and kind hospitality.

§1. CONNECTION BETWEEN TOPOLOGY OF FIBERS AND GEOMETRY OF CRITICAL VALUES

Although all the results below remain valid, with minor modifications, for any compact manifold, we shall consider only mappings defined on a closed ball B_{r}^{n} of radius r in R^{n}. In this case all the constants involved can be given explicitly.

We say that the mapping $f: B_{r}^{n} \rightarrow R^{m}$ is q-smooth, where $q=p+\alpha, p \geqq 1$ an integer, $0<\alpha$ $\leqq 1$, if f is p times continuously differentiable on B_{r}^{n}, and the p th derivative $d^{p} f$ satisfies on B_{r}^{n} the Hölder condition:

$$
\begin{equation*}
\left\|d^{p} f(x)-d^{p} f(y)\right\| \leqq L\|x-y\|^{\alpha}, \tag{1}
\end{equation*}
$$

with some constant L.

Let

$$
M_{i}(f)=\max _{y \in B_{r}^{n}}\left\|d^{i} f(y)\right\|, \quad i=0,1, \ldots, p
$$

$M_{q}(f)=$ infinum of L in (1), and let $R_{j}(f)=M_{j}(f) r^{j}, j=0,1, \ldots, p, q$. (All the Euclidean spaces R^{s} and the spaces of their linear and multilinear mappings are considered with the usual Euclidean norms).

We always assume below that $n \geqq m$. Let $\Sigma(f)$ be the set of critical points of f, i.e. of points $x \in B_{r}^{n}$, where rank $\mathrm{d} f(x)<m$, or, if x belongs to the boundary S_{r}^{n-1} of B_{r}^{n}, rank $\mathrm{d}\left(f / S_{r}^{n-1}\right)$ $<m$. Let $\Delta(f)=F(\Sigma(f)) \subset R^{m}$ be the set of critical values of f.

For $\xi \in R^{m}$ we denote by Y_{ξ} the fiber $f^{-1}(\xi)$ of f over ξ. If ξ is a regular value of f, i.e. $\xi \notin \Delta(f), Y_{\xi}$ is a compact $n-m$-dimensional manifold. We denote by $b_{i}\left(Y_{\xi}\right), i=0, \ldots, n-m$, the ith Betti number of Y_{ξ}.

Let $\rho(\xi)=\mathrm{d}(\xi, \Delta(f))$ be the distance from ξ to $\Delta(f)$.
Theorem 1.1, Let $f: B_{r}^{n} \rightarrow R^{m}$ be a q-smooth mapping, $q=p+\alpha$.Then for any regular value $\xi \in R^{m}$ of f, and $i=0, \ldots, n-m$,

$$
b_{i}\left(Y_{\xi}\right) \leqq \begin{cases}B_{i}, & \rho(\xi) \geqq R_{q}(f) \\ B_{i}\left(R_{q}(f) / \rho(\xi)\right)^{n / q}, & \rho(\xi) \leqq R_{q}(f)\end{cases}
$$

where the constants $B_{i}, i=0, \ldots, n-m$, depend only on n, m and p.
Proof. Below K_{j} denote constants depending only on n, m, p. We also omit sometimes the index f in the notations of $\Delta(f), M_{i}(f)$ and $R_{i}(f)$.

Denote by B an open ball of radius $\rho(\xi)$, centered at the given regular value $\xi \in R^{m}-\Delta(f)$. All the points $\xi^{\prime} \in B$ are regular values both of f and of the restriction f / S_{r}^{n-1}. Hence $f: N \rightarrow B$, where $N=f^{-1}(B)$, is a trivial fibration, and, in particular, we can find a retraction π : $N \rightarrow Y_{\xi}$, $\pi / Y=I d$.

We shall construct a semialgebraic set $S \subset N$, containing Y_{ξ}, such that the Betti numbers of S satisfy inequalities of theorem 1.1. The existence of a retraction $\pi: S \rightarrow Y_{\xi}$ then shows that the Betti numbers of Y_{ξ} do not exceed those of S.

For a given $\delta>0$ let $I_{k_{1} \ldots k_{n}}^{\delta}$ be the cube $\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n} / k_{j} \delta \leqq x_{j} \leqq\left(k_{j}+1\right) \delta\right.$, $j=1, \ldots, n\}, k_{j} \in Z$. Let $I_{\beta}^{\delta}, \beta=1, \ldots, K(\delta)$, be those of the cubes $I_{k_{1}}^{\delta} \ldots k_{n}$, which intersect B_{r}^{n}. Clearly, for $\delta \leqq r, K(\delta) \leqq K_{1}(r / \delta)^{n}$.

For each $\beta=1, \ldots, K(\delta)$, take some point $x_{\beta} \in I_{\beta}^{\delta} \cap B_{r}^{n}$, and let P_{β}^{δ} be the Taylor polynomial of degree p of f at x_{β}. By Taylor formula we have for each $x \in I_{\beta}^{\delta}:\left\|f(x)-P_{\beta}^{\delta}(x)\right\|$ $\leqq K_{2} M_{q} \delta^{q}$.

Now take $\delta=\min \left(r,\left(\rho(\xi) / 4 K_{2} M_{q}\right)^{1 / q}\right)$ and let

$$
S_{\beta}=\left\{x \in I_{\beta}^{\delta} \cap B_{r}^{n} /\left\|P_{\beta}^{\delta}(x)-\xi\right\| \leqq \frac{1}{2} \rho(\xi)\right\}, \quad S=\underset{1 \leqq \beta \leqq K(\delta)}{U} S_{\beta}
$$

S is a semialgebraic set and we have $Y_{\xi} \subset S \subset N$. Indeed, by the choice of $\delta,\left\|f(x)-P_{\beta}^{\delta}(x)\right\|$ $\leqq \frac{1}{4} \rho(\xi)$ for $x \in I_{\beta}^{\delta} \cap B_{r}^{n}$. Hence, if $x \in Y_{\xi} \cap I_{\beta}^{\delta},\left\|P_{\beta}^{\delta}(x)-\xi\right\|=\left\|P_{\beta}^{\delta}(x)-f(x)\right\| \leqq \frac{1}{4} \rho(\xi)$, i.e. $x \in S_{\beta}$ $\subset S$.

Conversely, for $x \in S_{\beta},\|f(x)-\xi\| \leqq\left\|f(x)-P_{\beta}^{\delta}(x)\right\|+\left\|P_{\beta}^{\delta}(x)-\xi\right\| \leqq \frac{1}{4} \rho(\xi)+\frac{1}{2} \rho(\xi)<\rho(\xi)$. i.e. $x \in N$.

It remains to estimate the Betti numbers of S. Each S_{β} is defined by polynomial inequalities, whose number depends only on n, and whose degrees do not exceed $2 p$.

The same is true for any nonempty intersection of S_{β} (which occurs only if the corresponding cubes I_{β}^{δ} intersect $)$. Hence for each $i=0, \ldots, n-m, b_{i}\left(S_{\beta_{1}} \cap \ldots \cap S_{\beta_{j}}\right) \leqq B_{i}^{\prime}$, where the constants B_{i}^{\prime} depend only on n, m and p (Some explicit estimates of B_{i}^{\prime} can be found by the methods of [6], [7], [8] or [10]).

Using the Mayer-Vietoris sequence, we obtain immediately that $b_{i}(S) \leqq B_{i}^{\prime} K_{3} K(\delta)$ $\leqq B_{i}^{\prime} K_{3} K_{1}(r / \delta)^{n}=B_{i}^{\prime} K_{3} K_{1}\left(4 K_{2}\right)^{n / q}\left(M_{q} r^{q} / \rho(\xi)\right)^{n / q}=B_{i}\left(R_{q} / \rho(\xi)\right)^{n / q}$.

These computations are valid for $\rho(\xi) \leqq R_{q} \leqq 4 K_{2} R_{q}$, since in this case r $\geqq\left(\rho(\xi) / 4 K_{2} M_{q}\right)^{1 / q}$, and we take δ equal to the last number. But for $\rho(\xi)>R_{q}$ we can restrict our consideration to the ball of radius R_{q} at ξ. Theorem 1.1 is proved.

Easy examples show that the bound of theorem 1.1 is sharp, up to constants.

§2. EXISTENCE OF FIBERS WITH SIMPLE TOPOLOGY

In this section we combine the result of theorem 1.1 with the information on the geometry of critical values of f, obtained in [11].

For a q-smooth $f: B_{r}^{n} \rightarrow R^{m}$ define $R_{1 q}(f)$ as follows: $R_{1 q}(f)=2\left(V_{m} A\left(R_{1}(f)\right.\right.$ $\left.\left.+R_{q}(f)\right)^{m-1} R_{q}(f)\right)^{1 / m}$, where V_{m} is the volume of the unit ball in R^{m}, and $A=A(n, m, p)$, depending only on n, m, p, is twice the maximum of the constants $\bar{A}_{i}(n, m, p), i=0, \ldots, m$, defined in theorem 1.1, [11].

Denote $n-m+1$ by s. Below we assume that the smoothness q of f is greater than s, and hence, by the Sard theorem, almost all values of f are regular.

Theorem 2.1. Let $f: B_{r}^{n} \rightarrow R^{m}$ be a q-smooth mapping, $q>$ s. Then in any set $G \subset R^{m}$ with $m(G)>0$ there is a regular value ξ of f, such that for $i=0, \ldots, n-m$,

$$
b_{i}\left(Y_{\xi}\right) \leqq \begin{cases}B_{i}, & m(G) \leqq R_{1 q}^{m}(f) \\ B_{i}\left(R_{1 q}^{m}(f) / m(G)\right)^{n /(q-s)}, & m(G) \leqq R_{1 q}^{m}(f),\end{cases}
$$

where $m(G)$ denotes the Lebesgue measure of G.
Proof. Let $G \subset R^{m}$ with $m(G)=\eta>0$ be given. According to theorem 1.1, it is sufficient to find a point $\xi \in G$, which is "far away" from $\Delta(f)$.

We shall use theorem 1.1, [11], which gives an upper bound for the ε entropy of $\Delta(f)$ (see [2]), or, which is the same, for the minimal number $M(\varepsilon, \Delta(f))$ of balls of a given radius $\varepsilon>0$, covering $\Delta(f)$. The following form of this bound, which can be deduced easily from the original general one, is appropriate for our case: For any $\varepsilon \leqq R_{q}(f)$,

$$
\begin{equation*}
M(\varepsilon, \Delta(f)) \leqq A(1 / \varepsilon)^{m-1}\left(R_{q}(f) / \varepsilon\right)^{5 / q}\left(R_{1}(f)+R_{q}(f)\right)^{m-1} \tag{2}
\end{equation*}
$$

Now let $\varepsilon>0, \varepsilon \leqq R_{q}$, be fixed. Cover Δ by $M(\varepsilon, \Delta)$ balls of radius ε, and let Ω_{ε} be the union of open balls of radius 2ε, centered at the same points. Ω_{ε} contains an ε neighborhood of Δ, and hence for any $\xi \in R^{m} \backslash \Omega_{\varepsilon}, \mathrm{d}(\xi, \Delta) \geqq \varepsilon$ and by theorem $1.1, b_{i}\left(Y_{\xi}\right) \leqq B_{i}\left(R_{q} / \varepsilon\right)^{n / q}$.

Denote by $C_{i}(t)$ the set of points $\xi \in R^{m}$, for which $b_{i}\left(Y_{\xi}\right)>t$. We obtain $C_{i}\left(B_{i}\left(R_{q} / \varepsilon\right)^{n / q}\right)$ $\subset \Omega_{\varepsilon}$, for $\varepsilon \leqq R_{q}$, or $C_{i}(t) \subset \Omega_{\varepsilon(t)}$, where $\varepsilon(t)=R_{q}\left(B_{i} / t\right)^{q / n}, t \geqq B_{i}$.

By (2) for the measure of Ω_{ε} we have: $m\left(\Omega_{\varepsilon}\right) \leqq V_{m} 2^{m} \varepsilon^{m} M(\varepsilon, \Delta) \leqq V_{m} 2^{m} A\left(\varepsilon / R_{q}\right)^{1-s / q}$ $\left(R_{1}+R_{q}\right)^{m-1} R_{q}$, or

$$
\begin{equation*}
m\left(\Omega_{\varepsilon}\right) \leqq R_{1 q}^{m}\left(\varepsilon / R_{q}\right)^{1-s / q} . \tag{3}
\end{equation*}
$$

Substituting here the value of $\varepsilon(t)$ as above, we obtain the following:
Proposition 2.2.

$$
m\left(C_{i}(t)\right) \leqq\left\{\begin{array}{ll}
V_{m} R_{1}^{m}, & 0 \leqq t<B_{i}, \\
R_{1 q}^{m}\left(B_{i} / t\right)^{(q-s) / n}, & t \geqq B_{i}
\end{array} .\right.
$$

The first inequality here means simply, that $b_{i}(\eta)>0$ only for $\xi \in f\left(B_{r}^{n}\right)$, and $f\left(B_{r}^{n}\right)$ clearly is contained in a ball of radius R_{1}.

Now if $m\left(C_{i}(t)\right)<\eta=m(G)$, then G contains some points $\xi \notin C_{i}(t)$, i.e. with $b_{i}\left(Y_{\xi}\right) \leqq t$. It remains to note that by propoposition 2.2, $m\left(C_{i}(t)\right)<\eta$ is satisfied for $t=B_{i}$, if $\eta>R_{1 q}^{m}$, and for any $t>B_{i}\left(R_{1 q}^{m} / \eta\right)^{n / q-s}$, for $\eta \leqq R_{1 q}^{m}$. Theorem 2.1 is proved.

Notice that the use of the ε-entropy of critical values instead of the Lebesgue or the Hausdorff measure, and, respectively, the use of the stronger theorem 1.1 [11] instead of the Sard theorem, is the crucial point here: no bounds on the measure of $\Delta(f)$ allow to find points "far away" from this set.

The fiber Y_{ξ} in theorem 2.1 can be empty, for instance, if all the points of B_{r}^{n} are critical for f. Now we consider situations where nonempty fibers with simple topological structure can be found.

Corollary 2.3. Let $f: B_{r}^{n} \rightarrow \boldsymbol{R}^{m}$ be q-smooth, $q>s$, and let $m\left(f\left(B_{r}^{n}\right)\right)=\eta>0$. Then there exists a nonempty fiber Y_{ξ} of f with

$$
b_{i}\left(Y_{\xi}\right) \leqq \begin{cases}B_{i}, & \eta \geqq R_{1 q}^{m}(f) \\ B_{i}\left(R_{1 q}^{m}(f) / \eta\right)^{n /(q-s)}, & \eta \leqq R_{1 q}^{m}(f) .\end{cases}
$$

These inequalities have specially simple form in the case $m=1$:

Corollary 2.4. Let $f: B_{r}^{n} \rightarrow R$ be a q-smooth function, $q>n$. Then in any set $G \subset R$ with $m(G)>0$, there is a point c with

$$
b_{i}\left(Y_{c}\right) \leqq \begin{cases}B_{i}, & m(G) \leqq 4 A R_{q}(f) \\ B_{i}\left(4 A R_{q}(f) / m(G)\right)^{n / q-n}, & m(G) \leqq 4 A R_{q}(f)\end{cases}
$$

In particular, for $a=\min f, b=\max f$, there is $c, a<c<b$, such that

$$
b_{i}\left(Y_{c}\right) \leqq \begin{cases}B_{i}, & b-a \leqq 4 A R_{q}(f) \\ B_{i}\left(4 A R_{q}(f) /(b-a)^{n / q-n},\right. & b-a \leqq 4 A R_{q}(f) .\end{cases}
$$

Let us formulate separately one important special case:
Corollary 2.5. Let $f: R_{r}^{n} \rightarrow R$ be a q-smooth function, $q>n$, and let max $f-\min f$ $\geqq 4 A R_{q}(f)$. Then there exists $c, \min f<c<\max f$, such that $b_{i}\left(Y_{c}\right) \leqq B_{i}$, where the constants B_{i} depend only on n and p.

This corollary can be interpreted as the appearance of a "near-polynomiality" effect: if f is sufficiently close to a polynomial, in the sense that $R_{q}(f)$ is sufficiently small with respect to $\max f-\min f$, then the Betti numbers of at least one nonempty fiber of f satisfy exactly the same kind of inequalities as the Betti numbers of the polynomial fibers.

It is interesting to compare this fact with the result of [12], which indicates another appearance of the same effect: if for a q-smooth f, $\max f-\min f \geqq 2^{q+1} R_{q}(f)$, then any fiber Y_{c} of f is similar to the fibers of a polynomial of degree p in the following sense: Y_{c} is contained in a countable union of compact smooth hypersurfaces in $R^{\text {n }}$, many" straight lines cross Y_{c} in at most p points, and the $n-1$ volume $v\left(Y_{c}\right)$ is bounded by $K r^{n-1}$, where K depends only on n and p. However, easy examples show that the Betti numbers of some fibers of f can be infinite.

The inequality of theorem 2.1 is rather precise. In example 1, §6, VI, [2], for any n and $q>n$ the function $f: B_{1}^{n} \rightarrow R$ is built with the following properties:
(i) f is q-smooth.
(ii) For any $\eta>0$ there is an interval
$\mathrm{I}_{\eta} \subset R$ of length η, such that for any $c \in I_{\eta}, b_{i}\left(Y_{c}\right) \geqq K(1 / \eta)^{n / q}, \quad i=0, \ldots, n-1$.
Hence the degree of $1 / m(G)$ in the bounds for b_{i} cannot be smaller than n / q. Our value $n / q-s$ is "asymptotically" sharp, for $q \rightarrow \infty$.

Theorem 2.1 implies also the following fact: if there is at least one point $x \in B_{r}^{n}$, where the rank of $\mathrm{d} f(x)$ is maximal (equal to m), then the Betti numbers of some nonempty fibers of f
can be effectively bounded. As usual in our "quantitative" approach, we must not simply assume the nondegeneracy of the differential of f, but measure the degree of this nondegeneracy.

For a linear mapping $L: R^{n} \rightarrow \boldsymbol{R}^{m}$, let $\omega(L)$ be the minimal semiaxis of the ellipsoid $L\left(B_{1}^{n}\right)$ $\subset R^{m}$. For a smooth $f: B_{r}^{n} \rightarrow R^{m}$ define $\gamma(f)$ as $r \max _{x \in B_{i}} \omega(\mathrm{~d} f(x))$. We also denote by $R_{12 q}(f)$ the constant $\sqrt{ }(20)\left(1 / V_{m}\right)^{1 / 2 m}\left(R_{1 q}(f) R_{2}(f)\right)^{1 / 2}$.

To simplify the expressions below, we assume, that $\gamma(f) \leqq R_{2}(f)$.
Theorem 2.6. Let $f: B_{r}^{n} \rightarrow R^{m}$ be a q-smooth mapping, $q>s$, with $0<\gamma(f) \leqq R_{2}(f)$. Then there exists a nonempty fiber Y_{ξ} of f with

$$
b_{i}\left(Y_{\xi}\right) \leqq \begin{cases}B_{i}, & \gamma(f) \leqq R_{12 q}(f) \\ B_{i}\left(R_{12 q}(f) / \gamma(f)\right)^{2 m n / q-s}, & \gamma(f) \leqq R_{12 q}(f)\end{cases}
$$

Proof. Fix some $x \in B_{r}^{n}$ with $\omega=\omega(\mathrm{d} f(x))$ maximal. Now let P be some m-dimensional plane through x, for which $\omega(\mathrm{d} f(x) / P)=\omega$.

Easy estimates, repeating the proof of the inverse function theorem, show that the ball of radius $\omega / 3 M_{2}$ in P (or the part of this ball, containing in B_{r}^{n}) is mapped by f diffeomorphically, and its image contains the ball of radius $\omega^{2} / 20 M_{2}=\gamma(f)^{2} / 20 R_{2}(f)$. Hence $m\left(f\left(B_{r}^{n}\right)\right)$ $\geqq V_{m}\left[\gamma(f)^{2} / 20 R_{2}(f)\right]^{m}$
. Substituting this value in the inequality of corollary 2.3 , we obtain the required result.
Studying in more detail the structure of f in the case when rank $\mathrm{d} f<m$ everywhere, one can prove the existence of a nonempty fiber of f with Betti numbers bounded by constants depending only on $R_{q}(f)$ and the geometry of the image $f\left(B_{r}^{n}\right.$), for any sufficiently smooth mapping $f: B_{r}^{n} \rightarrow R^{m}$, with no assumptions of nondegeneracy. This proof requires considerations somewhat different from the ones used in this paper, and it will appear separately.

§3. AVERAGE COMPLEXITY OF THE FIBERS

In this section we give the bounds for the integrals of $b_{i}\left(Y_{\xi}\right)$, when ξ runs over R^{m}.
Theorem 3.1. Let $f: B_{r}^{n} \rightarrow R^{m}$ be a q-smooth mapping, $q>s$, and let $v>0$ be given. Then for $i=0, \ldots, n-m$,

$$
\int_{R^{m}} b_{i}^{\mathrm{v}}\left(Y_{\xi}\right) \mathrm{d} \xi \leqq B_{i}^{\mathrm{v}}\left[V_{m} R_{1}^{m}(f)+R_{1 q}^{m}(f) \int_{1}^{\infty}(1 / t)^{q-s / n v} \mathrm{~d} t\right]
$$

Proof. By the Fubini theorem, $\int_{R^{R}} b_{i}^{v}\left(Y_{\xi}\right) \mathrm{d} \xi=\int_{0}^{\infty} m\left(C_{i}\left(t^{1 / v}\right)\right) \mathrm{dt}$, and by proposition 2.2, the last integral is bounded by

$$
\int_{0}^{B_{i}^{0}} V_{m} R_{1}^{m} \mathrm{~d} t+\int_{B_{i}^{u}}^{\infty} R_{1 q}^{m}\left(B_{i} / t^{1 / v}\right)^{q-s / n} \mathrm{~d} t=B_{i}^{\nu} V_{m} R_{1}^{m}+B_{i}^{v} R_{1 q}^{m} \int_{1}^{\infty}\left(1 / t^{\prime}\right)^{q-s / n v} \mathrm{~d} t^{\prime} .
$$

Theorem 3.1 is proved.
Theorem 3.1 in particular answers the following question, which sometimes is called the question of integrability of the Banach indicatrix: for given $n \geqq m$ and $v>0$ to find $q(n, m, v)$ such that for any q-smooth mapping $f: R^{n} \rightarrow R^{m}$ with compact support, q $>q(n, m, v), \int_{R^{m}} b_{0}^{v}\left(Y_{\xi}\right) \mathrm{d} \xi<\infty$ (and, in particular, to prove the existence of such a $q(n, m, v)$).

Some special cases have been settled: the case $m=v=1, n$ arbitrary-in [9], the case $m=1, n$ and v arbitrary-in [2], the cases $v=1, n \geqq m$ arbitrary and $n=m, v$ arbitrary-in [1].

Theorem 3.1 implies immediately the following:

Corollary 3.2. For $f: B_{r}^{n} \rightarrow R^{m}$ - a q-smooth mapping, $q>s$, and for a given $\mathrm{v}, 0 \leqq \mathrm{v}$ $<q-s / n$,

$$
\int_{R^{m}} b_{i}^{v}\left(Y_{\xi}\right) \mathrm{d} \xi \leqq B_{i}^{v}\left[V_{m} R_{1}^{m}(f)+R_{1 q}^{m}(f) \frac{n v}{q-n v-s}\right]<\infty .
$$

In particular, $q(n, m, \mathrm{v}) \leqq \mathrm{v} n+s=(\mathrm{v}+1) n-m+1$.
Examples of [2] show, that $q(n, m, v) \geqq u n$, so our bound for $q(n, m, v)$ is sharp asymptotically, for $v \rightarrow \infty$.

§4. VOLUME OF THE FIBERS

In this section, using the results of $\S 3$, we study the distribution of the volume of regular fibers of f. Here it is convenient first to obtain average bounds, and then to deduce the existence of fibers with "small" volume.

Let for ξ a regular value of $f: B_{r}^{n} \rightarrow R^{m}, v\left(Y_{\xi}\right)$ denote the $n-m$-dimensional volume of the compact n - m-dimensional submanifold Y_{ξ} in R^{n}.

Theorem 4.1. Let $f: B_{r}^{n} \rightarrow R^{m}$ be a q-smooth mapping, $v \geqq 1$. Assume that $q>m v+1$. Then

$$
\int_{R^{m}}\left[v\left(Y_{\xi}\right)\right]^{v} \mathrm{~d} \xi \leqq B_{0}^{v} C^{v} r^{(n-m) v}\left[V_{m} R_{1}^{m}(f)+R_{1 q}^{m}(f) \frac{m v}{q-m v-1}\right]<\infty,
$$

where the constant C depends only on n and m.
Proof. By the standard integral-geometric formula, $v\left(Y_{\xi}\right)=\int_{G_{n}^{m}} b_{0}\left(Y_{\xi} \cap L\right) \mathrm{d} L$, where G_{n}^{m} is the space of all the m-dimensional planes in R^{n} with the standard measure $\mathrm{d} L . b_{0}\left(Y_{\xi} \cap L\right)$ here for almost all L is simply the number of points in $Y_{\xi} \cap L$.

The integration above runs, in fact, only over the set $H \subset G_{n}^{m}$ of planes L intersecting the ball B_{r}^{n}, and the measure of H in G_{n}^{m} is equal to $C r^{n-m}$, where C depends only on n and m.

Hence

$$
\int_{R^{m}}\left[v\left(Y_{\xi}\right)\right]^{v} \mathrm{~d} \xi=\int_{R^{m}} \mathrm{~d} \xi\left[\int_{H} b_{0}\left(Y_{\xi} \cap L\right) \mathrm{d} L\right]^{v} .
$$

By the Hölder inequality,

$$
\int_{H} b_{0}\left(Y_{\xi} \cap L\right) \mathrm{d} L \leqq\left(\int_{H}\left[b_{0}\left(Y_{\xi} \cap L\right)\right]^{v} \mathrm{~d} L\right)^{1 / 0}\left(\int_{H} 1 \mathrm{~d} L\right)^{1 / u^{\prime}},
$$

where $v^{\prime}=\frac{v}{v-1}$. Hence

$$
\left[\int_{H} b_{0}\left(Y_{\xi} \cap L\right) \mathrm{d} L\right]^{\nu} \leqq C^{v-1} r^{(n-m)(v-1)} \int_{H}\left[b_{0}\left(Y_{\xi} \cap L\right)\right]^{v} \mathrm{~d} L,
$$

and by the Fubini theorem

$$
\int_{R^{m}}\left[v\left(Y_{\xi}\right)\right]^{v} \mathrm{~d} \xi \leqq C^{v-1} r^{(n-m)(v-1)} \int_{H} \mathrm{~d} L \int_{R^{m}}\left[b_{0}\left(Y_{\xi} \cap L\right)\right]^{v} \mathrm{~d} \xi .
$$

Now since $L \cap B_{r}^{n}$ is the ball of radius $\leqq r$ in $L \cong R^{m}$ and since all the derivatives of the restriction f / L do not exceed those of f, we have by corollary 3.2:

$$
\int_{R^{m}}\left[b_{0}\left(Y_{\xi} \cap L\right)\right]^{v} \mathrm{~d} \xi \leqq B^{0}\left[V_{m} R_{1}^{m}+R_{1 q}^{m} \frac{m v}{q-m v-1}\right],
$$

and

$$
\int_{R^{m}}\left[v\left(Y_{\xi}\right)\right]^{v} \mathrm{~d} \xi \leqq C^{v} r^{(n-m) v} B^{0}\left[V_{m} R_{1}^{m}+R_{1 q}^{m} \frac{m v}{q-m v-1}\right] .
$$

Theorem 4.1 is proved.
The question of integrability of $v\left(Y_{\xi}\right)^{v}$ was also studied for a long time: for $n=2, m=1$ it was settled in [4], and in a general case in [5]. However, our estimate of maximal v, for which the integral $\int_{R^{n}}\left[v\left(Y_{\xi}\right)\right]^{v} \mathrm{~d} \xi$ converges, namely, $v=q-1 / m$, is very close to the best possible, $v \leqq q / m$, and is approximately twice better than the Merkov's one [5]: $v<q / 2 m+1$.

Using the inequality of theorem 4.1, we can obtain the existence of regular fibers with the "small" volume:

Theorem 4.2. Let $f: B_{r}^{n} \rightarrow R^{m}$ be a q-smooth mapping, $q>m+1$. Then for any $\beta<$ $q-1 / m$, there is a constant K, depending only on $R_{1}(f), R_{q}(f), \beta, n, m$ and p, such that in any G $\subset R^{m}$ there is ξ with

$$
v\left(Y_{\xi}\right) \leqq K(1 / m(G))^{1 / \beta} .
$$

Proof. It follows immediately from the inequality of theorem 4.1, if we put

$$
K=C r^{n-m} B_{0}\left[V_{m} R_{1}^{m}+R_{1 q}^{m} \frac{m \beta}{q-m \beta-1}\right]^{1 / \beta}
$$

The results of this section include the situations where the smoothness q of the mapping f is smaller than $s=n-m+1$. In these cases all the values of f may be critical and, respectively, all the fibers Y_{ξ} of f may not be the regular $n-m$-dimensional manifolds. Here we understand $v\left(Y_{\xi}\right)$ as the n-m-dimensional Hausdorff measure.

§5. SOME INEQUALITIES BETWEEN THE DERIVATIVES OF f

In this section we show that all the constants in the inequalities above can be expressed in terms of the only two parameters of the mapping $f: B_{r}^{n} \rightarrow R^{m}$: the remainder term $R_{q}(f)$ and the diameter $R_{0}(f)$ of the image $f\left(B_{r}^{n}\right) \subset R^{m}$.

Proposition 5.1. There are constants $N_{j}, j=1, \ldots, p$, depending only on n, m and p, such that for any $q=p+\alpha$-smooth mapping $f: B_{r}^{n} \rightarrow R^{m}$,

$$
R_{j}(f) \leqq N_{j}\left(R_{0}(f)+R_{q}(f)\right), \quad j=1, \ldots, p .
$$

Proof. For any polynomial mapping $h: B_{r}^{n} \rightarrow R^{m}$ of degree p the following Markov inequality is satisfied (see e.g. [3]):

$$
\begin{equation*}
R_{j}(h) \leqq N_{j}^{\prime} R_{0}(h), \quad j=1, \ldots, p . \tag{*}
\end{equation*}
$$

Now let h be the Taylor polynomial of f at the center of \boldsymbol{B}_{r}^{n}. The Taylor formula shows that

$$
\begin{equation*}
R_{j}(h)-N_{j}^{\prime \prime} R_{q}(f) \leqq R_{j}(f) \leqq R_{j}(h)+N_{j}^{\prime \prime} R_{q}(f), j=1, \ldots, p . \tag{**}
\end{equation*}
$$

Combining (*) and (**), we obtain the required inequalities.
Corollary 5.2. There is a constant D, depending only on n, m, p, such that for any $q=p$ $+\alpha$-smooth mapping $f: B_{r}^{n} \rightarrow R^{m}$
(a) If $R_{0}(f) \geqq R_{\mathbf{q}}(f)$, then

$$
\begin{gathered}
R_{1 q}(f) \leqq D\left[R_{0}^{m-1}(f) R_{q}(f)\right]^{1 / m}, \\
R_{12 q}(f) \leqq D\left[R_{0}^{2 m-1}(f) R_{q}(f)\right]^{1 / 2 m} .
\end{gathered}
$$

(b) If $R_{0}(f) \leqq R_{q}(f)$, then

$$
\begin{aligned}
R_{1 q}(f) & \leqq D R_{q}(f), \\
R_{12 q}(f) & \leqq D R_{q}(f) .
\end{aligned}
$$

REFERENCES

1. S. A. GILEvic: On the necessary condition of integrability of a Banach indicatrix of a differentiable mapping, Isvest. AN SSSR, Ser. Mat. 47, 5 (1983), 1114-1134.
2. L. D. Ivanov: Variazii mnozestv i funkzii, Nauka, 1975.
3. O. D. Kellogi: On bounded polynomials in several variables, Math. Zschrift, 27 (1928), 55-64.
4. E. M. LANDIS: On the length of level curves of a function of two variables, Dokl. AN SSSR, 79, 3 (1951), 393-395.
5. A. B. Merkov: On some properties of smooth mappings, Vestnik mosk. Univ. Ser. Mat. 2 (1979), 63-69.
6. J. Milnor: On the Betti numbers of real varieties, Proc. Am. Math. Soc. 15 (1964), 275-280.
7. I. G. Petrovskit: O. A. OleInik: On the topology of real algebraic surfaces, Ivest. AN SSSR, Ser. Mat. 13 (1949), 389-402.
8. R. Tном: Sur l'homologie des varietes algebriques reelles, In: Differential and Combinatorial Topology. A Symposium in honour of Marston Morse, Princeton Univ. Press, 1965, 255-265.
9. A. G. Vitushkin: Omnogomernyh variaziah, Gostehisdat, 1955.
10. H. Whitney: Elementary structure of real algebraic varieties, Ann. Math. 66 (1957), 545-556.
11. Y. Yomdin: The geometry of critical and near-critical values of differentiable mappings, Math. Ann. 264 (1983), 495-515.
12. Y. Yomdin: The set of zeros of an "almost polynomial" function, Proc. Am. Math. Soc., 90, (N4), (1984), 538-542.

Department of Mathematics,
Ben Gurion University of the Negev,
Beer-Sheva 84120,
Israel.

