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ABSTRACT
Given a smooth compact codimension one submanifold S of
R

k and a compact approximation K of S, we prove that it is
possible to reconstruct S and to approximate the medial axis
of S with topological guarantees using unions of balls cen-
tered on K. We consider two notions of noisy-approximation
that generalize sampling conditions introduced by Amenta
& al. and Dey & al. Our results are based upon critical
point theory for distance functions. For the two approxima-
tion conditions, we prove that the connected components of
the boundary of unions of balls centered on K are isotopic
to S. Our results allow to consider balls of different radii.
For the first approximation condition, we also prove that a
subset (known as the λ-medial axis) of the medial axis of
R

k \ K is homotopy equivalent to the medial axis of S. We
obtain similar results for smooth compact submanifolds S
of R

k of any codimension.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling

General Terms
Theory, Algorithms

Keywords
distance function, sampling, surface and manifold recon-
struction

1. INTRODUCTION
Motivation and previous works. Algorithms for surface
reconstruction from point samples are required in many ap-
plication areas such as reverse engineering, medical imaging
or, more generally, each time a geometric model of an object
must be built from (finite) measures. In last years, many
such algorithms have been designed that, starting from a
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set of 3D point samples, build a polyhedral approximation
of the sampled object.
In the continuation of a paper of Amenta et al [1], a family
of reconstruction algorithms that provide topological guar-
antees have been designed.The most recent of them allow
to deal with noisy samples [10, 18] or [13] extend similar
techniques to the reconsruction of manifolds of any codi-
mension embedded in R

d. Here topological guarantee means
that, under some assumptions on the sampled surface S and
the sampling, the algorithm builds a geometric model that
is homeomorphic or even isotopic to S. However, in these
works, the proofs of the topological correctness are deeply
intricated with the details of the algorithms or with some
specificities of 3D Voronoi diagrams. In particular, the poles
introduced in [1] play a central role: they allow to approxi-
mate the medial axis and the normals of the surface S from
the Voronoi diagram of the sample. The relations between
Voronoi diagrams, poles and medial axes show that captur-
ing the topology of the surface or capturing the topology
of its medial axis are strongly related problems. This sug-
gests that these topological correctness proofs could be bet-
ter understood in a more general mathematical framework.
The expected outcomes of this framework are conditions and
associated algorithms able to produce a topologically cor-
rect approximation of an object given partial and inaccurate
geometrical approximations, not necessarily by finite sam-
ple points, in any dimension and for non-smooth objects.
Based upon the critical point theory for distance functions
to compact sets, this point of view has already brought some
results on the medial axis topology and approximation [17,
5] and the computation of homotopy and homology groups
of compact sets [6]. More recently, this approach has al-
lowed to propose sampling conditions guaranteeing a topo-
logically correct reconstruction of non-smooth objects in any
dimension [4]. Beside this result for non-smooths objects,
the smooth case desserves a specific study because it allows
simpler sampling conditions with better constants.
A recent work of S. Smale et al [19] considers the question for
smooth submanifolds of any dimension in Euclidean spaces.
They introduce a uniform sampling condition related to the
reach that is the minimum distance between the manifold
and its medial axis. Based on this sampling condition, they
show that an offset of the sampling bears the homotopy type
of the sampled manifold.
Contribution. This paper presents some results obtained
as a continuation of [19] in the context of our mathemati-
cal framework. First, under similar uniform noisy sampling
conditions, we extend the result of [19] to get isotopic ap-



proximations of hypersurfaces as well as a reconstruction of
the medial axis of the manifold with the right homotopy
type. Our uniform sampling condition is merely a ratio be-
tween the reach of the sampled manifold S and the Haus-
dorff distance between the sample and S. This sampling
model allows a noise level whose amplitude is of the order of
magnitude of the sampling density and does not require any
sparsity condition. It is the same as in [19] except that it
allows approximation by any compact set rather than finite
point samples.

It requires no sparsity condition, and allows approxima-
tion by any compact sets, such as finite sets of geometric
primitives like triangles (polygon soup).
Secondly, we extend the results to non-uniform sampling
conditions. Our non-uniform sampling condition (see sec-
tion 6) is the same as the notion of noisy r-sample without
sparsity of [18] generalized to any compact sampling and
not restricted to finite set of points. Theorem 6.2 below can
be seen as an extension of the class of algorithms initiated
by [1], considering a sampling density related to the local
feature size, for any dimension of the manifold and the am-
bient space. The associated proposed algorithm is extremly
simple: it consists of taking a union of balls centered on
the sampling set. The radii of the balls may freely vary in
prescribed intervals depending upon the local feature size of
the manifold. From a more practical point of view it merely
means computing an alpha-shape [14].
However, the algorithm suggested by theorem 6.2 requires an
oracle: for each sample point we would need a lower bound
of the local feature size of the projection of the point on the
surface. In fact, usual local feature size based algorithms
implicitly assume that one is able to adapt the density and
accuracy of the sampling to the local feature size in order
to produce a good sampling. So, in practice, ensuring that
a sampling is a “good” sampling may require our oracle.
Still, if the sampling is assumed good, algorithms described
in [2, 12] does not require any oracle. For exact sampling
condition, the oracle information is contained in the poles as
they are known to approximate the medial axis. In presence
of noise, a sparsity condition (see [10]) is required in order
to still extract some information about “filtered poles”. In
order to relax the sparsity condition one needs some kind
of oracle to filter the poles. In [18] the classical notion of
r-sampling [1] is extended to noisy r-sampling without any
sparsity condition. In this context, the proposed filtering of
the poles only requires the knowledge of the reach (which
plays the role of a global oracle) but constrains the value of
r to be bounded by some constant of the order of the ratio
between the minimum and maximum of the local feature size
function over the surface (similar to the one in theorem 6.1).
In this case, the non-uniformity of the sampling can not be
fully exploited. In contrast, theorem 6.2 allows a local sam-
pling density independant on this ratio. Of course, there is
no hope to get rid of the oracle if we consider a noisy sam-
pling without any sparsity condition. For example, given
points sampled on a surface, if one replaces each point by a
dense sampling of a tiny sphere, the relevant topology de-
pends on the scale at which one observes the resulting points
cloud. Our oracle plays the role of a local scale parameter.
We believe that, for the sake of clarity, the problem of re-
construction under non-uniform, local feature size related
sampling conditions, could be split into two simpler inde-
pendant problems. First, assuming minimal noise and/or

sparsity conditions, how can one derive a lower bound on
the local feature size exploiting only the point set. Secondly,
starting from the sample point and the oracle, how can one
produce a topologically correct reconstruction. Theorem 6.2
answers the second problem in a general setting.

The paper is organized as follow. Section 2 gives some
definitions and recall results on distance functions and me-
dial axis. In section 3 one defines uniform noisy sampling
and studies distance function to such sampling. Section 4
presents topology guaranteeing algorithms for surface recon-
struction with uniform sampling conditions. Section 5 gives
results about toplogy guarantying algorithms for Medial axis
approximation. Section 6 states result for surface recontruc-
tion with non-uniform sampling conditions.

Some technical proofs are not detailled here. They can
be found in the longer research report version of this paper
(see [7]).

2. PRELIMINARIES AND DISTANCE
FUNCTIONS

Throughout the paper, we use the following notations.
For any set X ⊂ R

k, X , Xc and ∂X denote respectively
the closure, the complement and the boundary of X. For
any x ∈ R

k and any r > 0, B(x, r) is the open ball of cen-
ter x and radius r. Given two spaces X and Y , two maps
f : X → Y and g : X → Y are said homotopic if there
is a continuous map H , H : [0, 1] × X → Y , such that
∀x ∈ X, H(0, x) = f(x) and H(1, x) = g(x). X and Y
are said homotopy equivalent if there are continuous maps
f : X → Y and g : Y → X such that g ◦ f is homotopic
to the identity map of X and f ◦ g is homotopic to the
identity map of Y . Homotopy equivalence between topo-
logical sets enforces a one-to-one correspondance between
topological features of the two sets (connected components,
cycles, holes,...) as well as the way these features are related.
More precisely, if X and Y have same homotopy type, then
their homotopy and homology groups are isomorphic. When
Y ⊂ X, one says that Y is a deformation retract of X if one
can continuously deform X onto Y i.e. there exists a con-
tinuous map H : [0, 1] × X → X such that for any x ∈ X,
H(0, x) = x and H(1, x) ∈ Y and for any y ∈ Y, t ∈ [0, 1],
H(t, y) = y. In this case, X and Y are homotopy equivalent.
Two subsets X and Y of R

k are isotopic if there is a con-
tinuous map F : X × [0, 1] → R

k such that F (., 0) is the
identity of X, F (X, 1) = Y , and for each t ∈ [0, 1], F (., t) is
a homeomorphism onto its image. Notice that isotopy is a
stronger condition than homeomorphy.

Let O be an open subset of R
k with compact boundary

K = O ∩ Oc and let R be the function defined on O by
R(x) = d(x,K) for all x ∈ O. For any point x ∈ O, we
denotes by Γ(x) the set of closest boundary points:

Γ(x) = {y ∈ K : d(x, y) = d(x,K)}.
The medial axis M of O is the set of points x ∈ O that have
at least two closest boundary points:

M = {x ∈ O :| Γ(x) |≥ 2}.
For a compact subset K of R

k, the medial axis M(K) of K
is the medial axis of its complement R

k \K. The function R
is differentiable on O\M (see [15]). Intuitively one can con-
sider that a point x is regular for R if one can find a direction
issued from x such that R is locally increasing linearly along



this direction. Otherwise, x is said to be critical. Such an
intuition coincides with the notion of critical point classi-
caly used in non-smooth analysis ([9]) and in Riemannian
geometry ([8]):

Definition 2.1. A point x ∈ O is critical for R if and
only if it is contained in the convex hull of Γ(x).

Some of the properties of the distance function to a compact
set are quite similar to the smooth functions ones. In partic-
ular, they satisfy an Isotopy Lemma [16] that we reproduce
below. For any ρ ∈ R+ one denotes by Oρ the open offset
Oρ = {x ∈ O : R(x) > ρ}.

Proposition 2.2. If 0 < ρ1 < ρ2 are such that (Oρ1
\

Oρ2
) does not contain any critical point of R, then all the

levels R−1(ρ), ρ ∈ [ρ1, ρ2], are homeomorphic topological
manifolds and

Oρ1
\ Oρ2

= {x ∈ O : ρ1 ≤ R(x) ≤ ρ2}
is homeomorphic to R−1(ρ1) × [ρ1, ρ2]. As a consequence,
Oρ1 and Oρ2 are homeomorphic.

In the following, we also consider some subset of the me-
dial axis known as λ-medial axis [5]. For any point x ∈ O
one denotes by F(x) the radius of the smallest ball contain-
ing Γ(x). We thus define a function F : O → R+ which is
upper semi-continuous (see [5]) and satisfies F(x) 6= 0 if and
only if x ∈ M. Given a positive real λ > 0 one defines the
λ-medial axis of O as the closed subset Mλ of M:

Mλ = {x ∈ O : F(x) ≥ λ}
Topological properties of the medial axis and its subsets
have been studied in [17, 5] for bounded open sets. In the
following we consider unbounded open sets that are the com-
plements of compact subsets of R

k. To avoid problems with
non-bounded open sets, we consider the complement of these
compact restricted to a sufficiently big ball.

Definition 2.3. Let K ⊂ R
k be a compact subset of R

k

and let D > 0 be the distance between the origin O of R
k

and the farthest point of K from O. The bounded medial axis
of K (resp. the bounded λ-medial axis), is the medial axis
(resp. λ-medial axis) of the complement of K intersected
with the open ball B(O, 10D) of center O and radius 10D:

BM(K) = M(B(0, 10D) \ K)

BMλ(K) = Mλ(B(0, 10D) \ K)

Such a definition should be considered as a technical trick
to avoid unboundness problems. Remark that B(0, 10D)\K
and R

k \ K are homeomorphic and thus homotopy equiva-
lent. BM(K) and B(0, 10D) \ K are homotopy equivalent
[17] and if λ < reach(K) (see next section for a definition of
reach), then BMλ and B(0, 10D) \K are homotopy equiva-
lent [5].

3. UNIFORM NOISY APPROXIMATION
In this section we study the location of the critical points

of the distance function to a compact that approximate uni-
formly a given smooth manifold. The results restate and
extend some results of [19]. Our approach allow to derive

in a simple way results on reconstruction and medial axis
approximation.

Let S ⊂ R
k be a compact smooth manifold of any codi-

mension and let M be its medial axis. The local feature size
of S is the function lfs : S → R+ defined by

lfs(x) = d(x,M) = inf{d(x, y) : y ∈ M}.
Notice that since lfs is a distance function, it is 1-Lipschitz.
The infimum of lfs is known as the reach of S ([15]) and
is denoted reach(S). The distance of a point x ∈ R

k to S
is denoted by R(x) = inf{d(x, y) : y ∈ S}. For any point
x ∈ R

k \ M, the projection Π(x) of x on S is the unique
point on S such that d(x,Π(x)) = R(x).

x

x′f(x) f(x′) = ∞

Π(x)

M(S)

S

Figure 1: Definition of function f

We also denote by f : R
k \ (S ∪ M) → R+ ∪ {+∞} the

function defined by f(x) is the distance between Π(x) and
the first intersection point of the half-line [Π(x), x) (which
is normal to S) with the closure M of M (see figure 1).
Remark that lfs and f are related by

reach(S) ≤ lfs(Π(x)) ≤ f(x) for x /∈ (S ∪M). (1)

Definition 3.1. A compact set K ⊂ R
k is a uniform

noisy ε-approximation of S if dH(K, S) < εreach(S).

Notice that we do not make any assumption neither on
the finiteness nor on the geometric structure of K. The case
when K is a finite set of points is of particular interest for
applications, but as mentionned in the introduction, consid-
ering some other sets may be relevant from a practical point
of view.

In the following K ⊂ R
k denotes a uniform noisy

ε-approximation of S. Let R̃ be the distance function to the
compact set K. The functions R and R̃ are related by the
following inequality

| R(x) − R̃(x) |< ετ for any x ∈ R
k. (2)

Next lemma is an extension of proposition 7.1 in [19]. A
result of the same kind is also obtained in [11] under more
restrictive hypothesis (only finite sets of point sampled ex-
actely on a surface S ⊂ R

3 are considered).

Proposition 3.2. Let ε < 1/6 ' 0.1667, let K be a uni-
form noisy ε-approximation of S and let τ = reach(S). Let
x ∈ R

n \ S satisfaying one of the two following conditions:

condition 1: f(x) is finite and

5

2
ετ < R(x) < (1 − 7

2
ε)f(x).

condition 2: f(x) = +∞ and R(x) > ετ .

Then x is not a critical point of R̃.
Moreover, if one denotes by NΠ(x) the half-line passing
throught x and normal to S at Π(x), then, in case 1, the



function R̃ is strictly increasing along the connected com-
ponent of NΠ(x) ∩ R−1

�
[ 5
2
ετ, (1 − 7

2
ε)f(x)]

�
that contains

Π(x).

In case 2, R̃ is strictly increasing along the half-line NΠ(x)∩
R−1 (]ετ, +∞[).

Proof. To simplify notations, one introduces E = ετ .
Let SE be the offset manifold SE = {x ∈ Rk : d(x,S) = E}.
K is contained in the tubular neighborhood TubE(S) = {x ∈
R

k : d(x, S) < E}.
First, suppose that x satisfies condition 1. Let c ∈ M be
such that d(c, Π(x)) = f(x), x is contained in the segment
[c, Π(x)] and the ball B(c, f(x)) of center c and radius f(x)
is tangent to S at Π(x) (see figure 2). Notice that, since the
open ball B(c, f(x)) is contained in R

k\S, the ball B(c, f(x)−
E) is contained in the complement of TubE(S).

x

c

t
E

t + E

f(x) − E

Π(x)

α

S

Figure 2:

Denoting by t = d(x, Π(x)) = R(x), it follows from hypoth-
esis that the ball B(x, t−E) does not contain any point of K.
Since B(Π(x),E) intersects K and is contained in B(x, t+E),
the ball B(x, t + E) contains at least one point of K. The
radius of the maximal ball Bmax(x) contained in R

k \K with
center x is thus contained in [t − E; t + E]. Moreover, the
points of K which are on the boundary of Bmax(x) are con-
tained in B(x, t + E) \ B(c, f(x) − E).
It follows from the definition of critical point that whenever
the part of the sphere S(x, t + E) which is not contained
in B(c, f(x) − E) is less than an hemisphere, x is a regular

point of R̃. This condition is equivalent to cos α < 0 where
α is the angle between [xc] and any segment joining x to a
point of the (k − 2)-sphere S(x, t + E) ∩ S(c, f(x) − E) (see
figure 2).
Using the relations between the lengths of the edges of a
triangle, α satisfies the following relation

(f(x)−E)2 = (f(x)−t)2+(t+E)2−2(f(x)−t)(t+E)cos α.

Since (f(x) − t)(t + E) > 0, cos α < 0 if and only if

(f(x) − t)2 + (t + E)2 − (f(x) − E)2 < 0

or:

2(t2 + t(E − f(x)) + 2f(x)E) < 0.

The discriminant of this equation is equal to E2 −6f(x)E +
f(x)2 = f(x)2((τε/f(x))2 − 6(τε/f(x)) + 1). It is positive
whenever ε < 3 − 2

√
2 ' 0.1715 because τ ≤ f(x). In this

case, the roots of equation t2 + t(E − f(x)) + 2f(x)E = 0

are given by

t± =
f(x) − E ± f(x)

p
1 − 6E/f(x) + E2/f(x)2

2

Using that
√

1 − u > 1 − u for any u ∈]0, 1] and that τ ≤
f(x), one immediately deduces that

t+ > f(x) − 7

2
E +

E2

2f(x)

= f(x)(1 − 7

2

τ

f(x)
ε +

�
τ

f(x)

�2
ε2

2
)

> (1 − 7

2
ε)f(x)

and

t− <
5

2
E − E2

2f(x)

= f(x)(
5

2

τ

f(x)
ε −

�
τ

f(x)

�2
ε2

2
)

<
5

2
ετ

The first statement of the lemma follows from that if t =
R(x) ∈]t−, t+[, then x is a regular value of R̃.

Suppose now that x satisfies condition 2. From f(x) = +∞,
one deduces that x is not contained in the convex hull of S.
Since moreover R(x) > ετ , one has that x is not contained
in the convex hull of K. From the remark following the
definition of critical point, it follows that x is not a critical
point.

To prove the second part of the lemma, we just have to
remark that, under both conditions, the angle between the
vector colinear to NΠ(x) and pointing away from S and any

segment joining x to a point of K∩S(x, R̃(x)) is greater than

π/2. K ∩ S(x, R̃(x)) being compact, the infimum of these
angles is greater than π/2. It follows from [16], lemma 1.5

that the function R̃ restricted to NΠ(x) is strictly increasing
around x.

Proposition 3.2 implies the following result that was first
proven in [19].

Corollary 3.3. ([19], prop. 7.1) Let ε < 1/8 ' 0.125
and let K be a uniform noisy ε-approximation of S. If α ∈
[ 7
2
ετ, (1− 9

2
ε)τ ], then S is a deformation retract of the union

of balls Uα =
S

e∈K
B(e, α) = R̃−1([0, α[)

Proof. See [7].

4. APPLICATIONS TO HYPERSURFACE
RECONSTRUCTION

Proposition 3.2 implies the following result for hypersur-
faces embedded in R

k.

Theorem 4.1. Let S be a smooth compact connected hy-
persurface embedded in R

k with positive reach τ > 0. Let
0 < ε < 1/10 and K be a uniform noisy ε-approximation
of S. For any value α ∈ [ 7

2
ετ, (1 − 9

2
ε)τ ] the boundary of

the union Uα of balls of radii α and centers the point of
K, Uα =

S
e∈K

B(e, α), contains two connected components,
each of one isotopic to S.



Proof. We use the second part of proposition 3.2 of pre-
vious section to prove that the restriction of Π to any con-
nected component S̃α of the boundary of Uα is an homeo-
morphism. The isotopy between S and S̃α is then realised
by “pushing” S̃α onto S along the normals of S. Since S is a
connected hypersurface, R

k \S contains two connected com-
ponents denoted by Oi and Oe. Let consider, for example,
the component S̃α of the boundary of Uα which is contained
in Oi. Since α is a regular value of R̃, S̃α is a compact C0

hypersurface in Oi (proposition 2.2).

Claim: For any p ∈ S, the half line Np issued from p,
normal to S and pointing into Oi meets S̃α in exactly one
point in R−1

�
[ 5
2
ετ, (1 − 7

2
ε)τ ]

�
.

First notice that R̃(p) < ετ < α. Since R̃ is continuous
and unbounded on Np there exists some point x ∈ Np such
that R̃(x) = lfs(p) > α and Np intersects S̃α. Now, let

y ∈ Np be such that R̃(y) = α. Inequality (2) implies
5
2
ετ < R(y) < (1 − 7

2
ε)τ . It follows from proposition 3.2

of previous section that R̃ is strictly increasing along the
segment Np∩R−1

�
[ 5
2
ετ, (1 − 7

2
ε)τ ]

�
, so y is the unique point

of Np satisfaying R̃(y) = α. This proves the claim.

The end of the proof of theorem now follows easily from
the claim: the restriction of Π to S̃α is thus a continuous
bijective map. The hypersurfaces S and S̃α being compact,
it is thus an homeomorphism.

Remark that assuming connectedness of S in previous the-
orem is not necessary. By taking care of the definition of
Sα, one can easily give a similar statement when S contains
several components. The previous proof can be adapted to
manifolds S of any codimension. One thus obtains that S̃α

is a C0 hypersurface isotopic to the boundary of the tubular
neighborhood of S of sufficiently small radius.

5. APPROXIMATION OF λ-MEDIAL AXIS
WITH TOPOLOGICAL GUARANTIES

Let S be a smooth compact submanifold of R
k of any

codimension and let BMλ be the bounded λ-medial axis
of S. Given K a uniform noisy ε-approximation of S and
λ > 0, one denotes by BMλ(K) the bounded λ-medial axis

of K and by Uλ = R̃−1([0, λ[) the union of balls of radii λ
and centers the points of K.

Lemma 5.1. Let ε < 1/8 ' 0.125 and let K be a uniform
noisy ε-approximation of S. If λ ∈ [ 7

2
ετ, (1 − 9

2
ε)τ ], then

R
k \ Uλ is a deformation retract of R

k \ S.

Proof. See [7]

It follows from previous lemma that R
k\S and R

k\Uλ are
homotopy equivalent. Using results from [6], we can relate
the homotopy type of R

k \ Uλ to the one of BMλ(K).

Theorem 5.2. Let S be a smooth compact submanifold of
R

k. Let ε < 1/8 and let K be a uniform noisy ε-approximation
of S. For any value λ ∈ [ 7

2
ετ, (1− 9

2
ε)τ ], BMλ(K) and R

k\S
are homotopy equivalent.

Proof. It is proven in [5], theorem 2, that if λ is not

a critical value of R̃, then the open set R
k \ Uλ and the

bounded λ-medial axis BMλ(K) are homotopy equivalent.

Since, in our case, λ ∈ [ 7
2
ετ, (1− 9

2
ε)τ ], it follows from propo-

sition 3.2 that λ is a regular value of R̃. The theorem is thus
an immediate consequence of lemma 5.1.

An important particular case is when K is a finite sample
of points and S is the boundary of a bounded open set O .
In this case, the bounded λ-medial axis of K is a subcomplex
V orλ(K) of the Voronöı diagram V or(K) of K (see [5]).

Corollary 5.3. Let S be a smooth compact hypersurface
of R

k that is the boundary of a bounded open set O. Let
ε < 1/8 and let K be a finite set of points which is a uniform
noisy ε-approximation of S. For any value λ ∈ [ 7

2
ετ, (1 −

9
2
ε)τ ], V orλ(K) and O are homotopy equivalent.

In [5] we proved that, under hypothesis of previous lemma,
V orλ(K) is an approximation of Mλ(O) for Hausdorff dis-
tance that may be easily computed from the Voronöı dia-
gram of K. So, previous lemma insures that the algorithm
given in [5] to approximate the λ-medial axis of O provides
an output which has the homotopy type of R

k\S. The para-
meter λ being choosen smaller than τ , it follows that O has
the homotopy type of M(O) that has itself the homotopy
type of Mλ(O) ([5], theorem 2).

6. NON-UNIFORM APPROXIMATIONS
In practical applications it may be useful to use non-

uniform approximations. For example, one may want to
have more precise approximation in the areas where the
manifold has a small lfs and less precise approximation in
the areas where the manifold has big lfs. We thus now con-
sider the following notion of approximation.

Definition 6.1. Let S ⊂ R
k be a compact manifold with

positive reach and let ε > 0. A compact set K ⊂ R
k is a

(non-uniform) noisy ε-approximation of S if it satisfies the
following conditions:

• for any e ∈ K, d(e, Π(e)) < εlfs(Π(e)),

• for any p ∈ S, there exists a point e ∈ K such that
d(p,Π(e)) < εlfs(p).

Remark that in the case where K is a finite sample of points,
the second condition is equivalent to Π(K) is an ε-sample of
S as defined in [1] and our sampling condition is almost the
same as the one introduced in [10] and [18]. Using that lfs is
1-Lipschitz, the proof of proposition 3.2 adapts quite easily
to give a result on the location of the critical points of the
distance function to K (see [7] lemma 6.2). This leads to the
following result on hypersurface reconstruction.

Theorem 6.1. Let S be a smooth compact connected hy-
persurface embedded in R

k with positive reach τ > 0 and
let M = supX∈S lfs(X). Let 0 < ε < 1/32 be such that
(27M + 37τ )ε < 2τ and let K be a noisy ε-approximation
of S. For any value α ∈ [ 27

2
εM, (1 − 37

2
ε)τ ] the boundary

of the union of balls Uα =
S

e∈K
B(e, α), contains two con-

nected components, each of one isotopic to S.

Proof. See [7]

The main drawback of theorem 6.1 is twofold. First, it
imposes to consider balls of constant radius. Second, the
condition on ε involves the ratio between the minimum and



the maximum of the the lfs function. It thus follows that if
ε fullfills condition of previous theorem, then the compact K
is in fact a uniform noisy approximation of S. The following
theorem improves theorem 6.1.

Let S be a smooth compact submanifold of R
k. Let ε > 0

and K be a noisy ε-approximation of S. For any family r =
(re)e∈K of positive real numbers such that re = αelfs(Π(e)),
0 < αe < 1, one denotes by K(r) the union of balls

K(r) =
[
e∈K

B(e, re).

Theorem 6.2. Let ε < 1/160, a = 1/20, b = 1/10 and
let K be a noisy ε-approximation of S. If r = (re)e∈K is
such that a ≤ αe ≤ b then

• S is a deformation retract of K(r),

• K(r) is homeomorphic to any tubular neighborhood
R−1([0, d)) of S, d < reach(S),

• the boundary ∂K(r) of K(r) is an hypersurface isotopic
to R−1(d).

Notice that when S is a codimension one submanifold, ∂K(r)
is isotopic to two copies of S. Values given here for a, b and
ε have been choosen arbitrarily. We show in the proof of
theorem that conclusion still holds for any triplet (a, b, ε) of
values that verify an explicit but technical inequality.
Notice that the theorem is still valid if lfs(π(x)) is replaced
by a 1-Lipschitz lower bound of it. Note also that given a
lower bound of lfs(π(x)) for each point, it is not diffcult to
propagate a 1-Lipschitz one.

Proof. The proof follows from a sequence of lemmas.

Let g : R
k \M(S) → R+ defined by g(x) = R(x)/lfs(Π(x)).

Since R, lfs and Π are continuous functions, g = R/(lfs ◦Π)
is a continuous fonction.

Lemma 6.2. (Isotopy lemma) Let a, b ∈]0, 1[ be such that
a < b. The level set g−1(a) is an hypersurface isotopic to
R−1(d) for any 0 < d < reach(S) and g−1([a, b]) is homeo-
morphic to g−1(a)× [a, b]. Moreover for any x ∈ S and any
normal half-line Nx issued from x, g is strictly increasing
along g−1([a, b]) ∩ Nx.

Proof. See [7].

Next lemma shows that the boundary of K(r) is enclosed
between two sublevel sets of g.

Lemma 6.3. Let a′ = (a−ε)(1−ε)−ε and b′ = b+ε
1−2(b+ε)

.

One has

g−1([0, a′]) ⊂ K(r) ⊂ g−1([0, b′[).

Proof. It is based upon the fact that lfs is a 1-Lipschitz
function. See [7].

The next lemma (and its corollary) is the key argument
for the proof of theorem 6.2. It shows that distance function
to K(r) restricted to the normals of S is strictly increasing
between K(r) and g−1(b′).

Lemma 6.4. Let x ∈ g−1([a′, b′]) \ K(r), let X = Π(x)
and let lX = [X, x) be the half-line normal to S and issued
from X passing through x. For any e ∈ K such that the
ball of maximal radius centered on x and contained in K(r)c

meets B(e, re), the distance to e restricted to lX is strictly
increasing in a neighborhood of x.

Proof. To prove the lemma, one introduces a few nota-
tions. Let E = Π(e), d = d(x, B(e, re)) ≥ 0, t = d(x,X) and
let c ∈ lX be the center of the ball of radius lfs(X) tangent
to S at X (see figure 3). Notice that B(c, lfs(X)) ∩ S = ∅
and that a′lfs(X) ≤ t < b′lfs(X).

t

x

X = Π(x)

c

S
e

E = Π(e)

re

d

Figure 3:

To prove that the distance to e restricted to lX is strictly
increasing in a neighborhood of x, it sufficies to show that
the angle between the vectors −→xc and −→xe is greater than π/2.
Such a condition is satisfied as soon as

d(x, e)2 + d(c, x)2 < d(c, e)2. (3)

Since B(c, lfs(X)) ∩ S = ∅, d(c, E) > lfs(X). Using triangu-
lar inequality it follows that d(c, e) > lfs(X) − εlfs(E). So
inequality (3) is satisfied as soon as

d(x, e)2 + d(c, x)2 < (lfs(X) − εlfs(E))2. (4)

Now, using that d(c, x) = lfs(X) − t < (1 − a′)lfs(X), one
obtains that inequality (4) is satisfied as soon as

d(x, e)2 + (1 − a′)2lfs(X)2 < (lfs(X) − εlfs(E))2. (5)

It now remains to bound d(x, e) and lfs(E).
One has d(x, e) = d+re < d+blfs(E). Using lemma 6.3, one
deduces that d < t − a′lfs(X) < (b′ − a′)lfs(X). It follows
that

d(x, e) < (b′ − a′)lfs(X) + blfs(E). (6)

Recall that lfs is 1-Lipschitz so | lfs(X)−lfs(E) |≤ d(X, E) <
t + d + re + εlfs(E). It follows that

| lfs(X) − lfs(E) |< (2b′ − a′)lfs(X) + (b + ε)lfs(E)

which implies

lfs(E) <
1 + 2b′ − a′

1 − (b + ε)
lfs(X) (7)

Combining this last inequality with (6), one obtains

d(x, e) <

�
(b′ − a′) +

b(1 + 2b′ − a′)

1 − (b + ε)

�
lfs(X) (8)

One also deduces from (7) that

lfs(X) − εlfs(E) >

�
1 − ε(1 + 2b′ − a′)

1 − (b + ε)

�
lfs(X) (9)

From (8) and (9) and dividing by lfs(X)2 one finally obtains
the following inequality.



Proposition 6.5. Inequality (5) is satisfied as soon as

(1 − a′)2 +

�
(b′ − a′) +

b(1 + 2b′ − a′)

1 − (b + ε)

�2

<

�
1 − ε(1 + 2b′ − a′)

1 − (b + ε)

�2

An easy numerical computation shows that this last condi-
tion is satisfied for ε = 1/160, a = 1/20 and b = 1/10. This
concludes the proof of lemma 6.4.

From lemma 6.4 one deduces the following corollary.

Corollary 6.6. Let x be as in lemma 6.4. Then the dis-
tance function to K(r) restricted to lX is strictly increasing
in a neighborhood of x.

Proof. It is based upon a compactness argument and is
detailed in [7].

Lemma 6.7. Restricted to g−1([0, b′]), any half-line lX nor-
mal to S and issued from a point X ∈ S intersects ∂K(r) in
a unique point.

Proof. Denote by NX the connected component of lX ∩
g−1([0, b′]) that contains X and denote by t → x(t) =
X + tb′lfs(X) ~nX a parametrization of NX where nX is the
unitary vector normal to S at X which spans lX . It follows
from lemma 6.3 that x(0) ∈ K(r) and x(1) ∈ K(r)c. So
NX intersects ∂K(r). It follows from corollary 6.6 that once
x(t) ∈ K(r)c distance function to K(r) restricted to NX is
strictly increasing in a neighborhood of x. So x(t) cannot
re-enter into K(r). This proves the lemma.

We are now able to prove theorem 6.2. This is done by
“pushing” ∂K(r) onto g−1(a′) along the normals to S. For
any x ∈ g−1(a′) denote by X = Π(x) and by ϕ(x) the first
intersection point of the half-line lX = [X, x) with ∂K(r).
One thus defines a map ϕ : g−1(a′) → ∂K(r). Using con-
tinuity of Π and of the field of half-lines normal to S, one
easily check that ϕ is continuous. Remark that restricted
to g−1([0, b′]), lX intersects g−1(a′) in a unique point. It
follows that ϕ is a bijection. The subsets g−1(a′) and ∂K(r)
being compact, ϕ is thus an homeomorphism. The map

Φ : ∂K(r) × [0, 1] → R
k defined by Φ(x, t) = ϕ(x) − t

−−−→
xϕ(x)

is an isotopy between ∂K(r) and g−1(a′). The same map
can be easily extended and used to define a deformation re-
traction of K(r) onto g−1([0, a′]) Proof of theorem 6.2 now
follows from lemma 6.2.

It is important to remark that the proof of theorem 6.2
does not restrict to the numerical values of a, b and ε given
in its statement. For example, it also works with a = 0.09,
b = 0.1 and ε = 1/60 ' 0.0167 or a = b = 0.11 and ε =
1/50 ' 0.02.

Theorem 6.8. For any values ε, a and b that satisfies
the inequality in proposition 6.5 with a′ = (a− ε)(1− ε)− ε
and b′ = b+ε

1−2(b+ε)
, conclusion of theorem 6.2 still holds.
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