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Abstract

Let Mn be a closed Riemannian manifold of diameter d. Our first
main result is that for every two (not necessarily distinct) points p, q ∈
Mn and every positive integer k there are at least k distinct geodesics
connecting p and q of length ≤ 4nk2d.

We demonstrate that all homotopy classes of Mn can be represented
by spheres swept-out by “short” loops unless the length functional
has “many” “deep” local minima of a “small” length on the space
ΩpqM

n of paths connecting p and q. For example, one of our results
asserts that for every positive integer k there are two possibilities:
Either the length functional on ΩpqM

n has k distinct non-trivial local
minima with length ≤ 2kd and “depth” ≥ 2d; or for every m every
map of Sm into ΩpqM

n is homotopic to a map of Sm into the subspace

Ω
4(k+1)(m+1)d
pq Mn of ΩpqM

n that consists of all paths of length ≤ 4(k+
1)(m + 1)d.

1 Main results.

One of the goals of this paper is to prove an effective version of a famous the-
orem published by J.P. Serre in 1951 ([Se]) that asserts that for every pair of
points on a closed Riemannian manifold there exist infinitely many distinct
geodesics connecting these points. Here and below two geodesics or geodesic
loops are regarded as distinct if they do not differ by a reparametrization.

In our paper [NR0] we have conjectured that there exists a function
f(k, n) such that for every positive integer k and every pair of points p, q
on a closed n-dimensional Riemannian manifold of diameter d there exist at
least k distinct geodesics connecting p and q of length ≤ f(k, n)d.
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In the present paper we prove this conjecture for f(k, n) = 4k2n. We
first prove it in the case of simply connected manifolds. The general case
will then easily follow.

The starting point will be a proof of Serre’s theorem by Albert Schwarz
([Sc]). In this paper Schwarz also demonstrates that the length of kth geo-
desic can be bounded above by C(Mn)k, where C(Mn) does not depend
on k but only on the Riemannian manifold Mn. (This estimate was later
improved by M. Gromov in section 1.4 of [Gr0] in the situation, when p
and q are not conjugate allong any geodesic. Gromov proved that in this
case the number of geodesics of length ≤ x connecting p and q is at least
the sum of Betti numbers bi(ΩpM

n) over i ranging from 1 to [c(Mn)x] for
an appropriate constant c(Mn). Whenever for some manifolds (e.g. Sn)
this still provides only a linear upper bound in k for the length of a kth
shortest geodesic between p and q, for “many” manifolds the sum of the
Betti numbers of the loop space grows exponentially in x, and one obtains
a logarithmic upper bound in k for the length of a k shortest geodesic.)

The proof of Serre’s theorem given by Albert Schwarz, roughly, goes as
follows:

Let us consider the space ΩpM
n of loops based at p on a closed simply-

connected Riemannian manifold Mn. One would like to show that the sum of
its Betti numbers is infinite. Then the existence of infinitely many geodesic
loops based at p would follow from a standard Morse-theoretic argument.

In fact, Schwarz notes that the Cartan-Serre theorem (cf. [FHT], The-
orem 16.10) implies that there exists an even-dimensional real cohomology
class u of the loop space ΩpM

n such that all of its cup powers ui are non-
trivial, thus implying that the sum of Betti numbers of ΩpM

n is infinite.
Applying Morse theory one obtains a critical point of the length functional
corresponding to each power of u. If the critical points are not distinct,
i.e. there is a critical point corresponding to ui and uj for i 6= j, the stan-
dard Lyusternik-Schnirelman argument, (see [Kl]), implies that the critical
level that corresponds to ui contains a set of critical points of dimension
≥ dim u > 0, implying the existence of infinitely many geodesic loops based
at p. (Schwarz also noticed that such a degenerate situation cannot occur
at all, if dim u ≥ n, as the dimension of the set of all geodesics between p
and q cannot exceed n − 1.)

Thus, it is enough to consider the situation when the critical points are
distinct. Note also, that an easy argument involving the basics of rational
homotopy theory implies that this cohomology class u exists in a dimension
≤ 2n − 2.
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Now recall that the Pontryagin product in the rational homology group
of the loop space is the product induced by the geometric product ΩpM

n ×
ΩpM

n −→ ΩpM
n. (By the geometric product of two loops α and β we just

mean their join α∗β.) To estimate the length of the geodesics corresponding
to ui Schwarz defines a “dual”, (meaning < u, c >= 1), homology class c of
u of the same dimension. Then he proves that for every positive i the ith
Pontryagin power of c and a rational multiple of ui are dual. So, the critical
point corresponding to ui also corresponds to ci.

One can now see that in order to estimate lengths of geodesic loops based
at p it is enough to find a representative of c that is is contained in the set
of loops based at p of length ≤ L for some L. Then ci can be represented
by a chain contained in the set of loops of length ≤ iL.

To obtain an upper bound for geodesics connecting distinct points p, q ∈
Mn, one considers an explicit homotopy equivalence h : ΩpM

n −→ Ωp,qM
n

that is constructed by fixing a minimizing geodesic between p and q and
attaching it at the end of each loop based at p. Then h∗(u

i) can be repre-
sented by a chain contained in the set of paths of length ≤ iL+ d between p
and q, whence the length of the ith shortest geodesic between p and q does
not exceed iL + d.

It is natural to make a conjecture that the length of a “kth-shortest”
geodesic between two arbitrary points p, q on an arbitrary closed Rieman-
nian manifold Mn should not exceed kd, where d is the diameter of Mn.
Indeed, this conjecture is obviously true for round spheres. On the other end
of the spectrum the conjecture is true for closed Riemannian manifolds with
torsion-free fundamental groups (Proposition 2 in [NR0]). Yet this conjec-
ture was disproved by a recent example of F. Balacheff, C. Croke, M. Katz
([BCK]). They have proved the existence of Zoll metrics on the 2-sphere
that are arbitrarily close to the round metric and for which the length of a
shortest periodic geodesic, (and thus, trivially, a shortest non-trivial geode-
sic loop based at any point) is greater than twice the diameter of the Zoll
sphere. As a shortest non-trivial geodesic loop is a second shortest geodesic
from its base point to itself, this example shows that the conjecture is false
even if n = k = 2, the Riemannian manifold is convex and arbitrarily close
to a round 2-sphere, and p = q is an arbitrary point of the manifold.

Our proof of the upper bound that is quadratic in k works as follows.
We demonstrate that for every l there are two classes of Riemannian met-
rics on each closed manifolds: “nice” metrics, where for every m every m-
dimensional homotopy class of the manifold can be “swept-out” by “short”
loops (of length ∼ lmd), and “bumpy” metrics, where the length functional
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on every space of all paths connecting a pair of points has l (“deep”) local
minima of a controlled length. If a Riemannian metric is very “nice”, then
one immediately obtains an upper bound for the lengths of N distinct geo-
desic loops linear in lmdN from the proof of Serre’s theorem by Schwarz.
If the metric is very “bumpy”, then one immediately obtains many short
geodesic loops from the definition of “bumpiness”.

The case, when our estimate becomes quadratic in k, is the case of
Riemannian metrics that are neither “bumpy” enough, nor “nice” enough,
so that there are approximately l = k

2 “deep” local minima of the length

functional on ΩpM
n with lengths ≤ 2ld. These k

2 local minima could prevent
us from sweeping-out the cycle of interest by loops of length smaller than
c(n)kd (for an appropriate c(n)). As the result the bound for the length
of the longest of remaining k

2 geodesic loops that follows from the proof of
J.-P. Serre’s becomes quadratic in k.

Whenever we do not have any actual examples of families of Riemannian
metrics demonstrating that the quadratic dependence of our estimate on k is
optimal, we believe that they exist - at least in dimensions > 3. So, we think
that, in general, there is no upper bound for the length of the k shortest
geodesic loops based at a prescribed point of the form f(k, n)d, where f
grows slower than a quadratic function of k.

Note also that even in the case of a 2-sphere one cannot hope to find a
sweep-out of the cycle c from Schwarz’s proof of Serre’s theorem by “short”
loops due to a counterexample of S. Frankel and M. Katz ([FK]), who found a
family of Riemannian metrics on the 2-disc with uniformly bounded diameter
and the length of the boundary but such that for every fixed value of τ it is
impossible to contract boundaries of each of these 2-discs via closed curves
of length ≤ τ . Taking the doubles of these 2-discs one obtains a family of
Riemannian metrics on S2 with uniformly bounded diameter that do not
admit sweep-outs into loops with uniformly bounded lengths.

We will, however, demonstrate that sweep-outs by short loops can only
be obstructed by the existence of many short geodesic loops at each point
of a manifold.

To state the first of our main results denote the space of loops of length
≤ L based at p on Mn by ΩL

p Mn.

Theorem 1.1 Let Mn be a closed Riemannian manifold of dimension n
and diameter d, p a point of Mn, k a positive integer number. Then either:
1) There exist non-trivial geodesic loops based at p with lengths in every
interval (2(i − 1)d, 2id] for i ∈ {1, 2, ..., k}. Moreover these geodesic loops
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are local minima of the length functional on ΩpM
n;

or

2) For every positive integer m every map f : Sm −→ ΩpM
n is homotopic

to a map g : Sm −→ Ω
((4k+2)m+(2k−3))d
p Mn. Furthermore, every map f :

(Dm, ∂Dm) −→ (ΩpM
n,Ω

((4k+2)m+(2k−3))d
p Mn) is homotopic to a map g :

(Dm, ∂Dm) −→ Ω
((4k+2)m+(2k−3))d
p Mn relative to ∂Dm. In addition, if for

some L the image of f is contained in ΩL
p Mn, then the homotopy between

f and g can be chosen so that its image is contained in ΩL+2d
p Mn. Also, in

this case for every L every map f from S0 to ΩL
p Mn is homotopic to a map

g from S0 to Ω
(2k−1)d
p Mn by a homotopy such that its image is contained in

ΩL+2d
p Mn.

This theorem immediately leads to a quadratic bound for the lengths
of geodesic loops based at p. Indeed, suppose that for some s < k there
are s − 1 non-trivial geodesic loops based at p with lengths in the intervals
(0, 2d], (2d, 4d], ..., (2(s − 2)d, 2(s − 1)d], but no geodesic loops based at p of
length in the interval (2(s − 1)d, 2sd]. Then there exists a representation
of an even-dimensional cycle c in the loop space that appears in the proof
of Serre’s theorem given by A. Schwarz by a spherical cycle that can be
formed only by loops of length at most ((8n − 6)s + (4n − 7))d based at p.
Thus, we obtain at least s geodesic loops based at p of length ≤ 2(s − 1)d
(including the trivial loop), s + 1 loops of length ≤ ((8n − 6)s + (4n − 7))d,
s + 2 loops of length ≤ 2((8n − 6)s + (4n − 7))d,..., s + i loops of length
≤ i((8n−6)s+(4n−7))d,..., k loops of length ≤ (k−s)((8n−6)s+(4n−7))d.
This expression attains its maximum at s = ⌊k

2⌋. The maximal value is
((2n− 3

2 )k2 +(2n− 7
2)k− (1+(−1)k))d. Note that none of the cycles ci from

the prooof of Serre’s theorem by A. Schwarz can “hang” at a local minimum
of the length functional on ΩpM

n (at least, unless there is a critical level of
a dimension ≥ dim c but ≤ n − 1 at this local minimum. In such a case
one of the local minima will be “lost” due to the coincidence, but we will
immediately get infinitely many distict geodesics of the same length, which
results in a much better upper bound for the length.) Therefore wilthout
any loss of generality we can assume that these geodesic loops are distinct.
Thus, we are guaranteed to have at least k distinct geodesic loops based at a
point p of length (2n− 3

2)k2 +(2n− 7
2)k−(1+(−1)k))d (including the trivial

loop). (The new geodesic loops are distinct from each other and from the
local minima because they have distinct positive indices, when regarded as
the critical points of the length functional.) Thus, one obtains the following
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theorem in the case when Mn is simply-connected, and p = q:

Theorem 1.2 Let Mn be a closed Riemannian n-dimensional manifold with
diameter d. Then for every point p ∈ Mn there exist at least k distinct
geodesic loops of length at most ((2n−1.5)k2 +(2n−3.5)k− (1+(−1)k))d <
2n(k2 + k)d. More generally, for each pair of points p, q ∈ Mn there exist at
least k geodesics starting at p and ending at q of length ≤ ((2n − 1.5)k2 +
(2n− 3.5)k)d + (2n− 1.5)kd(p, q), if k is even, and ≤ ((2n− 1.5)k2 + (2n−
3.5)k − 2)d + (2n − 1.5)(k + 1)d(p, q), if k is odd. (Here d(p, q) denotes the
distance between p and q in Mn.) In both cases this upper bound does not
exceed ((2n − 1.5)k2 + (4n − 5)k + (2n − 3.5))d < 2n(k + 1)2d.

Remark. Denote the smallest odd number l such that there exists a non-
trivial rational homotopy class of Mn by l. An elementary rational homotopy
theory (cf. [FHT]) implies that l ≤ 2n−1. Our proof of Theorem 1.2 implies
upper bounds ((l − 0.5)k2 + (l − 2.5)k − (1 − (−1)k))d for the lengths of k
distinct geodesic loops based at an arbitrary point p of Mn. Similarly for
arbitrary p, q ∈ Mn and arbitrary k there exist at least k distinct geodesics
of length not exceeding ((l − 0.5)k2 + (l − 2.5)k)d + (l − 0.5)kd(p, q), if k is
even, and ((l−0.5)k2 +(l−2.5)k−2)d+(l−0.5)(k+1)dist(p, q), if k is odd.
These estimates do not exceed ((l−0.5)k2+(2l−3)k+(l−2.5))d < l(k+1)2d.
Also note, that in [NR3] we proved a version of Theorem 1.2 in the case
l = 3, but with a worse upper bound that depended factorially on k.

Also, note that 2n(k + 1)2d < 4nk2d for all k ≥ 3, and that we have
a better bound 2nd(< 4nk2), when k = 2, proven in [NR1], Therefore,
if desired, one can replace the upper bounds for the lengths of k shortest
geodesics between p and q in Mn provided by Theorem 1.2 by a simpler
looking expression 4nk2d.

To prove Theorem 1.2 in the case when Mn is simply-connected, but
p 6= q, we prove a generalization of Theorem 1.1, where ΩpM

n is replaced
by the space Ωp,qM

n (Theorem 5.3). It immediately yields Theorem 1.2
in the case, when p 6= q, exactly as Theorem 1.1 implied the case p = q.

To obtain Theorem 1.2 in the nonsimply-connected case we will con-
sider the universal covering of Mn constructed from the space of all paths
starting at p via the standard identification and endowed with the pull back
Riemannian metric. According to the standard argument that can be found
in many textbooks on Riemannian geometry one can choose the fundamen-
tal domains in the universal covering so that their interiors are all isometric
to the complement of the cut locus of the base point p, and, therefore, their
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diameter does not exceed 2d. If the cardinality of π1(M
n) is infinite or finite

but ≥ k, we will connect the base point p̃ in the universal covering M̃n

of Mn with k closest liftings of q by shortest geodesics. The projections
of these geodesics to Mn will have lengths ≤ (2k − 1)d, and the theorem
follows. If the cardinality of π1(M

n) is less than k, then we observe that
M̃n is a simply-connected manifold of diameter d̃ ≤ 2|π1(M

n)|d (as the di-
ameter of each fundamental domain does not exceed 2d). Let ks denote the
smallest integer number which is not less than k

|π1(Mn)| . We are going to
connect p̃ with each lifting of q by ks or ks − 1 distinct geodesics, so as to
obtain the required number k of distinct geodesics between p and q after
projecting down to Mn. (Obviously, if we need to connect p̃ with some
points in the lifting of q to M̃n with ks geodesics, and with some other
points in the lifting of q with ks − 1 geodesics, we choose points that we
connect with p̃ by ks geodesics to be the points that are the closest to p̃.)
If one knows how to prove Theorem 1.2 in the simply-connected case, then
one can get a slightly worse upper bound (but still with the leading term

2
|π1(Mn)|(2n − 1.5)k2d ≤ (2n − 1.5)k2d) in the nonsimply-connected case.

(Indeed, asymptotically k2 will be divided by |π1(M
n)|2 , and multiplied by

2|π1(M
n)|.) To prove a better upper bound we will need the following:

Theorem 1.3 Let M be a closed Riemannian manifold of diameter d with a
finite fundamental group of cardinality C. The the diameter of the universal
covering space M̃ of M endowed with the pull back Riemannian metric does
not exceed Cd.

It is hard to believe that Theorem 1.3 is not known, yet we were not
able to find any mention of it in the literature. Therefore we will prove it
in Section 6 of this paper. There we will also present a proof the following
generalization of Theorem 1.3:

Theorem 1.4 If the fundamental group of a closed Riemannian manifold
M of diameter d is either infinite or finite of order ≥ k, then for every pair
of points p, q ∈ M and every k there exist at least k geodesics connecting p
and q of length ≤ kd that represent different path homotopy classes.

We can combine Theorem 1.3 with the described simple procedure that
allows one to reduce Theorem 1.2 for a nonsimply-connected Mn to Theo-
rem 1.2 for its universal covering M̃n. As the result, we obtain upper bounds
for the nonsimply-connected case that are not worse than the estimates in
the simply-connected case. As it was already mentioned, the verification
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mostly involves checking of what happens for small values of k. We are
not going to present the details of the straightforward and elementary but
tedious calculations here.

The proof of Theorem 1.1 is based on a new curve shortening process.
This process will be introduced in the proof of the following theorem at
the beginning of section 3. Before stating this theorem recall that a path
homotopy between two curves β and γ is a homotopy that preserves the
end points. In other words, it is a family of curves ατ (t) that continuously
depends on τ ∈ [0, 1] such that α0 = β, α1 = γ, and such that for every
τ ∈ [0, 1] ατ (0) = α0(0) and ατ (1) = α0(1).

Theorem 1.5 Let Mn be a closed Riemannian manifold of diameter d, and
p, q be two arbitrary points of Mn. Let γ(t) be a curve of length L connecting
points p and q. Assume that there exists an interval (l, l + 2d], such that
there are no geodesic loops based at p on Mn of length in this interval that
provide a local minimum of the length functional on ΩpM

n. Then there
exists a curve γ̃(t) of length ≤ l+d connecting p and q and a path homotopy
between γ and γ̃ such that the lengths of all curves in this path homotopy do
not exceed L + 2d.

Observe that this theorem immediately implies Theorem 1.1 for m = 0.
Indeed, S0 consists of two points, so , if m = 0, then f is just a set of two
loops. In the absence of k short geodesic loops providing local minima for
the length functional each of these two loops can be shortened as in Theorem
1.5.

The statement of Theorem 1.1 can be interpreted as a parametric version
of Theorem 1.5. Yet note that the curve-shortening process that will be
used to prove Theorem 1.5 does not depend on γ continuously, and there is
no obvious way to obtain a desired parametric version. The best that one
can do is to choose a sufficiently dense finite set of loops Li in f(Sm) and
to shorten them as in Theorem 1.5. Indeed, we will do that in the course
of proving Theorem 1.1. But this will leave us with all the other loops
in between that still remain long. The further idea can be very vaguely
described as follows. In the process of shortening loops Li we will create
continuous 1-dimensional families of paths of controlled length (“rails”) that
connect p with all points on Li. The image of g(Sm) in Mn will be the union
of the image of f(Sm) in Mn and the constructed “rails”. (Recall that each
point of f(Sm) is a loop in Mn; here we are talking about the union of all
these loops.) The image of f(Sm) in Mn will be cut into very short arcs
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starting and ending on curves Li. These short arcs form an m-dimensional
family A. Each of these arcs from family A will be included into a loop from
the family g(Sm). Every loop from g(Sm) will contain only a controlled
number of arcs from A, so their total contribution to the length of the loop
is negligibly small. Besides arcs from A each loop from g(Sm) will also
contain a controlled number of “rails” and arcs of the curves Li, so that its
total length will be under control.

Now we would like to give a brief review of some existing results related
to Theorem 1.2. The first curvature-free upper bounds for the length of a
shortest non-trivial geodesic loop on a closed Riemannian manifold in terms
of either diameter or the volume of the manifold were proven by S. Sabourau
in [S]. However, Sabourau considered the situation when the minimization of
the length of the geodesic loop was performed also over all possible choices
of the base point of the loop. R. Rotman ([R]) demonstrated that for every
point p on every closed n-dimensional manifold of diameter d the length
of the shortest geodesic loop based at p does not exceed 2nd. (It is easy
to see that if the base point is prescribed, then there is no upper bound
for the length of the shortest geodesic loop in terms of the volume of the
manifold, even if the manifold is diffeomorphic to the 2-sphere.) Note also
that a shortest non-trivial geodesic loop based at p is the second shortest
geodesic starting and ending at p. In [NR1] it was proven that the same
estimate 2nd holds for the length of the second shortest geodesic between two
arbitrary points p and q of an arbitrary n-dimensional Riemannian manifold
of diameter d. This is the best known upper bound in the case, when k = 2
(for every simply-connected manifold Mn).

If n = 2, one can also produce better estimates than the estimates pro-
vided by Theorem 1.2. In [NR2] we proved that if n = 2 and Mn is
diffeomorphic to the 2-sphere , then two arbitrary points can be connected
by at least k distinct geodesics of length ≤ (4k2−2k−1)d. (In the same pa-
per we have also shown that this estimate can be improved to 4k2 − 6k + 2
if these points coincide). Making an almost obvious observation that the
cycles corresponding to powers of u from the proof of A. Schwarz do not
“hang” on local minima of the length functional and, therefore, geodesics
corresponding to cup powers of u are different from the geodesics that are
local minima of the length functional, we can immediately improve these
upper bounds for k > 2 to (k2 +3k +3)d in the case of geodesics connecting
two distinct points of M2 and (k2 + k)d in the case of geodesic loops based
at any prsecribed points of M2. (One of these (k2 + k)d geodesic loops can
be trivial.) The simple argument used above to reduce Theorem 1.2 in the
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non-simply conected case to its simply-connected version (for the univeral
covering) can be combined with these estimates for S2 to deduce the same
upper bounds (k2 + k)d for the lengths of k shortest geodesic loop based at
a prescribed point of M2 and (k2 + 3k + 3)d for the lengths of k shortest
geodesics connecting every prescribed pair of points of M2 in the case, when
M2 is diffeomorphic to RP 2. Note that Theorem 1.4 yields even better
upper bounds (namely, kd), in the case, when a closed two-dimensional Rie-
mannian manifold M2 is not diffeomorphic to S2 or RP 2. Thus, Theorem
1.2 should only be used in the case when n, k ≥ 3 (and |π1(M

n)| is finite
and “small”).

In section 7 we will discuss generalizations of Theorems 1.1, 1.5 and 5.3
that involve the notion of the depth of local minima of the length functional.
The formal definition of the depth will be given in section 7. Informally, the
depth of a non-trivial local minimum γ of the length functional on ΩpM

n

is the difference between the maximal length of a loop during an “optimal”
path homotopy contracting γ and the length of γ.

First, we observe that Theorem 1.5 remains valid if instead of assuming
that there are no local minima of the length functional with length in the
interval (l, l + 2d] we assume that there are no local minima of depth ≥ 2d
with the length in this interval. As a corollary, one can strengthen Theorem
1.1 by requiring in the first case that the geodesic loops with lengths in the
intervals (2(i − 1)d, 2id] are not only local minima of the length functional,
but local minima of depth ≥ 2d. Then we generalize this stronger version
of Theorem 1.1 (as well as of Theorem 5.3) by requiring in the first case
that the depth of these local minima is not only ≥ 2d but ≥ S for some
S ≥ 2d. The “price” is a corresponding increase of the lengths of the loops
that must appear in the second case that is proportional to S − 2d.

We finish section 7 by observing that for a specific sufficiently large value
of S the first case in Theorem 1.1 cannot occur already for k = 1, and the
generalized form of the second case holds unconditionally.

As the result, we obtain a different proof of a well-known theorem first
proven by M. Gromov (see section 1.4 in [Gr0] or ch. 7 in [Gr]) that asserts
that for every simply-connected closed Riemannian manifold Mn there exists
a constant C such that for every m the inclusion ΩCm

p Mn ⊂ ΩpM
n induces

the surjective homomorphisms of homotopy groups in all dimensions up to
m. Our proof yields a good estimate for the constant C that seems to be
better than the value that one can extract from the proof by Gromov. The
comparison between our results and the results by M. Gromov is done in
the last section of the paper.
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2 A simple lemma and its multidimensional gen-

eralization.

The proof of 1.5 uses the following known lemma. To state this lemma we
are going to introduce the following notations that we will be widely using
further below in this paper. Let τ(t) be a path in Mn. We are going to
denote the “same” path travelled in the opposite direction as τ̄ . If a is a
path from x to y, and b is a path from y to z, then we will denote by a ∗ b
the join of a and b, that is the path from x to z that first follows a from x
to y, and then b from y to z. Observe, that if e1, e2 are two paths from p to
q, then e1 ∗ ē2 is a loop based at p.

Lemma 2.1 Let e1, e2 be two paths starting at q1 and ending at q2 on a
complete Riemannian manifold Mn. Denote the length of ei, i = 1, 2, by li.

If the loop α0 = e1∗ē2 can be connected to a (possibly trivial) loop α = α1,
(see fig. 1 (a)), by a path homotopy that passes via loops ατ , τ ∈ [0, 1],
of length ≤ l1 + l2, then there is a path homotopy hτ (t), τ ∈ [0, 1], such
that h0(t) = e1(t), h1(t) = α ∗ e2(t) and the length of the paths during this
homotopy is bounded above by l1 + 2l2.

Proof. For the proof see fig. 1. Note that e1 is path homotopic to e1∗ ē2∗e2

along the curves of length ≤ l1 +2l2 , see fig. 1 (b,c). (We just insert longer
and longer segments of ē2 travelled twice in the opposite directions.) Now
observe that as e1 ∗ ē2 is path homotopic to α via the curves ατ of length
≤ l1 + l2, the path e1 ∗ ē2 ∗ e2 is path homotopic to α ∗ e2 along the curves
ατ ∗ e2 of length at most l1 + 2l2, see fig. 1 (d,e). 2

Note that the above lemma has the following higher-dimensional gen-
eralization: Let f : Sm −→ ΩL

q1,q2
Mn, i = 1, 2, m ≥ 1, be a continuous

map from the m-sphere into a space of (piecewise differentiable) paths on
a complete Riemannian manifold Mn between points q1, q2 ∈ Mn of length
at most L. Let L0 = mins∈Sm length(f(s)), and s0 ∈ Sm be such that
length(f(s0)) = L0. One can define a new map F : Sm −→ ΩL+L0

q1
Mn

by the formula F (s) = f(s) ∗ f̄(s0). Assume that there exists a homotopy
Ft : Sm −→ ΩL+L0

q1
Mn contracting F . (Here t ∈ [0, 1], F0 = F,F1 is the

constant map to the trivial loop based at q1.) Then we have the following
simple lemma:

Lemma 2.2 There exists a homotopy ft : Sm −→ ΩL+2L0

q1q2
Mn, t ∈ [0, 1],

between f = f0 and the constant map f1 of Sm identically equal to f(s0).
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α * e2

a b c d e f

Figure 1: Illustration of the proof of Lemma 2.1.

Proof. First note that the main point of the lemma is that for every t ft

takes values in the space of paths of length ≤ L+ 2L0 connecting q1 and q2.
The desired homotopy is constructed in two stages. During the first stage
we connect f with f 1

2

defined by the formula f 1

2

(s) = f(s) ∗ f̄(s0) ∗ f(s0) =

F (s) ∗ f(s0). At this stage we join f(s) with longer and longer segments of
f̄(s0) travelled twice with opposite orientations.

During the second stage we contract F using the homotopy Ft, t ∈ [0, 1]
leaving intact f(s0) at the end of each loop Ft(s) ∗ f(s0). 2

In the next section we will present a proof of Theorem 1.5.

3 Curve-shortening process in the absence of geo-

desic loops.

Proof of Theorem 1.5.

l+ d+ δ

p q

Figure 2: Curve shortening process (i).

Assume that there are no geodesic loops based at p with the length in
the interval (l, l + 2d]. Using an obvious compactness argument we observe
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that there exists a positive δ0 such that there are no geodesic loops based at
p with the length in the interval (l, l+2d+δ0]. Obviously, one can choose the
value of δ0 to be arbitrarily small, if desired. Without any loss of generality
we can assume that the length L of the curve γ : [0, L] −→ Mn parametrized
by its arclength is greater than l + d. Let δ = δ0, if L ≥ l + d + δ0, and
δ = L− l− d, if δ ∈ (l + d, l + d + δ0). Consider the segment γ|[0,l+d+δ] of γ,
which we will denote γ11(t) and the segment γ|[l+d+δ,L] denoted γ12(t) (see
fig. 2).

l+d+δ

the length of e     is at most d1

qp

Figure 3: Curve shortening process (ii).

Let us connect points p and γ(l + d + δ) by a minimal geodesic, e1 (of
length ≤ d), (see fig. 3). Then the pair of curves γ11 and e1 form a loop
γ11 ∗ ē1 of length ≤ l + 2d + δ based at p.

the length of the loop is at most l

l+d+ δ
p q

Figure 4: Curve shortening process (iii).

Consider a (possibly trivial) shortest loop α1 that can be connected with
γ11∗ē1 by a length non-increasing path homotopy. (Its existence follows from
the Ascoli-Arzela theorem.) Obviously, α1 is a geodesic loop based at p that
provides a local minimum for the length functional on ΩpM

n. Therefore our
assumptions imply that the length of α1 is at most l.

By Lemma 2.1 γ11 is path homotopic to the curve α1 ∗ e1 = γ̃11 along
the curves of length at most l + 3d + δ and, thus, the original curve γ is
homotopic to a new curve γ̃11 ∗γ12 along the curves of length at most L+2d,
(see 5).
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p q
l+d+δ

Figure 5: Curve shortening process (iv).

Note that the length L1 of this new curve γ1 = γ̃11 ∗ γ12 is at most
L − δ. Assuming that L1 is still greater than l + d, we repeat the process
again: We parametrize γ1 by its arclength. Now, let γ21 = γ1|[0,l+d+δ] and
γ22 = γ1|[l+d+δ,L1]. (Here, as before, if L1 < l + d+ δ, then we use L1 − l− d
as the new value of δ, but otherwise keep the old value of δ = δ0.)

the length of e     is at most d2

l+d+δ
qp

Figure 6: Curve shortening process (v).

Connect the points p and γ1(l + d + δ) by a minimal geodesic segment
e2, (see fig. 6). Then γ21 and e2 form a geodesic loop γ21 ∗ ē2 based at p of
length at most l + 2d + δ.

Again, we try to connect this loop with a shortest possible loop α2 by
means of a length non-increasing path homotopy. The existence of a mini-
mizer α2 follows from an easy compactness argument, and α2 is a geodesic
loop providing a local minimum of the length functional on ΩpM

n, (see fig.
7). Therefore, the length of α2 is at most l.

Thus, γ21 is path-homotopic to γ̃21 = α2 ∗ σ2 along the curves of length
at most l + 3d + δ. It follows that γ1 is homotopic to γ2 = γ̃21 ∗ γ22 along
the curves of length at most L + 2d, (see fig. 8).

We will continue this process in the same manner. It is obvious that
this process will terminate in a finite number of steps with a curve of length
≤ l + d, and that the number of steps will not exceed ⌊L−l−d

δ0⌊+1 . 2
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l+d+δ

the length of e     is at most d2

the length of the new loop is still at most l

p q

Figure 7: Curve shortening process (vi).

l+d+δ
p q

Figure 8: Curve shortening process (vii).

the length of this curve is at most l+d

p q

Figure 9: Curve shortening process (viii)
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Note that we have proven a stronger statement. We have shown, assum-
ing the hypothesis of the theorem above, that for each path γ(t) connecting
p and q there exists a 1-parameter family of curves Cγ

s of length ≤ l+3d+ δ
continuously depending on a parameter s that connects p with all points of
γ(t), so that:

A. If we denote Cγ
s (1) by γ(τ(s)), then τ(s) is an increasing (but, in general,

not strictly increasing) function of s;

B. There exist two partitions: P γ = {0 = tγ0 < tγ1 < tγ2 < ... < tγkγ = 1} and
Qγ = {0 = sγ

0 < sγ
1 < ... < sγ

2kγ = 1}, such that

(1) Cγ
s (1) = γ(tγi ) for s ∈ [sγ

2i−1, s
γ
2i].

(2) Cγ
s (1) = γ(r) for r ∈ [rγ

i , rγ
i+1] and s ∈ [sγ

2i, s
γ
2i+1].

(3) For all i the length of Cγ

s
γ
2i

does not exceed l + d.

(4) The curve Cγ

s
γ

2kγ
= Cγ

1 is the final result of the application of the curve-

shortening process described in the proof of Theorem 1.5 to γ.

The curves Cγ
s are depicted on Fig. 6-10 as the curves connecting p with

a variable point that moves from p to q along γ. Note also, that the partition
P γ can be chosen as fine as desired.

Finally, notice that the constructed path homotopy H between our orig-
inal path, γ, and Cγ

1 can be described as follows: At each moment of time t
H(t) is the path that first goes along Cγ

t , and then runs along γ from Cγ
t (1)

to γ(1).

Next we will prove the following theorem, which together with Theorem
1.5 immediately implies Theorem 1.1 in the case of m = 1.

Theorem 3.1 Let Mn be a closed Riemannian manifold of diameter d, p
a point of Mn, and k a positive integer number. Assume that there exists
a positive integer j ≤ k such that the length of every geodesic loop that
provides a local minimum for the length functional on ΩpM

n is not in the
interval (2(j − 1)d, 2jd]. Consider a continuous map f : [0, 1] −→ ΩpM

n

such that the lengths of both f(0) and f(1) do not exceed 2(j − 1)d. Then

f is path homotopic to f̃ : [0, 1] −→ Ω
(6j−1)d
p Mn ⊂ Ω

(6k−1)d
p Mn. Moreover,

assume that for some L the image of f is contained in ΩL
p Mn. Then one

can choose a path homotopy between f and f̃ so that its image is contained
in ΩL+2d

p Mn.

Proof. Choose a partition of t0 = 0 < t1 < t2 < ... < tN = 1 of the interval
[0, 1], so that maxi maxτ∈[0,1] length(f(t)|t∈[ti−1,ti](τ)) ≤ ε for a small ε that
will eventually approach 0, (see fig. 10. Fig. 10 depicts a situation, when
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f(0) and f(1) are both constant loops, but the general case is completely
analogous.)
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=
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The distance between two consecutive curves is small.

Figure 10: Partition of the map f : S1 −→ Mn into “small” intervals

Let us denote loops f(ti) by γi(r). (These loops are depicted on fig. 10
as horizontal lines.) We can use Theorem 1.5 to replace all γi(r) of length
that is greater than (2j−1)d by the loops βi of length ≤ (2j−1)d. The loops
that were originally shorter than (2j − 1)d will remain as they were. Note
that in this case we will also have a family of indiced paths C of controlled
length connecting p with all points on the loop as at the end of the proof of
Theorem 1.2: namely, the initial segments of the loop.

We will now construct path homotopies between each pair βi−1, βi that
pass through loops of length ≤ (6j − 1)d + o(1). (Here and below o(1)
denotes terms that are bounded by a linear function of the parameters of
our shortening process, namely, δ0 (see the proof of Theorem 1.5) and ε
that can be made arbitrarily small.)

Consider such a pair of consecutive curves σ = βi−1 and α = βi. Recall
that these curves were obtained from γi−1 and γi, respectively, as the final
result of the application of the curve shortening process. These two applica-
tions of the curve shortening process also result in two 1-parameter families
of curves Cσ

s , Cα
s that have properties described after the proof of Theorem

1.5.

Recall that these curves connect p with points on γi−1 and γi, and C
γi−1

1

coincides with σ, whenever Cγi

1 coincides with α.

We will construct a path between σ and α in two steps. In the first step
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we will consider a loop that is a join of σ and ᾱ, namely, σ ∗ ᾱ. We will
construct a homotopy that contracts this loop to a point via loops of length ≤
4jd+o(1) (when δ+ε0 −→ 0). The second step will be merely an application
of Lemma 2.1. (On the second step the summand of 2(j−1)d+d = (2j−1)d
will be added to the previous upper bound 4jd+ o(1) for the length of loops
during the contracting homotopy.) The desired estimate (6j − 1)d can be
obtained by passing to the limit as ε + δ0 −→ 0.

So, we need only to describe the first step to finish our construction.
Note that γi−1 and γi are very close to each other, and are connected
by the continuous family of very short curves f(t)|t∈[ti−1,ti](τ), τ ∈ [0, 1].
The desired continuous family of loops could be described as the family of
all loops C

γi−1

s1
∗ f(t)|t∈[ti−1,ti](τ) ∗ C̄γi

s2
, where C

γi−1

s1
(1) = f(ti−1)(τ) and

Cγi
s2

(1) = f(ti)(τ) but otherwise s1, s2 and τ independently vary over [0, 1]
interval. It is easy to see that these loops form a continuous one-parametric
family that can be naturally parametrized by an interval of length not ex-
ceeding 2. Yet observe that whole intervals of values of s1 and/or s2 could
correspond to some individual values of τ . We have some freedom on how
we parametrize this family. We would prefer to parametrize them in a slower
way than possible to somewhat improve the bounds on the lengths of these
loops. Observe, that some of the curves C have better upper bounds for
their length. The reason is that the length of the curves during each path
homotopy that shortens the length by δ as described in the proof of Theo-
rem 1.5 could increase up to 2d in comparison with the length of the curve
at the end of the considered step (and up to 2d + δ in comparison with the
length of the curve at the beginning of this step). Therefore, we do not want
to make these homotopies in families Cγi−1 and Cγi simultaneously, but will
wait until one of these homotopies ends, and then perform the other.

Here is a more concrete description of the resulting one-parametric family
of loops that also takes into account some details of the construction of Cγ

s

in the proof of Theorem 1.5 above.

Let ετ = f(t)(τ), where τ is fixed and t varies in the interval [ti−1, ti].
Recall that we can ensure that the length of ετ is arbitrarily small for all
τ ∈ [0, 1] by choosing ti − ti−1 to be sufficiently small.

Let us begin with the loop σ ∗ ᾱ = Cσ
1 ∗ C̄α

1 that is based at the point
p. Corresponding to Cσ

s and Cα
s consider two pairs of partitions: {P σ , Qσ}

and {Pα, Qα}. Let P σ = {0 = rσ
0 < rσ

1 < ... < rσ
kσ−1 < rσ

kσ
= 1} and

Pα = {0 = rα
0 < rα

1 < ... < rα
kα−1 < rα

kα
}. Also let P = P σ ∪ Pα. Without

any loss of generality, we can assume that P = {0 = rσ
0 = rα

0 < rα
1 < rσ

1 <
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rα
2 < rσ

2 < ... < rα
kα−1 < rσ

kσ−1 < rα
kα

= rσ
kσ

= 1}.

We will now present a homotopy that contracts σ ∗ ᾱ to p as a loop over
short loops.

(a) Cσ
1 ∗ C̄α

1 is homotopic to Cσ
sσ
2kσ−1

∗ Cα
1 over loops of length at most 4jd,

see fig. 11.

p

p p

Cs
σ

2k σ
Cs

σ

2k σ−1

p

homotopic to 

Figure 11: Contracting σ ∗ ᾱ as a loop (i).

(b) Cσ
sσ
2kσ−1

∗Cα
1 is homotopic Cσ

sσ
2kσ−1

∗Cα
sα
2kα−1

over the loops of length 4jd,

(see fig. 12).

p

Cs
σ

2k σ−1

Cα
s2k    α

α

C
α
s

2k    −1α
α

p p

p

homotopic to 

σ

Figure 12: Contracting σ ∗ ᾱ as a loop (ii).
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(c)Cσ
sσ
2kσ−1

∗Cα
sα
2kα−1

is homotopic to Cσ
sσ
2kσ−2

∗ε̄rσ
k−1

∗C̄α
sα for sα ∈ [sα

2k−2, s
α
2k−1]

over the curves of length at most (4j − 2)d + 2δ + ε, (see fig. 13).

p

p

C
α
s

2k    −1α
α

p

Cs
σ

2k σ−1
σ

Cs
σ

2k
σ

σ −2

homotopic to 

Figure 13: Contracting σ ∗ ᾱ as a loop (iii).

(d) Cσ
sσ
2kσ−2

∗ ε̄rσ
k−1

∗ C̄α
sα is homotopic to Cσ

sσ
2kσ−3

∗ ε̄rσ
k−1

∗ C̄α
sα over the curves

of length 4jd + 2δ + ε, (see fig. 14).
(e) Cσ

sσ
2kσ−3

∗ ε̄rσ
k−1

∗ C̄α
sα is homotopic to Cσ

sσ ∗ ε̄rα
k−1

∗ C̄α
sα
2kα−2

for sσ ∈

[sσ
2kσ−3, s

σ
2kσ−4] over the curves of length at most (4j − 2)d + 2δ + ε, (see fig.

15).
Proceeding in the above manner we will contract the loop to p over

curves of length at most 4jd + o(1).
Observe that after an appropriate reparametrization of all families Cγi

s

by s (a “synchronization”) all the constructed loops have the form C
γi−1

s ∗
f(t)|t∈[ti−1,ti](τ(s)) ∗ ¯C

γi−1

s for an appropriate increasing but not necessarily
strictly increasing function τ(s). It is easy to see that one can choose these
synchronizations so that the same parametrization of the family Cγi will
work for constructions of path homotopies between βi−1 and βi and between
βi and βi+1. Observe, that for every s the length of one of two curves C

γi−1

s

and Cγi
s does not exceed (2j − 2)d + d + o(1) = (2j − 1)d + o(1), and the

length of the other does not exceed (2j − 1)d + o(1) + 2d = (2j + 1)d + o(1),
as δ −→ 0. Combining the constructed path homotopies between βi−1 and
βi for all i we obtain a path in ΩpM

n starting at f(0) and ending at f(1),
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Cs
σ

2k
σ

σ −2

p p

p σCs
σ

2k σ−3

homotopic to 

Figure 14: Contracting σ ∗ ᾱ as a loop (iv).

p

p

Cs2k

α
α

α

p

Cs2k −2

α
α

α

−1

homotopic to 

Figure 15: Contracting σ ∗ ᾱ as a loop (v).
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which can be interpreted as a map of [0, 1] into ΩpM
n.

It remains to prove that this path f̃ in ΩpM
n is path homotopic to f .

Here is the construction of a path homotopy between f̃ and f : At each
moment of time we do not shorten f(ti) (for all i) all the way using the
construction in the proof of Theorem 1.5, as we did above. Instead we
use a partial shortening described after the proof of Theorem 1.5 in the
construction of the homotopy H. We denote these homotopies H between
γi and its shortening by Hi. For every λ ∈ [0, 1] the path Hi(λ) consists of
two arcs. The first arc is the path Cγi

λ (where the parametrization of the one-
parametric family Cγi

s is the same as the one that has been used to construct
contractions of βi−1 ∗ β̄j and βj ∗ ¯βj+1 above). The second arc is the arc of
γi that starts at C

γj

λ (1) and ends at the end of γj. To construct the desired
path homotopy between f and f̃ in ΩpM

n at the moment λ we replace
all long curves γi not by βi = Hi(1) but by Hi(λ). As we synchronized the
parametrizations of different one-parametric families C, Cγi

s (1) and C
γi−1

s (1)
can be connected by a (very short) arc f(t)|t∈[ti−1,ti](τ) for a fixed value of
τ = τ(s). Now we can form loops Cγi

r ∗ f(t)|t∈[ti−1,ti](τ(r)) ∗ C̄r
γi−1 for all

r ≤ λ, as it was done above. These loops provide a contracting homotopy
for the loop Cγi

λ ∗ f(t)|t∈[ti−1,ti](τ(λ)) ∗ C̄λ
γi−1 . Using Lemma 2.1 we can

transform this homotopy into a path homotopy between C
γi−1

λ and Cγi

λ ∗
f̄(t)|t∈[ti−1,ti](τ(λ)). Joining all paths in this path homotopy with the arc

γλ
i−1 of γi−1 between C

γi−1

s (1) and γi−1(1) = p , we obtain a path homotopy
between Hi−1(λ) and Cγi

λ ∗f̄(t)|t∈[ti−1,ti](τ(λ))∗γλ
i−1 . It remains to construct

a path homotopy between f̄(t)|t∈[ti−1,ti](τ(λ)) ∗ γλ
i−1 and γλ

i . But that path
homotopy can be formed by paths f̄(t)|t∈[̺,ti](τ(λ)) ∗ f(̺, τ), τ ∈ [τ(λ), 1],
parametrized by τ , where ̺ is the parameter of the path homotopy, (̺ ∈
[ti−1, ti]). Combining these short paths connecting Hi−1(λ) and Hi(λ) for
all i we obtain fλ, where f0 is f , and f1 is f̃ .

It is easy to see from this description that the resulting path homotopy
passes through paths of length ≤ L + 2d. (The increase of length already
takes place during the first stage, when we shorten curves γi using Theorem
1.5. If L ≤ (6k−1)d, we can just take f̃ = f , so without any loss of generality
we can assume that L > (6k − 1)d. It is easy to see that in this case the
just described path homotopy between Hi−1(λ) and Hi(λ), λ ∈ [0, 1] does
not lead to any further increase of the lengths of paths.)

We would like to provide the following less formal explanation (or rein-
terpretation) of the construction of the path homotopy between Hi−1(λ) and
Hi(λ). These two paths consist of curves C

γi−1

λ and Cγi

λ joined with nearly
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identical “tails” that are the arcs of γi−1(τ) and γi(τ) between τ = τ(λ)
and τ = 1. The “tails” form a part of one parametric family of “tails”
f(̺, τ), τ ∈ [τ(λ), 1], where the parameter ̺ ranges in [ti−1, ti]. The idea
was to “fill” the “digon” formed C

γi−1

λ and Cγi

λ in exactly the same way as
we filled the digon formed by βi−1 = C

γi−1

1 and βi = Cγi

1 by a one-parametric
family of paths of controlled length, and to attach to each of these paths the
corresponding “tail” f(̺, τ), τ ∈ [τ(λ), 1], for an appropriate value of ̺. Of
course, this idea requires some minor corrections as 1) C

γi−1

λ and Cγi

λ end
at very close but still different points, and will form a digon only after we
attach (a very short) path f(t)|t∈[ti−1,ti](τ(λ)) connecting their endpoints to
one of them; 2) We will be able to attach an appropriate “tail” f(̺, τ) only
after attaching (a very short) arc of f(t)|t∈[ti−1,ti](τ(λ)). But, as we will see
below, this idea directly generalizes to situation, when one deals with maps
of higher dimensional spheres to ΩpM

n.
2

Remark 3.1. Here we would like to summarize some important features
of our construction of f̃ that will be used to prove Theorem 1.5 for larger
values of m. The constructed homotopies contracting βi−1 ∗ β̄i that were the
main part of the construction of f̃ in the proof of Theorem 3.1 consist of
loops containing the images of rectilinear arcs [ti−1, ti] × {τ} for a variable
τ ∈ [0, 1] that monotonously depends on the parameter of the homotopy.
The loops can be naturally diveded into two arcs, such that the length of
one of these arcs does not exceed (2j−1)d+o(1), and the length of the other
does not exceed (2j + 1) + o(1), as δ, ε −→ 0. The path homotopy between
βi−1 and βi is obtained from the path homotopy contracting βi−1 ∗ β̄i by
simply applying (the construction in the proof of) Lemma 2.1. The desired
map f̃ was constructed by combining the path homotopies between βi−1 and
βi for all i.

4 Small spheres in the loop space.

In this section we will demonstrate that in the absence of a great number of
short geodesic loops, every homotopy class of ΩpM

n can be represented by
a sphere that passes through short loops (thus proving Theorem 1.1). We
assume that there exists k such that there are no geodesic loops based at p on
Mn with the length in the interval (2(k−1)d, 2kd] providing a local minimum
for the length functional. We are going to prove that f is homotopic to a
map g with the image in ΩL

p Mn, where L = ((4k + 2)m + (2k − 3))d.
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The proof of the theorem is done by induction on m. The base step of
the induction, (m = 1), had been proven in the previous section. Before
presenting the proof of the induction step, we would like to explain how the
proof will work to pass from m = 1 to m = 2. (We will explain the proof in
the case, when f is a map of S2. It will be clear from our explanations that
the case, when f is a map of the pair (D2, ∂D2) can be treated exactly the
same.)

I    Ix

Rij

p

p

p

p

p

p

p

p

0−skeleton 1−skeleton 2−skeleton

(a) (b) (d)(c)

Figure 16: Replacing the map

Let I = [0, 1]. Consider a map f : I × I −→ ΩpM
n, where

∂(I × I) is mapped to p. Let us subdivide I × I into small squares,
of size that will be specified later. Consider a square Rij with vertices
(xi−1, yj−1), (xi−1, yj), (xi, yj−1), (xi, yj). Each of these vertices corresponds
to a loop in ΩpM

n. Each of these loops that is too long, (i.e. of length
greater than (2k− 1)d) will be replaced by a shorter one as in Theorem 1.5
via a path homotopy described in the proof of Theorem 1.5. Now, we will
replace the edges that connect these vertices as in the proof of Theorem 3.1
in the previous section (see fig. 16 (a)-(c)). Next, we have to “fill” the
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interior of the square, (fig. 16 (d)).

The boundary of this square corresponds to a 2-sphere in Mn. It is
convenient to consider it as a CW-complex with the following sturcture: a
boundary of a parallelipiped in which two opposite faces have been collapsed
to a point and identified with the point p, (see 17). Note that the two copies
of p at the beginning and the end of considered loops will be sometimes
depicted on our figures as two different points (fig. 17). This convention will
make our figures easier to draw and comprehend, and will also make clearer
the fact that our proof can be easily adapted to prove the generalization of
the theorem, where ΩpM

n in the conclusion of the theorem is replaced by
ΩpqM

n for two arbitrary points p, q.

p

p

Figure 17: Sphere decomposition.

Each of the four “large” cells of the sphere has a natural decomposition
into “short” loops based at p. (Here “short” means of length at most 4kd +
o(1); recall the proof of Theorem 3.1 in the previouos section).

The filling will be done in four steps.

Step 1. We will construct a homotopy between the sphere and the point
p, such that for every τ ∈ [0, 1] the (map of the) sphere S2

τ in the homotopy
will have a similar decomposition into short loops based at p. This means
that each sphere S2

τ will be given a CW-structure of the cell complex of the
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boundary of a parallelipiped in which two opposite faces are mapped into
p and into another point depending on τ and denoted q(τ), respectively,
and where each of the remaining four (“large”) faces are swept-out by loops
of length at most 4kd + o(1) based at p. We will be using the proof of
Theorem 3.1 and, in particular, the facts summarized in Remark 3.1 to do
this construction.

Step 2. For each τ we can construct a vertical sweep-out of S2
τ by curves of

length of at most (6k+1)d+o(1), which will vary continuously with respect
to τ . Here by the vertical sweep-out we mean a continuous 1-parametric
family of curves joining a pair p, qτ of points of S2

τ . In fact, this family can
be parametrized by a circle. This step essentially consists in an application of
Lemma 2.1 to each of four “large” faces of S2

τ . The resulting path homotopy
for each face corresponds to one quarter of the circle parametrizing the whole
family.

Step 3. Each of these paths can be paired with a fixed path of length
≤ (2k+1)d+o(1) to obtain a sweep-out of each sphere Sτ

2 by loops of length

≤ (8k+2)d+o(1). This path is the join of C
f(v)
τ (from the proof of Theorem

1.5, where v denotes an arbitrary vertex of the considered rectangle Rij)
with a very short segment connecting its endpoint with qτ in the image of
Rij × {τ}. But for reasons of continuity one needs to consider the same
vertex v for all values of τ . (It might seem that we could ensure a somewhat
smaller length of the loops: For every value of τ we could find a vertex v

(that would depend on τ) such that C
f(v)
τ has length ≤ (2k − 1)d + o(1).

But in this case the resulting circle in ΩpM
n representing S2

τ does not need
to depend continuously on τ , and is not suitable for our purposes.)

Step 4. We can now apply Lemma 2.2 to obtain a 3-disc filling the original
2-sphere, S2

1 , and so that this 3-disc is swept-out by paths connecting p and
q1 = p of length at most (8k + 2)d + (2k − 1)d + o(1) = (10k + 1)d + o(1).

This completes the construction of the filling of ∂Rij × [0, 1] for one
small square Rij. Combining these fillings for all values of i, j we obtain
a map F : S3 −→ Mn with a vertical sweep-out (by paths connecting p
and q1 = p, that is, by loops based at p) of a controlled length, which, in
turn, can be reinterpreted as a map f̃ : S2 −→ ΩpM

n with the image in

Ω
(10k+1)d+o(1)
p Mn.

Note that the only step in this construction which is not immediate
and requires a more detailed description is the first one. We will therefore
describe it in more details than the other three steps. Let us once again
consider a map f |Rij

. It induces a map F : Rij × [0, 1] −→ Mn defined by
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the formula F (x, y, t) = f(x, y)(t). (see fig. 18).

p p

Figure 18: f |Rij

Consider a slicing of Rij×I into rectangles Rij×{τ} parallel to Rij . That
is, at each fixed time τ , we will be considering the restriction of f(x, y)(τ)
for a fixed value of t = τ . We want the length of the image of each straight
line segment of f(Rij ×{τ}) under F to be small, (much smaller than some
ε > 0, which will eventually go to 0), (see fig. 19(a)). This can be achieved
by making the subdivision in the rectangles Rij sufficiently fine. Each of the
considered slices can be swept-out by short curves, (i.e. of length at most
ε) as in fig. 19 (b) in a continuous canonical way.

f(x,y)(    )τ
f(x,y)(    )τ

S2
τ

p

p

(a) (b) (c)

p

pTypical loops

Figure 19: Slicing.

For every value of τ we will consider a map from ∂(Rij × I) to Mn

constructed in the following way: the upper face will be mapped to F (Rij ×
{τ}), the lower face will be mapped to the point p and the side faces will be
mapped as follows:
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Recall that in the course of the proof of Theorem 3.1 we have replaced
the curves corresponding to vertices of Rij by short curves (of length ≤ (2k−
1)d+o(1)), and that we have then constructed path homotopies between the
pairs corresponding to the edges of Rij . These homotopies correspond to the
edges of Rij and generate 2-discs in Mn. Recall, that they were obtained by
an application of Lemma 2.1 to a certain homotopy that contracted the loop
formed by joining two paths (in fact, loops) obtained as the “shortening”
of images of the vertices. (One of these two paths was taken with the
opposite orientation.) This homotopy consisted of the loops gτ = C

γi−1

s ∗
f(x, y)|x or y∈[ti−1,ti](y or x) ∗ C̄γi

s of length ≤ (2k− 1)d+ (2k + 1)d+ o(1) =
4kd + o(1). (Recall, that we denote terms involving a linear combination of
parameters in our proofs that can be made arbitrarily small by o(1).)

Observe that for every value of τ ∈ [0, 1] we can restrict these homo-
topies, so that they end at gτ instead of g1 (and connect gτ with the constant
loop g0). For every value of τ we will map the side faces of ∂(Rij × [0, 1]) to
the 2-discs generated by these path homotopies. Note that we can combine
the sweep-out of four side faces into loops with the described sweep-out of
the top into curves. Namely, we can extend each of the path homotopies
forming the side faces by a stage, when we change only the small middle
segement of gτ : We start from the loop, where the image of a side of Rij×{τ}
is replaced by the image under f of two half-diagonals of Rij ×{τ}, meeting
at the image of the center of Rij × {τ} under F , that we will denote qτ ,
and go through loops, where the middle segment is replaced by the image
under F of two-segment broken lines in Rij × {τ} shown at the bottom of
Fig. refslicing (b). If we combine the natural sweep-outs of the side faces
with the sweep-out of the top, then we will obtain (a map of the) 2-sphere
S2

τ swept-out (as described in our description of Step 1) into four families of
loops corresponding to four “side” faces of the boundary of a parallelipiped,
(see Fig. 19(c)). Each of the four families of loops is formed by a contrac-
tion of a loop based at p and passing through qτ . Recall, that the length
of loops during these homotopies is bounded by 4kd + o(1). This completes
our detailed description of Step 1.

Now we are going to apply Lemma 2.1 to each of these four families
of loops to replace them by four families of paths between p and qτ . This
stage was called Step 2. Its purpose is that then we can combine these four
families of loops into one family of paths parametrized by S1. Moreover, we
want to ensure that each of the four resulting families of paths will depend
continuously on τ .

For each of these four families (and for all values of τ) we consider the
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corresponding edge of Rij . Let v be the vertex of this edge that was used in
the last application of Lemma 2.1 during the application of the shortening
process described in the proof of Theorem 3.1 to this edge. Consider curves

C
f(v)
τ of length ≤ (2k + 1)d + o(1) constructed in the course of shortening

f(v) as in the proof of Theorem 1.5. Each of these curves connects p with a

point in f(v). Of course, C
f(v)
1 is the result of the shortening of f(v). Note

that C
f(v)
τ is an arc in the corresponding loop gτ (as f(v) is either γi−1 or

γi). So, we can apply Lemma 2.1 to turn the homotopy between g0 and gτ

into a path homotopy between C
f(v)
τ and the other “half” of gτ that passes

through paths of length (2k + 1)d + 4kd + o(1) = (6k + 1)d + o(1).

Thus, after we apply Lemma 2.1 to each of the four homotopies, we will
obtain four families of paths of length ≤ (6k + 1)d + o(1) connecting p and
qτ , that will together form one family of paths parametrized by S1 providing
a sweep-out of S2

τ .

Now we are going to reinterprete these families of paths as families of
loops of length (8k+2)d+o(1) (Step 3) providing a contraction of the family
of the loops corresponding to τ = 1 (and to the initial 2-sphere S2

1).

Recall that the initial sphere S2
1 in Mn was obtained from the circle in

the loop space of Mn that was constructed as the image of the boundary
of Rij under the following map: This map was produced from the original
map f by shortenings of the loops corresponding to the four vertices as
in the proof of Theorem 1.5, and then by shortening of one-parametric
families of loops corresponding to the four edges of Rij as in the proof of
Theorem 3.1. Therefore, we would like to use the proof of Lemma 2.2 to
obtain a “shortening” of the restriction of f on Rij (Step 4). Here we are
supposed to choose a path between p and q1 = p of minimal length to be
used as “f(s0)” in notations of Lemma 2.2. We choose the shortening C(v)
of f(v) for one of the vertices. Its length does not exceed (2k − 1)d. We
attach ¯C(v) to all paths in our sweep-out of S1

τ . So, the length of paths in
the resulting vertical sweep-out of the constructed 3-cell filling of S2

1 does
not exceed (8k + 2)d + o(1) + (2k − 1)d ≤ (10k + 1)d + o(1). As q1 = p,
these paths hapeen to be loops, and we constructed the extension of f from
∂Rij to its interior, such that the images of all points in the interior are in

Ω
(10k+1)d+o(1)
p Mn.

This completes the description of our construction of g.

It remains to demonstrate that the constructed map g is homotopic to f
through a homotopy with the image in the space of sufficiently short loops.

The idea of this demonstration is simple. Moreover, it is the same idea
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that had been used for this purpose in the case, when m = 1 at the end of
the proof of Theorem 3.1. Namely, at each moment of time λ, we do not
shorten the loops f(v) that are the images of the vertices of the chosen fine
triangulation of S2 as prescribed by the proof of Theorem 1.5. Instead we
shorten only a certain initial arc of the curve f(v), replacing it by a path Cλ

from the construction in the proof of Theorem 1.5. (Now this construction
is being applied to f(v).) Then we take the join of Cλ with the remaining
part of f(v) - exactly, as it was done in the proof of Theorem 3.1.

Now we consider four paths Cλ corresponding to vertices of every small
rectangle Rij . They can be considered as ”long” edges of the 1-skeleton
of a parallelipiped in Mn, and filled by a map of the parallelipiped almost
exactly as it was done above in the case, when λ = 1. The only difference is
that we need first to attach to Cλ very short paths connecting them with a
point qτ(λ) inside the slice f(x, y)(τ(λ)), x, y ∈ Rij, to make them end at the
same point. This (filling map of the) parallelipiped is swept-out by paths of
a controlled length connecting p and qτ(λ). Then we would like to attach to
each of these paths the “tail” f(x, y)(τ), where τ varies from τ(λ) to 1 for
an appropriate (x, y). Of course, in order to do so we first need to connect
qτ(λ) with f(x, y)(τ(λ)) by a path of length ≤ ε inside f(Rij × {τ(λ)}). As
the result of this construction we will obtain a family of paths starting and
ending at p of acceptable for us lengths for every λ. Combining all these
families, we will obtain maps from S2 to ΩpM

n. For λ = 1 we will obtain
g, and for λ = 0 we will obtain the original map f .

The same idea of construction of a homotopy between f and g works
verbatim for higher dimensions, so we will not repeat it again in the proof
of the general case of Theorem 1.1 that we are going to present now. The
proof is completely parallel to the proof in the case m = 2.

Proof. We will present a proof only in the case, when f is a map of Sm.
The proof in the case, when f is a map of the pair (Dm, ∂Dm) is completely
analogous.

Let f : Im −→ ΩpM
n be a continuous map such that ∂Im is mapped to

p. We can regard it as a sphere in the loop space ΩpM
n. We can partition

Im into m-cubes Ri1,...,im, so that the image of each cube has an arbitrarily
small diameter.

We will now construct a new map g : Im −→ ΩpM
n that passes through

short loops, and is homotopic to f . This construction is inductive to skeleta
of Im. Theorem 1.5 tells us how to replace the vertices and Theorem 3.1
tells us how to replace the edges.
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For every m-tuple (i1, . . . , im) consider the map F : Ri1,...,im × [0, 1] −→
Mn defined by the formula F (x1, ..., xm, τ) = f(x1, ..., xm)(τ). For each
fixed τ consider the slice f(x1, ..., xm)(τ) (that we are going to call the τ -
slice below). We want to ensure that the length of the image under F
of every straight line segment of every τ -slice is much smaller than some
small ε, which can be done by refining the partition. Each τ -slice can be
continuously swept out by curves as in Fig. 20.
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Figure 20: Sweeping out of a slice

Note that each face of the τ -slice Zτ = f(x1, ..., xm)(τ) comes with a
sweep out by short curves from the previous induction step, (see fig. 20
(b)). Let qτ be a point in the interiour of Zτ . Consider the cones with the
vertex at qτ over the boundary of each face, (see fig. 20 (c)). Each of these
cones can be continuously deformed to the corresponding face, and we can
continuously extend the sweep out of this face to the cone over this face with
the vertex at qτ , (see fig. 20 (d)), which will result in the sweep-out of the
whole slice into curves that can be made arbitrarily short.

Next, let us note that there is an m-disc in Mn that corresponds to each
face of Qτ = Ri1,...,im × [0, τ ], for which this face is also the τ -slice. This disc
was constructed during the previous induction step. This disc is swept-out
by loops based at a point p of length at most ((m−1)(4k+2)+(2k−1))d+o(1)
Moroever, it follows from our construction that the interiors of the images
of all side faces of Ri1,...,im × [0, 1] are sliced into short arcs appearing in the
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middle of some of these loops. These short arcs are images under f of the
broken lines made of two segments (or, sometimes, one segment) connecting
the vertices on fig. 20 (b).

For each side face of Qτ we can consider a homotopy, where only these
middle parts of these loops change, as it is depicted on fig. 20 (d) and
described above, and the other parts remain intact. Moreover, here we
modify only the middle parts of the loop on the “top” of Qτ , i.e. those
that corresponds to points in the considered face of Ri1,...,im × {τ} (Fig.
20 (c), (d) corresponds to the case m = 3, but the general picture will be
completely similar - and obvious for all values of m.) By doing this, we
extend the already constructed map F of the side face to the cone over the
top face of the considered side face. This cone is in Ri1,...,im ×{τ}; its vertex
is the center of Ri1,...,im ×{τ}. Combining these extensions for all side faces
we extend F to the whole Ri1,...,im ×{τ}. Moreover, these extensions can be
natuarlly swept-out by 2m families of loops corresponding to the side faces.

As the result, for each τ we obtain a map Sm
τ of ∂(Ri1,...,im × [0, τ ])

into Mn that can be sliced into 2m families of loops described above. The
construction done on the previous steps of induction implies that each of
these families of loops provides a contraction of the map of Sm−2 into ΩpM

n

that was denoted Sm−2
1 via spheres Sm−2

τ swept-out by loops of length ≤
((m − 1)(4k + 2) − 2)d + o(1).

We would like to apply Lemma 2.2 to this homotopy for every value of
τ . To apply Lemma 2.2 (or, rather, its proof) we need to fix a path between
p and another point, that we will denote qτ , and define as the image of the
center of the τ -slice under F = f(x1, . . . , xm)(t). (This path was denoted

“f(s0)” in the text of Lemma 2.2.) We choose this path as the join of C
f(v)
τ

and an extremely short arc that connects the endpoint of C
f(v)
τ (on f(v))

and qτ along the image of the diagonal of the τ -slice. Here v is a vertex of
the considered face of Ri1,...,im. (The choosen vertex v must be the same as
the vertex that we used at the very last stage involving the last application
of Lemma 2.2 to construct Sm−2

τ corresponding to the considered face of

Ri1,...im on the previous step of the induction process.) As before, C
f(v)
τ is

a path from the continuous family of paths of length ≤ (2k + 1)d + o(1)
connecting p with the points of f(v) obtained in the course of shortening of
f(v) as described in the proof of Theorem 1.5. After we apply Lemma 2.2
we obtain a representation of each side face as an (m−1)-disc in the space of
paths between p and qτ of length ≤ ((4k+2)(m−1)−2)d+(2k+1)d+o(1).

We can combine these 2m (maps of) (m − 1)-discs (that agree on their
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intersections) regarded as faces of the boundary of an m-dimensional cube

Cm into a map of Sm−1 = ∂Cm to Ω
((4k+2)(m−1)−2)d+(2k+1)d+o(1)
p,qτ Mn. This

map will be denoted Sm
τ . In particular, if τ = 1, then qτ = p, and Sm

1 is the
sphere that we need to contract in order to extend g from the boundary of
Ri1,...,im to its interior.

Our next step is the conversion of maps Sm
τ of Sm into spaces of paths

Ωpqτ Mn into maps of Sm into ΩpM
n which is performed by choosing a fixed

path pτ ∈ Ωpqτ Mn and attaching p̄τ to every path connecting p and qτ in the
image of Sm

τ . (Recall that p̄τ is obtained from pτ by changing the orientation
and goes in the opposite direction from qτ to p.) We define pτ as follows.

We choose a vertex v of Ri1,...im and consider the family of paths C
f(v)
t

corresponding to f(v) (as described in the proof of Theorem 3.1). For every

value of τ we use C
f(v)
t with the maximal value of t that goes to f(v)(τ).

We take its join with a very short arc that connects f(v)(τ) with qτ in the
image of the τ -slice, and use the result as pτ . Observe, that pτ continuously
depends on τ and has length ≤ (2k +1)d+ o(1). The length of the resulting
loops will be bounded by ((4k+2)(m−1)−2+(2k+1)+(2k+1))d+o(1) =
((4k + 2)m − 2)d + o(1).

Now we apply Lemma 2.2 again. We use C
f(v)
1 as “f(s0)” from Lemma

2.2. As the result, we will extend Sm
1 to a map of Dm+1 (identified with

Ri1,...,im) into Ω
((4k+2)m−2+(2k−1))d+o(1)
pq1

Mn = Ω
((4k+2)m+(2k−3))d+o(1)
p Mn.

The resulting map of a disc that we identify with Ri1,...,im into ΩpM
n

constitutes a part of the desired map of Sm into ΩpM
n. Observe that we did

not change the restriction of this map on the boundary of Ri1,...,im , when we
were constructing its extension from the boundary to the interior of Ri1,...,im.
Now we can combine the constructed maps over all m-cells Ri1,...,im to obtain
the desired map.

The proof of the fact that the constructed map of Sm into ΩpM
n is

homotopic to the initial one through the space of loops of length specified
in the theorem is done exactly as in the case of m = 2 above (and very
similarly to the proof of the same fact in the case of m = 1). 2

5 Short geodesic segments connecting pairs of

points

In this section we will prove that for each pair of points on a closed Rie-
mannian manifold there exist “many” “short” geodesic segments that join
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the points. This fact follows directly from the following lemmas, which are
restatements of the similar lemmas for geodesic loops.
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Figure 21: Short path homotopy

Lemma 5.1 Let Mn be a closed Riemannian manifold of diameter d. Let
e1, e2 be segments of lengths l1, l2 respectively, where e1 connects a point p
with a point r and e2 connects the point r to a point q, (see fig. 21 (a)).
Consider the join e1 ∗ e2. Assume that it is path homotopic to a path e3 of
length l3 ≤ l1 + l2 via a length non-increasing path homotopy, (see fig. 21
(b)).

Then there exists a path homotopy between e1 and e3 ∗ ē2, (fig. 21 (c))
that passes through curves of length at most l1 + 2l2.

Proof. The proof is essentially demonstrated by fig. 21 (d)-(f). We begin
with e1, (fig. 21 (d)), which is homotopic to e1 ∗ e2 ∗ ē2 over the curves of
length l1 + 2l2, (fig. 21 (e)). Since e1 ∗ e2 is path homotopic to e3, and the
path homotopy does not increase the length, we can attach ē2 to all paths
in this path homotopy to obtain a homotopy between e1 ∗ e2 ∗ ē2 and e3 ∗ ē2,
(see fig. 21 (f)). 2

Theorem 5.2 Let Mn be a closed Riemannian manifold, p, q, x points of
Mn. Let γ(t) be a curve of length L starting at p and ending at x. Then, if
there exists an interval (l, l + 2d], such that there is no geodesic connecting
p and q on Mn of length in this interval providing a local minimum of the
length functional on ΩpqM

n, then there is a path-homotopy between γ(t) and
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p
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l d

Figure 22: Modified length shortening process

a path γ̃(t) of length at most l + d passing through curves of length at most
L + 2d.

Proof. The proof relies on the previous lemma, but is otherwise analogous
to the proof of Theorem 1.5, (see fig. 22).

For example, here is an adaptation of the first step of the curve shortening
process described in our proof of Theorem 1.5. By compactness there exists
a small δ, such that there are no short geodesics connecting p and q of
length in the interval (l, l + 2d + δ]. Consider a segment e1 of the original
curve of length l + d + δ connecting p with some point r. Let us denote
a minimizing geodesic connecting the point r with the point q by e2. The
curve e1 ∗ e2 is path homotopic to e3 of length at most l. (Here we define
e3 as a shortest path which is path homotopic to e1 ∗ e2 via a length non-
increasing homotopy.) Therefore, by the previous lemma there is a path
homotopy between e1 and e3 ∗ ē2 of length at most l + d over the curves of
length at most l + 2d.

2

The above result has the following corollaries.

Theorem 5.3 Let Mn be a closed Riemannian manifold of diameter d,
p, q, x be points of Mn. Assume that there exists k ∈ N such that
there is no geodesic of length in the interval in the interval (dist(p, q) +
(2k − 2)d, dist(p, q) + 2kd] joining p and q that is a local minimum of the
length functional on ΩpqM

n. Then for every positive integer m every map
f : Sm −→ ΩpxM

n is homotopic to a map f̃ : Sm −→ ΩL
pxM

n, where
L = ((4k + 2)m + (2k − 3))d + (2m + 1)dist(p, q). Furthermore, every map
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f : (Dm, ∂Dm) −→ (ΩpxMn,Ω
((4k+2)m+(2k−3))d+(2m+1)dist(p,q)
px Mn) is homo-

topic to a map f̃ : (Dm, ∂Dm) −→ Ω
((4k+2)m+(2k−3))d+(2m+1)dist(p,q)
px Mn rel-

ative to ∂Dm. In addition, if for some R the image of f is contained in
ΩR

pxM
n, then the homotopy between f and f̃ can be chosen so that its image

is contained in ΩR+2d
px Mn. Also, in this case for every R > 0 every map

f : S0 −→ ΩR
pxM

n is homotopic to a map f̃ : S0 −→ Ω
(2k−1)d+dist(p,q)
px by

means of a homotopy with the image inside ΩR+2d
px Mn.

This theorem can be proven exactly as Theorem 1.1 but using the pre-
vious theorem instead of Theorem 1.5 on the very first step of induction
(from m = 1 to m = 2).

Corollary 5.4 Let Mn be a closed (m−1)-connected Riemannian manifold
of diameter d with a non-trivial mth homotopy group. Then if for some pair
of points p, q there exists k ∈ N , such that no geodesic connecting p and q
has the length in the interval (2(k − 1)d + dist(p, q), 2kd + dist(p, q)] and is
a local minimum of the length functional on ΩpqM

n, then the length of a
shortest non-trivial periodic geodesic on Mn is at most ((4k + 2)m + (2k −
3))d + (2m + 1)dist(p, q) ≤ (4km + 2k + 4m − 2)d.

Proof. By Theorem 5.3 we can construct a non-contractible sphere of
dimension m in the space of loops based at p that is swept-out by closed
curves of length at most ((4k + 2)m + (2k − 3))d + (2m + 1)dist(p, q). Now
the standard proof of the Lyusternik-Fet theorem establishing the existence
of a non-trivial periodic geodesic on every closed manifold (cf. [Kl]) will
yield the desired upper bound for the length of a shortest periodic geodesic.

2

This corollary vastly generalizes previous results by F. Balacheff ([B])
and R. Rotman ([R2]) in some directions. These previous results correspond
to the cases k = 1, p = q and m = 1 ([B]) and k = 1, p = q and m = 2
([R2]). Yet the upper bound for the length of a shortest non-trivial periodic
geodesic provided by the corollary in these two cases is somewhat worse
than the corresponding bounds in the quoted papers (5d versus 4d in [B],
and 11d versus 6d in [R2]).

6 Non-simply connected case

Here we prove Theorem 1.3 that is required to complete the proof of The-
orem 1.2 in the non-simply connected case, as well as its generalization
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Theorem 1.4.
First, recall a result of Gromov ([Gr]) asserting that for every closed

Riemannian manifold M of diameter d and every point p ∈ M there exists
a finite presentation of π1(M

n) such that all its generators can be realized
by geodesic loops of length ≤ 2d based at p. This result will be repeatedly
used in this section.

Definition 6.1 Let G be a finitely presented group. A word in generators
of G and their inverses is called minimal if the element of G presented by
this word cannot be presented by a word of smaller length. The complexity
of an element of G with respect to the considered finite presentation is the
length of a minimal word representing this element. The complexity of the
trivial element is, by definition, zero.

Proposition 6.2 Let G be a finitely presented group. Assume that there
exists an element h ∈ G of complexity m ≥ 1. Then G has at least 2m
elements: the trivial element e, h, and at least two elements of complexity i
for every i = 1, 2, . . . ,m − 1.

This proposition has the following immediate corollary:

Corollary 6.3 Assume that G is a finitely presented finite group of order
l. Then the complexities of elements of G do not exceed l

2 . If there exists

an element of complexity l
2 , then it is unique.

Proof of Proposition 6.2. We will start from the following observation
that will be repeatedly used in our proof: Any subword of a minimal word
is minimal.

Now assume that h can be represented by a minimal word starting from
a positive power of a generator a. Among all minimal words representing
h and starting from aj for some j choose a word w, where j is maximal
possible.
Case 1. If w = am, then for every i between 1 and m−1 words ai and a−i are
minimal and represent different words of complexity i. (Indeed, if ar = a−s

for r, s ∈ {−(m − 1), . . . ,m − 1}, r 6= −s, then ar+s = a−(r+s) = a|r+s| = e.
As |r + s| ≤ 2m − 2, am can be represented by a shorter word am−|r+s|,
which contradicts the minimality of am.)
Case 2. w = akbl1 . . . lm−k−1, where b, l1, . . . , lm−k−1 are generators of G
or their inverses. Moreover, we can assume that b is not equal to a power of
a.
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Now we can consider 2k words ai, a−i for i = 1, . . . , k − 1. We have two
distinct words of complexity i for each considered value of i in this set.

For every value of i ∈ {k, . . . m − 1} consider the initial subword of w
of length k, and the subword of w of length k starting from the second
letter. For example, for i = k we will be considering ak and ak−1b, for
i = k + 1 akb and ak−1bl1. These words are minimal and represent elements
of G of complexity i. We need only to verify that they are not equal to
each other. But if ak−1bl1 . . . li−k = akbli . . . li−k−1, then we can replace
the subword ak−1bl1 . . . li−k by akbli . . . li−k−1 in w and obtain the word
ak+1bl1 . . . li−k−1li−k+1 . . . lm−k−1 of length m representing h but starting
from a higher power of a than w. This contradicts to the definition of w. 2

Proof of Theorem 1.3:. Let p̃, q̃ be two points of the universal covering M̃
of M . We know that M̃ can be tiled by isometric fundamental domains of
radius d centered at points p̃i that project to the same point p ∈ M as p̃.
(The interiors of these domains are Voronnoi cells of p̃i, i.e. sets of points x
of M̃ for which p̃i is the closest point to x in the inverse image of p.) We can
assume that p̃ = p̃1 is the base point of M̃ . The number of these fundamental
domains is equal to the cardinality C of π1(M). Correspondingly, each of
these fundamental domains contains a point q̃i that projects to the same
point of M as q̃. Assume that q̃ = q̃j for some j ∈ {1, . . . C}.

Note that for every j p̃j corresponds to an element gj of π1(M). Vice
versa for every element g ∈ G we can define the corresponding p̃j by lifting
a loop representing g; p̃j will be the endpoint of the lifted loop and will
not depend on the choice of a loop representing g. If a finite presentation
of π1(M) is chosen, all of its generators are represented by loops in M
of length ≤ 2d based at p, and gj is represented by a word v of length
l in the generators of M and their inverses, then the distance between p̃
and p̃j cannot exceed 2dl, as p̃j is the endpoint of the result of lifting to
M̃ of a join of l loops in M representing generators of π1(M) and their
inverses combined exactly as the corresponding letters in v. Let u be the
maximal complexity of an element of π1(M) with respect to the chosen
finite presentation of π1(M). Corollary 6.3 implies that either u < C

2 ,
and, therefore, u ≤ C−1

2 , or u = C
2 , but there is only one element of this

complexity, and the complexity of the other elements does not exceed C
2 −

1. In the first case, dist(p̃1, p̃j) ≤ 2d(C−1
2 ) ≤ d(C − 1), and dist(p̃, q̃) =

dist(p̃1, q̃j) ≤ dist(p̃1, p̃j) + dist(p̃j, q̃j) ≤ d(C − 1) + d = Cd. In the second
case, dist(p̃, q̃) ≤ Cd by the same argument unless the element of π1(M

n)
corresponding to p̃j has complexity C

2 .
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In this last case, we are first going to make the following observation: The
distance from a point z in a fundamental domain domain to the boundary of
the fundamental domain is at most d. Indeed, we can connect the center of
the fundamental domain with z by a geodesic and continue the geodesic to
the boundary of the fundamental domain. The length of this geodesic does
not exceed d, and the same is obviously true for the length of the segment
of this geodesic starting at z.

Now denote one of the points closest to q̃j in the boundary of its funda-
mental domain by ̺. The ditance between q̃j and ̺ does not exceed d. The
point ̺ must be in the closure of another fundamental domain centered at
p̃m for some m 6= j. Now we can write

dist(p̃, q̃) = dist(p̃1, q̃j) ≤ dist(p̃1, p̃m) + dist(p̃m, ̺) + dist(̺, q̃j) ≤

≤ 2d(
C

2
− 1) + d + d = Cd.

2

Corollary 6.4 Let G be a (finite or infinite) finitely presented group, and
k an integer number greater than 2. Assume that G has at least k elements.
Then either
(1) There exist at least k elements of G with complexity strictly less than k

2 ;
or
(2) The number k is even. There is at least one element of complexity k

2 ,

and there exist exactly k − 1 elements of complexity ≤ k
2 − 1. Moreover, in

this case G is isomorphic to one of the following groups: Z, ZN for some
N ≥ k, Z2 ∗ Z2, or Z2 ∗ Z2/{(ab)N} for some N ≥ k

2 , where a, b are the
non-trivial elements in the two copies of Z2.

Proof:. If not all of the elements of G have complexity < k
2 , then there

exists an element of complexity k
2 , if k is even, or k+1

2 , if k is odd. Arguing
as in the proof of Proposition 6.2 we see that in the second case G has k
elements of complexity ≤ k−1

2 . Assume now that k is even, and there exists

an element of complexity k
2 . Again, arguing as in the proof of Proposition

6.2 we see that there are at least k − 1 elements of complexity ≤ k
2 − 1.

Assume that all of the elements of G of complexity ≤ k
2 −1 are among these

k−1 elements constructed in the proof of Proposition 6.2. Then we see that
either (a) the element of complexity k

2 is a power of a generator a, each other
generator of G is equal to a or a−1, and, therefore G is cyclic; or (b) the
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element of complexity k
2 is represented by a word of the form aib . . ., where

b 6= a or a−1. In case (b) every other generator c must be equal to a, b or
their inverses. Furthermore, as there are exactly two elements of complexity
one a−1 must be equal to a, and b−1 to b. Therefore G is isomorphic either
Z2 ∗ Z2 or to some its quotient. It is easy to see that if G is a quotient of
Z2 ∗Z2, then this quotient must be isomorphic to < Z2 ∗Z2|(ab)N = e > for
N ≥ k

2 . 2

Proof of Theorem 1.4.. Let p̃ be a fixed lifting of p to the universal
covering M̃ of M . Tile M by fundamental domains such that their interiors
are the Voronnoi cells of points in the inverse image of p under the covering
map. These fundamental domains have radius d. All of them correspond to
different elements of G that acts as a group of covering transformations. If
p̃i corresponds to an element of G of a complexity l, then dist(p̃, p̃i) ≤ 2dl,
and if q̃i is the lifting of q that lies in the fundamental domain centered at p̃i,
then dist(p̃, q̃i) ≤ dist(p̃, p̃i)+dist(p̃i, q̃i) ≤ 2ld+d = (2l+1)d. Assume that
there exists k elements of G of complexity ≤ k−1

2 . Then we can connect p̃

with k liftings of q into M̃ at distances ≤ kd from p̃ by geodesics. Projecting
these geodesics to M we will obtain k distinct geodesics between p and q of
length ≤ kd, which are not even pairwise path homotopic.

Corollary 6.4 implies that it only remains to consider the cases, when G
is a cyclic group of infinite order or of order ≥ k, or when G is either Z2 ∗Z2

or its quotient < a, b|a2 = e, b2 = e, (ab)N = e >, N ≥ k
2 .

The proof of Proposition 2 in [NR0] implies the existence of k pairwise
non path-homotopic geodesics of length ≤ kd connecting p and q in the case,
when G is Z or ZN , N > k. Theorem 1.3 implies the desired assertion,

when G = Zk or, when G =< a, b|a2 = b2 = (ab)
k
2 = e >. It remains to

consider the cases when G = Z2 ∗ Z2 or Z2 ∗ Z2/{(ab)N}, N > k
2 . This can

be done using the method of the proof of Proposition 2 in [NR0] as follows:
To complete the proof in these remaining cases first note that there

are exactly k − 1 elements of G of complexity ≤ k
2 − 1, namely

e, a, b, ab, ba, . . . , (ab)
k
2
−1a, (ba)

k
2
−1b. If we consider the liftings of q into

the corresponding fundamental domains, connect them with p̃ by a minimal
geodesics, and project these geodesics back to M , the result will be k − 1
distict geodesics in M between p and q of length ≤ (k

2 −1)(2d)+d = (k−1)d.
It remains to construct one more geodesic between p and q of length ≤ kd.
We will prove that p̃ and the lifting of q in either the fundamental domain

corresponding to (ab)
k
2
−1a or to (ba)

k
2
−1b can be connected by a geodesic of

length ≤ kd. Note, that we are immediately guaranteed a geodesic between
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these points (for either of these two domains) of length ≤ k
2 (2d)+d = (k+1)d,

but we want to improve one of these two upper bounds by d. Of course, we
will immediately obtain the desired improvement if there exists a geodesic
between p̃ and a lifting of q in one of the fundamental domains corresponding
to elements of G of complexity between 2 and k

2 − 1 of length ≤ 2d. Indeed,
in this case we can connect p̃ and the center of this fundamental domain by
a path of length ≤ 3d (instead of at least 4d), and at least one of these two
upper bounds improves by d, as desired.

Therefore, we assume that the distances from p̃ to all liftings of q to
fundamental domains corresponding to elements of G of complexity between
2 and k

2 −1 are greater than 2d. Now realize a and b by geodesic loops la and
lb of length ≤ 2d based at p. Denote the midpoint of la by A. Connect A
and q by a minimizing geodesic γa. Denote two halves of l regarded as paths
between p and A by l1a, l2a. Consider paths l1a ∗ γa and l2a ∗ γa between
p and q. Apply a length non-increasing curve shortening process to both of
these paths. At the end we will obtain two geodesics between p and q of
length ≤ 2d. The liftings of these geodesics to M̃ can connect p̃ only with
liftings of q in the fundamental domains corresponding to e, a or b, as our
assumption implies that they are too short to reach liftings of q to other
fundamental domains. As the join of l1a ∗γa and γ̄a ∗ l̄2a is a loop homotopic
to a, the lifting of one of these two paths connects p̃ with the lifting of q
to the fundamental domain centered at p̃ and corresponding to e, and the
other, say l2a∗γa connects p̃ with the lifting of q into the fundamental domain

corresponding to a. Now consider the path (la∗lb)
k
2
−1∗l2a∗γa between p and

q. Its length does not exceed (2d)(k
2 − 1) + d + d = kd. This path lifts to a

geodesic between p̃ and the lifting of q corresponding to (ab)
k
2
−1a. Applying

to this path a curve-shortening process we will obtain the desired geodesic
between p̃ and the lifting of q to the fundamental domain corresponding to

(ab)
k
2
−1a of length ≤ kd. 2

7 Depth of local minima

We will start from the following definition:

Definition 7.1 Let γ be a path connecting two (not necessarily) distinct)
points p and q in Mn. Assume that γ is a local minimum of the length
functional on ΩpqM

n. Assume, further, that γ is NOT a global minimum of
the length functional on the connected component of ΩpqM

n that contains γ
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(and all paths path homotopic to γ). For every path homotopy F : [0, 1] −→
ΩpqM

n between γ and a path of length that is strictly smaller than the length
of γ define the level of F as the maximum of lengths of paths F (t) for
t ∈ [0, 1]. Define the level of γ as the infimum of levels of all path homotopies
between γ and a path of a smaller length. Define the depth of γ as the
difference between its level and length.

If γ is a global minimum of the length functional on its connected com-
ponent of ΩpqM

n, then we say that the level and the depth of γ are infinite.

We are going to present the following generalizations of Theorems 1.5,
1.1, 5.3:

Theorem 7.2 Let Mn be a closed Riemannian manifold of diameter d. Let
p and q be points in Mn, and S ≥ 2d a real number. Let γ(t) be a curve
of length L connecting points p and q. Assume that there exists an interval
(l, l + 2d], such that there is no geodesic loop based at p on Mn of length in
this interval that provides a local minimum of the length functional on ΩpM

n

of depth > S. Then there exists a curve γ̃(t) of length ≤ l + d connecting
p and q and a path homotopy between γ and γ̃ such that the lengths of all
curves in this path homotopy do not exceed L + (S − 2d).

Proof:. The proof is essentially the same as the proof of Theorem 1.5 with
the following modification: If we get stuck at a geodesic loop of length in
the interval (l, l + 2d + δ] which is a local minimum of the length functional
on ΩpM

n of depth ≤ S, we contract this loop to a point or to a geodesic
loop of length ≤ l by a path homotopy paying the price that the length
of curves during the general path homotopy increases by a summand ≤
max{S − 2d, 0}. 2

Using Theorem 7.2 in the proof of Theorem 1.1 instead of Theorem
1.5 we obtain:

Theorem 7.3 Let Mn be a closed Riemannian manifold of dimension n
and diameter d, p a point of Mn, k a positive integer number, S ≥ 2d a real
number. Then either:

1) There exist non-trivial geodesic loops based at p with lengths in every
interval (2(i − 1)d, 2id] for i ∈ {1, 2, ..., k}. Moreover these geodesic loops
are local minima of the length functional on ΩpM

n of depth > S;

or
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2) For every positive integer m every map f : Sm −→ ΩpM
n is homotopic to

a map g : Sm −→ Ω
((4k+2)m+(2k−5))d+(2m−1)S
p Mn. Furthermore, every map

f : (Dm, ∂Dm) −→ (ΩpM
n,Ω

((4k+2)m+(2k−5))d+(2m−1)S
p Mn) is homotopic to

a map g : (Dm, ∂Dm) −→ Ω
((4k+2)m+(2k−5))d+(2m−1)S
p Mn relative to ∂Dm.

Moreover, if for some L the image of f is contained in ΩL
p Mn, then the

homotopy between f and g can be chosen so that its image is contained
in ΩL+S

p Mn. In addition, for every L every map f from S0 to ΩL
p Mn is

homotopic to a map g from S0 to Ω
(2k−1)d
p Mn by a homotopy with the image

inside ΩL+S
p Mn.

Similarly,

Theorem 7.4 Let Mn be a closed Riemannian manifold of diameter d,
p, q, x be points of Mn, S ≥ 2d a real number. Assume that there
exists k ∈ N such that there is no geodesic of length in the interval
(dist(p, q) + (2k − 2)d, dist(p, q) + 2kd] joining p and q which is a local
minimum of the length functional on ΩpqM

n of depth > S. Then for ev-
ery positive integer m every map f : Sm −→ ΩpxM

n is homotopic to a
map f̃ : Sm −→ ΩL

pxM
n, where L = ((4k + 2)m + (2k − 5))d + (2m +

1)dist(p, q) + (2m − 1)S. Furthermore, every map f : (Dm, ∂Dm) −→

(ΩpxM
n,Ω

((4k+2)m+(2k−5))d+(2m+1)dist(p,q)+(2m−1)S
px Mn) is homotopic to a

map f̃ : (Dm, ∂Dm) −→ Ω
((4k+2)m+(2k−5))d+(2m+1)dist(p,q)+(2m−1)S
px Mn rel-

ative to ∂Dm. In addition, if for some R the image of f is contained in
ΩR

pxM
n, then one can choose the homotopy between f and f̃ so that its im-

age is contained in ΩR+S
px Mn. Also, in this case for every R every map

f : S0 −→ ΩR
pxM

n is homotopic to a map f̃ : S0 −→ Ω
(2k−1)d+dist(p,q)
px via a

homotopy passing through curves of length ≤ R + S connecting p and x.

Definition 7.5 Let Sp(M
n) denote the maximal depth of a non-trivial local

minimum of the length functional on Ω2d
p Mn. (The maximum exists as

the set of all loops of length ≤ 2d on Mn parametrized by the arclength is
compact.) Equivalently, we can define Sp(M

n) as the minimal number S
such that each loop λ based at p of length ≤ 2d is contractible via a path
homotopy passing through loops of length ≤ length(λ) + S. We will call
Sp(M

n) the depth of (Mn, p).

Apply Theorem 7.3 to S = Sp(M
n) and l = 0. By definition of Sp(M

n)
there are no local minima of the length functional on ΩpM

n with length in
the interval (0, 2d] and depth > Sp(M

n). Therefore,
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Theorem 7.6 Let Mn be a closed Riemannian manifold with diameter d,
p a point of Mn, S the depth of (Mn, p), and m a positive integer num-
ber. Then every map f : Sm −→ ΩpM

n is homotopic to a map f̃ :

Sm −→ Ω
(6m−3)d+(2m−1)S
p Mn. Furthermore, every map f : (Dm, ∂Dm) −→

(ΩpM
n,Ω

(6m−3)d+(2m−1)S
p Mn) is homotopic to a map f̃ : (Dm, ∂Dm) −→

Ω
(6m−3)d+(2m−1)S
p Mn relative to ∂Dm. In addition, if for some R the image

of f is contained in ΩR
p Mn, then one can choose the homotopy between f

and f̃ so that its image is contained in ΩR+S
p Mn. Also, for every R > 0

every map f : S0 −→ ΩR
p Mn is homotopic to a map f̃ : S0 −→ Ωd

pM
n by a

homotopy with the image inside ΩR+S
p Mn.

8 Quantitative Morse theory on loop spaces.

The quantitative Morse theory on loop spaces was initiated in [Gr0] (see also
ch. 7 of [Gr]). It studies injectivity and surjectivity properties of homomor-
phisms in homology induced by the inclusions of sublevel sets of the length
functional on a loop space into the loop space. Here is the main result which
is a part of Theorem 7.3 in [Gr]:

Theorem 8.1 (M. Gromov) For every closed simply-connected Rieman-
nian manifold Mn and a point p ∈ Mn there exists a constant C such that for
every positive integer m the inclusion ΩCm

p Mn into ΩpM
n induces surjective

homomorphisms Hi(Ω
Cm
p Mn) −→ Hi(ΩpM

n) for all i ∈ {0, 1, . . . ,m}.

In other words, for every m ≥ 1 all m-dimensional homology classes of
ΩpM

n can be realized by cycles “made” out of loops of length ≤ Cm based
at p. To prove this theorem Gromov demonstrated that there exists C such
that for every m there exists an explicit finite dimensional CW-subcomplex
Xm ⊂ ΩCm

p ⊂ ΩpM
n such that every map of every m-dimensional CW-

complex Y into ΩpM
n is homotopic to a map of Y into Xm.

He did not estimate C in his proof. Yet it is easy to see that his proof
yields an upper bound for C in terms of the following quantity that we will
denote Wp(M

n): This quantity is defined as the minimal w such that every
loop of length ≤ 2d based at p can be contracted to p by a path homotopy
H such that the length of the trajectory H(x, t), t ∈ [0, 1], of every point
x ∈ γ during H does not exceed w.

In other words, denote the minimal T such that the inclusion homomor-
phisms πi(Ω

T
p Mn) −→ πi(ΩpM

n) are surjective for all i ∈ {0, 1, . . . ,m} by
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TMn,p(m). (Whether to use the homology or the homotopy groups in this
definition is ametter of taste; the resulting notions are equivalent.) Then
the original proof of Gromov implies that TMn,p(m) ≤ Cm, and one can use
the proof to get an upper bound for C in terms of Wp(M

n). (Gromov also
notes that TMn,p(m) ≥ cm for some c > 0.)

On the other hand our Theorem 7.6 has the following immediate corol-
lary:

Theorem 8.2 Let Mn be a closed simply-connected Riemannian manifold
of diameter d, p a point of Mn, and S the depth of (Mn, p) (see Definition
7.5). Then

A. For every positive integer m the inclusion homo-

morphisms πi(Ω
(6m−3)d+(2m−1)S
p Mn) −→ πi(ΩpM

n) are surjective for all
i ∈ {0, 1, . . . ,m}. Equivalently, every map of a m-dimensional polyhedron

X to ΩpM
n is homotopic to a map of X into Ω

(6m−3)d+(2m−1)S
p Mn.

B. Let m be any non-negative integer number, R > 0 a real number. If
a map f : Sm −→ ΩR

p Mn is contractible, then it can be contracted within

Ω
max{R,(6m+3)d+2mS}+S
p Mn.

Proof:. Part A can be proven by a straightforward application of Theorem
7.4. To prove part B we first apply Theorem 7.4 to homotop f to a (con-

tractible) map f̃ of Sm into Ω
(6m−3)d+(2m−1)S
p Mn inside ΩR+S

p Mn, if m > 0
and R > (6m−3)d+(2m−1)S. If m > 0 and R ≤ (6m−3)d+(2m−1)S, or
m = 0 and R ≤ d we just take f̃ = f . If m = 0 and R > d we use Theorem
7.4 to homotop f to a map f̃ with the image in Ωd

pM
n inside ΩR+S

p Mn.

Then we consider a homotopy F that contracts f̃ . We regard F as

a map of (Dm+1, ∂Dm+1) −→ (ΩpM
n,Ω

(6m−3)d+(2m−1)S
p Mn), if m > 0,

or (Dm+1, ∂Dm+1) −→ (ΩpM
n,Ωd

pM
n) if m = 0. Now we again ap-

ply Theorem 7.4 to replace F by a homotopy F̃ with the image inside

Ω
(6(m+1)−3)d+(2(m+1)−1)S
p Mn = Ω

(6m+3)d+(2m+1)S
p Mn. Now we see that the

combination of the homotopies from f to f̃ and the contracting homotopy
F̃ takes place in ΩR̃

p Mn, where R̃ = max{R + S, (6m + 3)d + (2m + 1)S} =
max{R, (6m + 3)d + 2mS} + S. 2

As S ≥ 2d, for every m ≥ 1 (6m + 3)d+ (2m + 1)S ≤ 7.5mS. Therefore,
Theorem 8.2 implies that TMn,p(m) ≤ 7.5Sp(M

n)m. Thus, we obtain the
following corollary:
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Theorem 8.3

TMn,p(m) ≤ 7.5Sp(M
n)m.

To compare our upper bound for TMn,p(m) with the upper bound that
follows from the original proof of Theorem 8.1 given by Gromov (see ch.
7 of [Gr]) observe, that according to [NR] Sp(M

n) ≤ 2Wp(M
n) + 2d, and

as Wp(M
n) is, obviously, greater than or equal to d, Sp(M

n) ≤ 4Wp(M
n).

(The inequality Sp(M
n) ≤ 2Wp(M

n)+2d immediately follows from the fact
that any homotopy contracting a curve γ of length L to a point p, such
that the length of the trajectory of every point does not exceed W , can
be converted into a homotopy where the length of curves does not exceed
2W + l. The idea is very simple: One first moves only a very small interval
of γ, so that only its central part reaches p. Then we gradually expand
the “tooth”. At every stage only a very short interval of γ is being homo-
toped towards p.) On the other hand, known upper bounds for Wp(M

n)
in terms of Sp(M

n) involve also the injectivity radius of Mn (or the con-
tractibility radius, or, at least, the simply connectedness radius of Mn) -

and are also exponential in
Sp(Mn)
inj(Mn) (see [NR]). Also, although we did not

check the details, the examples constructed in the proof of Theorem 1.2 of
[P] seem to demonstrate that Wp(M

n) can, indeed, be exponentially larger
than Sp(M

n) even in situations, when the simply-connectedness radius is

∼ 1. Thus, our upper bound 7.5Sp(M
n) for supm

TMn,p(m)
m

in Theorem 8.3
seems to be qualitatively better than an upper bound following from the
original proof.
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