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Poincar6 has posed the problem as to whether every simply connected 
closed 3-manifold (triangulated) is homeomorphic to the 3-sphere, see [I81 
for example. This problem, still open, is usually called Poincar6's conjec- 
ture. The generalized Poincar6 conjecture (see [ l l ]  or [28] for example) 
says that  every closed n-manifold which has the homotopy type of the n- 
sphere Snis homeomorphic to the n-sphere. One object of this paper is 
to prove that  this is indeed the case if n 2 5 (for differentiable manifolds 
in the following theorem and combinatorial manifolds in Theorem B). 

THEOREMA. Let M "  be a closed C" manifold which has the homotopy 
type of S", n 2 5. Then M n  i s  homeomorphic to S".  

Theorem A and many of the other theorems of this paper were announ- 
ed in [20]. This work is written from the point of view of differential 
topology, but we are also able to obtain the combinatorial version of Theo- 
rem A. 

THEOREMB. Let M" be a combinatorial manifold which has the homo- 
topy of S",n 2 5. Then M" is homeomorphic to S". 

J. Stallings has obtained a proof of Theorem B (and hence Theorem A) 
for n 2 7 using different methods (Polyhedral homotopy-spheres, Bull. 
Amer. Math. Soc., 66 (1960), 485-488). 

The basic theorems of this paper, Theorems C and I below, are much 
stronger than Theorem A. 

A nice function f on a closed C" manifold is a C" function with non-
degenerate critical points and, a t  each critical point /3, f(P) equals the in- 
dex of p. These functions were studied in [21]. 

THEOREMC. Let M" be a closed C" manifold which i s  (m - 1)-con-
nected, and n 2 2m, (n,  m) f (4, 2). Then there i s  a nice function f on 
M with type numbers satisfying M, = M ,  = 1and Mi = 0 fo r  0 <i<m,  
n - m < i < n .  

Theorem C can be interpreted as stating that  a cellular structure can 
be imposed on M" with one 0-cell, one n-cell and no cells in the range 
0<i<m, n - m <i<n. We will give some implications of Theorem C. 

*The author is an  Alfred P. Sloan Fellow. 
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First, by letting m = 1 in Theorem C, we obtain a recent theorem of 
M. Morse [13].  

THEOREMD. L e t  M n  be a closed connected C" m a n i f o l d .  There  ex i s t s  
a (n ice )  non-degenerate f u n c t i o n  o n  M w i t h  jus t  one local r n a x i m z ~ m  
a n d  one local minimum. 

In 9 1 ,  the  handlebodies, elements of X(n,k ,  s )  are defined. Roughly 
speaking if Hc X(n,k ,  s ) ,  then H is defined by attaching s-disks, k in 
number, to the n-disk and "thickening" them. By taking n = 2 m  + 1 
in Theorem C ,  we will prove the  following theorem, which in the  case of 
3-dimensional manifolds gives the  well known Heegard decomposition. 

THEOREMF. L e t  M be a closed C" ( 2 m+ 1) -mani fo ld  which  i s  ( m - 1 ) -  
connected. T h e n  M = H U H',  H n H' = OH = OH' where H, H' E 
X ( 2 m  + 1 ,  k ,  m)a r e  handlebodies (0V m e a n s  the boundary  of the  m a n i -  
fold V ) .  

By taking n = 2 m  in Theorem C, we will get  the following. 

THEOREMG. L e t  M2" be a closed (m- 1)-connected C" m a n i f o l d ,  m 1:2. 
T h e n  there i s  a nice  f u n c t i o n  o n  M whose t ype  n u m b e r s  equal the  cor- 
responding B e t t i  n u m b e r s  of M .  F u r t h e r m o r e  M ,  w i t h  the i n t e r i o r  of 
a 2m-d isk  deleted, i s  a handlebody, a n  element of X ( 2 m ,  k ,  m) where k 
i s  the mthBet t i  n u m b e r  of M. 

Note that  the first part of Theorem G is an  immediate consequence of 
the Morse relation that  the Euler characteristic is the alternating sum of 
the type numbers [12],and Theorem C. 

The following is a special case of Theorem G. 

THEOREMH. L e t  M2" be a closed C- m a n i f o l d  m # 2 of the  homotopy 
type  of S2". T h e n  there ex i s t s  o n  M a  non-degenerate f u n c t i o n  w i t h  one 
m a x i m u m ,  one minimum, a n d  n o  other cr i t i ca l  point.  T h u s  M i s  the  
u n i o n  of t w o  2m-disks  whose intersect ion i s  a submani fo ld  of M,difleo-
morphic  to  S2"-'. 

Theorem H implies the part of Theorem A for even dimensional homo- 
topy spheres. 

Two closed C" oriented n-dimensional manifolds M I  and M, are J-equiv-
alent  (according to Thom, see [25] or [ l o ] )if there exists an  oriented 
manifold V with O V diffeomorphic to the disjoint union of M ,  and -M,, 
and each Miis a deformation retract of V. 

THEOREMI. Let  MI a n d  M ,  be (m- 1)-connected oriented closed 
C- (2m+l) -d imens ional  m a n i f o l d s  which  a r e  J-equivalent ,  m f l .  T h e n  
M I  and  M, a r e  di f feomorphic .  



393 PO IN CAR^ CONJECTURE 

We obtain an  orientation preserving diffeomorphism. If one takes MI 
and M, J-equivalent disregarding orientation, one finds that  MI and M2 
are diff eomorphic. 

In studying manifolds under the  relation of J-equivalence, one can use 
the methods of cobordism and homotopy theory, both of which are fairly 
well developed. The importance of Theorem I is that  i t  reduces diffeo- 
morphism problems to J-equivalence problems for a certain class of mani- 
folds. It is an open question as to  whether arbitrary J-equivalent 
manifolds are diffeomorphic (see [lo,  Problem 5])(Since this was written, 
Milnor has found a counter-example). 

A short argument of Milnor [lo, p. 331 using Mazur's theorem [7] ap- 
plied to Theorem I yields the odd dimensional part of Theorem A. In fact 
i t  implies that ,  if M2"-' is a homotopy sphere, m f 1,then M2"" minus 
a point is diffeomorphic to euclidean (2m-t-1)-space (see also [9,p. 4401). 

Milnor [lo] has defined a group X'bf C" homotopy n-spheres under 
the relation of J-equivalence. From Theorems A and I ,  and the work of 
Milnor [I01 and Kervaire [5], the following is an  immediate consequence. 

THEOREMJ. If n is  odd, n f 3, X n i s  the group of classes of a l l  dif- 
ferentiable structures on S n  under the equivalence of difeomorphism. 
For  n odd there a r e  a Jinite number of diferentiable structures on S " .  
For  example: 

n 1 3 1 5 7 1 9 1 1 1 1 1 3 1 5  

Number of Differentiable 
Structures on S n  / 0 1 28 1 8 1 992 1 3 / 16256 

0 

Previously i t  was known tha t  there are a countable number of differen- 
tiable structures on S n  for all n (Thom), see also [9, p. 4421; and unique 
structures on S "  for n 5 3 (e.g., Munkres [14]). Milnor [8] has also es- 
tablished lower bounds for the  number of differentiable structures on S"  
for several values of n .  

A group I'" has been defined by Thom [24] (see also Munkres [14] and 
Milnor [9]). This is the group of all diffeomorphisms of Sn-' modulo those 
which can be extended to the  n-disk. A group A" has been studied by 
Milnor as  those structures on the  n-sphere which, minus a point, are dif- 
feomorphic to euclidean space [9]. The group I'" can be interpreted (by 
Thom [221 or Munkres [14]) as the  group of differentiable structures on S n  
which admit a C" function with the  non-degenerate critical points, and 
hence one has the inclusion map i: IT" -A" defined. Also, by taking J -  
equivalence classes, one gets a map p: An-- Xn.  
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THEOREMK. With notation as  i n  the preceding paragraph, the follow- 
ing sequences a r e  exact: 

(a) A " & ~ C " - 0 ,  n f 3 , 4  

(b) IT" -A" -0 , n even f 4 

(c) O - A " - % ~ L - ~ ,  nodd  f 3 .  

Hence, if n is even, n f 4, rn= An and, if n is odd f 3, An = 3". 
Here (a) follows from Theorem A, (b) from Theorem H, and (c) from 

Theorem I. 
Kervaire [4] has also obtained the following result. 

THEOREML. There exists a manifold with no diferentiable structure 
a t  all.  

Take the manifold Wo of Theorem 4.1 of Milnor [lo] for k = 3. Milnor 
shows O Wo is a homotopy sphere. By Theorem A, O Wo is homeomorphic 
to S". We can attach a 12-disk to W, by a homeomorphism of the bound- 
ary onto O Wo to obtain a closed 12 dimensional manifold M. Starting with 
a triangulation of Wo, one can easily obtain a triengulation of M. If M 
possessed a differentiable structure i t  would be almost parallelizable, since 
the obstruction to almost parallelizability lies in H6(M, 7i,(SO (12)))=O.  But 
the index of M is 8 and hence by Lemma 3.7 of [lo] M cannot possess any 
differentiable structure. Using Bott's results on the homotopy groups of 
Lie groups [I], one can similarly obtain manifolds of arbitrarily high di- 
mension without a differentiable structure. 

THEOREMM. Let C" be a contractible manifold, m f  2, whose bound- 
a r y  is  simply connected. Then C2" i s  difeomorphic to the 2m-disk. This 
implies that diferentiable structures on disks of dimension 2m, m # 2, 
a r e  unique. Also the closure of the bounded component C of a C" im- 
bedded (2m - 1)-sphere i n  euclidean. 2m-space, m f 2, i s  difeomorphic 
to a disk. 

For these dimensions, the last statement of Theorem M is a strong 
version of the Schoenflies problem for the differentiable case. Mazur's 
theorem [7] had already implied C was homeomorphic to the  2m-disk. 

Theorem M is proved as follows from Theorems C and I. By Poincar6 
duality and the  homology sequence of the pair (C, OC), i t  follows that  OC 
is a homotopy sphere and J-equivalent to zero since i t  bounds C. By 
Theorem I ,  then, OC is diffeomorphic to S".  Now attach to C2" a 2m-disk 
by a diffeomorphism of the boundary to obtain a differentiable manifold 
V. One shows easily tha t  V is a homotopy sphere and, hence by Theorem 
H, V is the  union of two 2m-disks. Since any two 2m sub-disks of V are 



equivalent under a diffeomorphism of V(for example see Palais [17]), the 
original C2" c V must already have been diffeomorphic to the  standard 
2m-disk. 

To prove Theorem B, note tha t  V = ( M  with the interior of a simplex 
deleted) is a contractible manifold, and hence possesses a differentiable 
structure [Munkres 151. The double W of V is a differentiable manifold 
which has the homotopy type of a sphere. Hence by Theorem A, W is a 
topological sphere. Then according to Mazur [7], 8 V, being a differentiable 
submanifold and a topological sphere, divides W into two topological cells. 
Thus V is topologically a cell and M a topological sphere. 

THEOREMN. Let  C2", m # 2, be a contractible combinatorial m a n i f o l d  
whose boundary i s  s i m p l y  connected. T h e n  C2" i s  combinatorial ly  equiv-  
alent to  a s implex .  Hence the H a u p t v e r m u t u n g  (see [ I l l )  holds f o r  
combinatorial m a n i f o l d s  which  are  closed cells in these d imens ions .  

To prove Theorem N, one first applies a recent r_r:sult of M. W. Hirsch 
[3] to obtain a compatible differentiable structure on C". By Theorem 
M, this differentiable structure is diffeomorphic to the 2m-disk D2". Since 
the standard 2m-simplex 02"is a C1 triangulation of D2", Whitehead's 
theorem [27] applies to yield that  C2" must be combinatorially equivalent 
to oZnL. 

Milnor first pointed out that  the following theorem was a consequence 
of this theory. 

THEOREM0. L e t  M2", m f 2, be a combinatorial m a n i f o l d  which  h a s  
the same homotopy type  a s  S2". T h e n  M2" i s  combinatorial ly  equivalent  
to  S2". Hence, in these d imens ions ,  the H a u p t v e r m u t u n g  holds f o r  
spheres. 

For even dimensions greater than four, Theorems N and 0 improve 
recent results of Gluck [2]. 

Theorem 0 is proved by applying Theorem N to the  complement of the 
interior of a simplex of M2". 

Our program is the  following. We introduce handlebodies, and then 
prove "the handlebody theorem" and a variant. These are used together 
with a theorem on the  existence of "nice functions" from [21] to prove 
Theorems C and I ,  the basic theorems of the  paper. After that ,  i t  re- 
mains only to finish the  proof of Theorems F and G of the Introduction. 

The proofs of Theorems C and I are  similar. Although they use a fair 
amount of the  technique of differential topology, they are, in a certain 
sense, elementary. I t  is in their application tha t  we use many recent re- 
sults. 
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A slightly different version of this work was mimeographed in May 
1960. In this paper J. Stallings pointed out a gap in the proof of the  
handlebody theorem (for the  case s = l ) .  This gap happened not to affect 
our main theorems. 

Everything will be considered from the  C" point of view. All imbed-
dings will be C". A differentiable isotopy is a homotopy of imbeddings 
with continuous differential. 

En= {X = (x,, .,x,)), 1 1  x 1 = (C::,x:)"" 
D" = {XE En/ 1 1  x 1 1  5 I),ODn = Sn-I= {X€ En 1 1 1  x jl = 1) ; 

D f  etc. are copies of D n .  

A. Wallace's recent article [26] is related to some of this paper. 

1. Let M" be a compact manifold, Q a component of OM and 

f,:OD:xDP-" Q , i =  l , . . . , k  

imbeddings with disjoint images, s 2 0, n 2 s. We define a new compact 
C" manifold V = x(M, Q; f l ,  .. ,fk ;  s) as follows. The underlying topo-
logical space of V is obtained from M, and the  D: x D f - 9 y  identifying 
points which correspond under some f i .  The manifold thus defined has a 
natural differentiable structure except along corners OD; x OD;-" for each 
i. The differentiable structure we put on V is obtained by the process 
of "straightening the  angle" along these corners. This is carried out in 
Milnor [lo] for the  case of the product of manifolds W, and W, with a 
corner along O W,x O W,. Since the local situation for the  two cases is es-
sentially the same, his construction applies to give a differentiable struc-
ture on V. He shows that  this structure is well-defined up to diffeomor-
phism. 

If Q = OM we omit i t  from the  notation x(M, Q; f,, ..,fk;  s), and we 
sometimes also omit the s. We can consider the  "handle" Dg x D r - T  V 
as differentiably imbedded. 

The next lemma is a consequence of the  definition. 

(1.1) LEMMA.Let f i :  aD:x D;-'-+Q and  f l: aD; x D;-"--Q, i = l , .  ..,k 
be two sets of imbeddings each with disjoint images, Q, M a s  above. 
Then x(M, Q;f,, .. ,fk;  s) and x(M, Q; f :, .,f L; s) a r e  difeomorphic if 

(a) there i s  a difeomorphism h: M -- M such that f t = hf,, i = 1 , .  ., 
k; or  

(b) there exist difeomorphisms hi: D" Dn-" D x Dn-"such that 
f: =f,h,, i = 1,  . , k; or 

(c) the f: a r e  permutations of the fi. 

If V is the manifold x(M, Q; f,, .,fk;  s), we say o= (M, Q;fl ,  .,f,;s)  
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is a presentation of V. 
A handlebody is a manifold which has a presentation of the  form 

(Dn;f,, . .,f,; s). Fixing n ,  k, s the  set of all handlebodies is denoted by 
X ( n ,  k, s). For example, X ( n ,  k, 0) consists of one element, the  disjoint 
union of (k+  1)n-disks; and one can show X(2, 1 , l )  consists of S1x I and 
the Mobius strip, and X(3, k, 1) consists of the  classical handlebodies [19; 
Henkelkorper], orientable and non-orientable, or a t  least differentiable 
analogues of them. The following is one of the  main theorems used in 
the  proof of Theorem C. An analogue in 5 5 is used for Theorem I. 

(1.2) HANDLEBODYTHEOREM. Let n 2 2s + 2 and,  if s = 1,  n 2 5; 
let H e  X ( n ,  k, s), V = x(H; fl ,  . - ,f,; s + I ) ,  and  ic,(V) = 0. Also, if 
s = 1,  assume ic,(~(H;fl ,  .-,f r -k;2)) = 1. Then VEX(^, r - k, s + 1). 
(We do not know if the special assumption for s = 1is necessary.) 

The next three sections are devoted to a proof of (1.2). 

2 .  Let G, =G,(s) be the  free group on r generators Dl, . , D, if s =1, 
and the free abelian group on r generators Dl, , D, if s > 1. If o = 

(M, Q; f,, .- a ,  f,; s + 1) is a presentation of a manifold V, define a homo-
morphism f,: G, -- x,(Q) by f,(D,) = cp,, where p, 5 xs(Q)is the  homotopy 
class of L:OD"-' x 0-Q, the restriction of f,. To take care of base points 
in case isl(&)# 1,  we will fix x, c OD" x 0, yo e Q, Let U be some cell 
neighborhood of yoin Q, and assume f,(x,) e U. We say that  the  homomor-
phism f, is induced by the  presentation o. 

Suppose now that  F :  G, -- is,(&) is a homomorphism where Q is a com-
ponent of the  boundary of a compact n-manifold M. Then we say that  a 
manifold V realizes F if some presentation of V induces F. Manifolds 
realizing a given homomorphism are not necessarily unique. 

The following theorem is the  goal of this section. 

(2.1) THEOREM.Let n 2 2s + 2, and  if s = l , n  2 5; let o = (M,Q;  
f,, .,f,;s + 1) be a presentation of a manifold V, and  assume ic,(Q)= 
1 if n = 2s + 2. Then for  any automorphism a: G, -G,, V realizes 
fva. 

Our proof of (2.1) is valid for s = 1 ,  but we have application for the  
theorem only for s > 1. For the  proof we will need some lemmas. 

(2.2) LEMMA.Let Q be a component of the boundary of a compact 
manifold Mnand  f,: OD% Dn-Q Q a n  imbedding. Let L:OD% 0 -Q 
be a n  imbedding, diferentiably isotopic i n  Q to the restriction f,of fl 

to OD8x 0. Then there exists a n  imbedding f,: OD" D D L Q  extending 
and a difleomorphism. h: M -M such that hf, =f,. 
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PROOF. Let  f,:ODs x 0 -- Q, 15 t 5 2, be a differentiable isotopy be-
' 

tween and J",. Then by the covering homotopy property for spaces of 
differentiable imbeddings (see Thom [23] and R. Palais, Comment. Math. 
Helv. 34 (1960)), there is a differentiable isotopy F,: ODSx Dn-S-Q, 
15 t 5 2, with Fl =f, and F, restricted to OD% 0 =x.Now by apply-
ing this theorem again, we obtain a differentiable isotopy G,: M- M, 
15 t 5 2, with Gl equal the  identity, and G, restricted to image FlequaI 
F,F;". Then taking h = G;l, F, satisfies the  requirements of f, of (2.2); 
i.e., hf, = G;'F, = F,F;'F, =fl. 

(2.3) THEOREM(H. Whitney, W.T. Wu). Let n 2 max (2k+ 1 , 4 )  and  
f ,  g: M k-X n  be two imbeddings, M closed, M connected a n d  X simply 
connected if n = 2k + 1. Then, iff and  g a r e  homotopic, they a r e  dif-
ferentiably isotopic. 

Whitney [29] proved (2.3) for the  case n 2 2k + 2. W. T. Wu [30] (us-
ing methods of Whitney) proved i t  where X* was euclidean space, n = 
2k + 1. His proof also yields (2.3) as  stated. 

(2.4) LEMMA.Let Q be a component of the boundary of a compact 
manifold M", n 2 2s + 2 and  if s = 1,  n 2 5, and  is,(&) = 1 if n = 

2s + 2. Let fl:ODs-"x Dn-"l -Q be a n  imbedding, and  z:ODH1x 0-Q 
a n  imbedding homotopic i n  Q to A,the restriction of flto OD"" x 0. Then 
there exists a n  imbedding f,: OD"" x D*-"' -Q extending z such that  
x(M, Q: f,) i s  difeomorphic to x(M, Q; fl). 

PROOF. By (2.3), there exists a differentiable isotopy between f, and 
2. Apply (2.2) to get  f,: ODST1x Dm-"-' -- Q extending f,, and a diffeo-
morphism h: M -M with h f, = fl. Application of (1.1) yields the  de-
sired conclusion. 

See [16] for the following. 

(2.5) LEMMA (Nielson). Let G be a free group on r-generators 
{Dl, . ,D,), and A the group of automorphisms of G. Then A i s  gen-
erated by the following automorphisms: 

R :  Dl- D;', Di-Di i > l  

T,: Dl -+Di, Di --) Dl , D, -- D j  j f  1 , j f  i , i = 2 , . . - , r  

The same i s  t rue  for the free abelian case (well-known). 
I t  is sufficient to prove (2.1) with a replaced by the  generators of A of 

(2.5). 
First take a = R. Let h: Ds-" x DnPsP"--) Ds-I x DnPSP1be defined by 
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h(x, y) = ( r ,  x, y) where r: D"' -DS+lis a reflection through an  equa-
torials-plane. Thenlet  f: =flh. If o r =  (M, Q; f:, f,, . . a ,  f,; s + l ) ,  ~ ( 0 ' )  
is diffeomorphic to V by (1.1). On the  other hand x(or)realizes f,, =fua. 

The case a = T, follows immediately from (1.1). So now we proceed 
~Ptkthep~& o%(11)witk n--- S. 

Define V, to be the manifold x(M, Q; f2,  ...,f,; s + 1)  and let Q, cOVl 
be Q, =O V, - (OM-Q). Let 9 ,  e is,(&), i = 1,  , r denote the homotopy 
class of fi:OD;-' x 0 -Q, the  restriction of fi. Let Y:is,(& n Q,) -x,(Q) 
and 6:x,(Q n Q,) --+x,(Q,) be the  homomorphisms induced by the respec-
tive inclusions. 

(2.6) LEMMA.With notations and conditions as  above, 9, e YKer P. 
PROOF. Let q e and +:OD;" x q -Q nQ1be the  restriction of 

f,. Denote by $ e x,(Q nQ1)the homotopy class of +. Since + and are 
homotopic in Q, r+ = q,. On the  other hand P$ =0, thus proving (2.6). 

By (2.6), let $ e x,(Q n Q,) with r+ = q2and P+ = 0. Let g = y ++ 
(or y$ in case s = 1; our terminology assumes s >1) where y e is,(& nQ,) 
is the homotopy class of 7,:ODsT1x 0 -Q nQ,. Let g: ODp1 x 0 -Q n Q, 
be an imbedding realizing g (see [29]). 

If n = 2s + 2, then from the fact that  is,(&) = 1,  i t  follows tha t  also 
x,(Q,) = 1. Then since g and f,are homotopic in Q,, i.e., Pg = Py, (2.4) 
applies to yield an  imbedding e: OD"" x Dn-"I-- Q, extending g such tha t  
X(V,, Q,; e) and x( V,, Q,; f,) are diffeomorphic. 

On one hand V = x(V, Q;f , , . . . ,  f,) = x(V1,Q,;f,) and, on the  other 
hand, x(V, Q; e, f,, - - - ,f,) = x(V,, Q,; e), so by the preceding statement, 
V and X(V, Q; e, f,, ..,f,) are diffeomorphic. Since r g  =g, +g,, f,a(D,) = 
fu(Dl + 4 )  = g1 + ga, fb(D1) = gD1 = g1 + g,, fua= f u n ,  where or  = 

( V, Q; e, f,, .,f,). This proves (2.1). 

3. The goal of this section is to prove the  following theorem. 

(3.1) THEOREM.Let n 2 2s + 2 and,  if s = 1,  n 2 5.  Suppose H e 
X(n ,  k, s). Then given r 2 k, there exists a n  epimorphism g: G, -
is,(H) such that every realization of g i s  i n  X ( n ,  r - k, s + 1). 

For the proof of 3.1, we need some lemmas. 

(3.2) LEMMA.If X ( n ,  k, s) then x,(H) i s  
(a) a set of k + 1elements if s = 0, 
(b) a free group on k generators if s = 1 ,  
(c) a free abelian group on k generators if s > 1. 

Furthermore if n 2 2s + 2, then ic,(OH) -- x,(H) i s  a n  isomorphism for  
i 5 s. 

PROOF. We can assume s > 0 since, if s =0, H is a set of n-disks k + l  
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in number. Then H has as a deformation retract in an  obvious way the  
wedge of k s-spheres. Thus (b) and (c) are true. For the  last statement 
of (3.2), from the exact homotopy sequence of the pair (H, OH), i t  is suf- 
ficient to show that  is,(H, OH) = 0, i 5 s + 1. 

Thus let f : (Dl, ODi) - (H, OH) be a given continuous map with i d 
s + 1. We want to construct a homotopy f,: (Di ,  OD1) - (H, OH) with 
f o  = f and fl(D"cOH. 

Let f,: (D" OD1)+(H, OH) be a differentiable approximation to  f. Then 
by a radial projection from a point in D n  not in the  image off,, f, is homo- 
topic to a differentiable map f,: (Di,  ODZ) - (H, OH) with the  image off ,  
not intersecting the interior of D m c H .  Now for dimensional reasons f, 
can be approximated by a differentiable map f,: (D" OD1)-(H, OH) with 
the image off, not intersecting any D,' x O c  H. Then by other projections, 
one for each i ,  f, is homotopic to a map f,: (D" ODi) - (H, OH) which 
sends all of Dl into OH. This shows z,(H, OH) = 0, i 5 s + 1,  and proves 
(3.2). 

If /i? - s)-cell bundle over S q e t e r -  e is,-,(0(n s)), let H, be the  (n  -
mined by P. 

(3.3) LEMMA.Suppose V = x(H,; f ;s + 1) where P e z,_,(O(n - s)), 
n 2 2s + 2, or  if s = 1,  n 2 5 .  Let also z,(V) = 0. Then V is diffeo-
rnorphic to Dn .  

PROOF.The zero-cross-section a: S" H, is homotopic to  zero, since 
n,(V) = 0, and so is regularly homotopic in V to a standard s-sphere Si 
contained in a cell neighborhood by dimensional reasons [29]. Since a reg- 
ular homotopy preserves the  normal bundle structure, o ( S 7  has a trivial 
normal bundle and thus P = 0. Hence H p  is diffeomorphic to  the  product 
of S"nd Dm-,. 

Let o,: S" OHpbe a differentiable cross section and f: ODs" x 0-OH, 
the restriction of f : OD"-' x Dm-"-' --OH,. Then o, and f are homotopic 
in OHp (perhaps after  changing f by a diffeomorphism of D W 1 x  Dn-"-' 
which reverses orientation of ODG+' x 0) since zs(V)  = 0, and hence dif- 
ferentiably isotopic. Thus we can assume $and s, are the  same. 

Let f, be the  restriction of f to  ODH1x D:-"-' where D:-"-' denotes 
the disk {x 3 Dm-"-' / I I x / / S E ) ,  and E >O.  Then the imbedding g,: ODG1 x 
D"--1 -- OH, is diff erentiably isotopic to f where g,(x, y) =f,r,(x, y) and 

re(%, y) = (x, ~ y ) .  Define k,: ODw+' x Dm-"-' -- OH, by p,g,(x, y) where p,: 
g,(x x Dn-'-l) F, is projection into the fibre F, of OH, over o-'g,(x, 0). + 

If E is small enough, k, is well-defined and an imbedding. In  fact  if E is 
small enough, we can even suppose tha t  for each x, k, maps x x Dn-'-' 
linearly onto image k, n F, where image k, n F, has a linear structure 



induced from F,. 
It can be proved k ,  and g, are  differentiably isotopic. (The referee has 

remarked tha t  there is a theorem, Milnor's "tubular neighborhood 
theorem", which is useful in this connection and can indeed be used to 
make this proof clearer in general.) 

We finish the proof of (3.3) as follows. Suppose V is as in (3.3) and 
V'= x(H,; f '; s + I) ,  n,(Vr) = 0. I t  is sufficient to  prove V and V' are 
diffeomorphic since i t  is clear that  one can obtain D" by choosing f '  prop-
erly and using the fact that  H, is a product of SQnd Dm-\ From the  
previous paragraph, we can replace f and f '  by k, and kE with those prop-
erties listed. We can also suppose without loss of generality that  the  
images of k, and k: coincide. It is now sufficient to find a diffeomorphism 
h of iYp with hf =f '. For each x, define h on image fn F, to  be the  linear 
map which has this property. One can now easily extend h to  all of H, 
and thus we have finished the  proof of (3.3). 

Suppose now M," and M," are compact manifolds and f,: D"-' x i -+ OM, 
are imbeddings for i = 1and 2. Then x(M, U M,; f lU f,; 1)  is a well de-
fined manifold, where flUf,: OD1xn"-'-OMl U OM, is defined by fland f,, 
the set of which, as the  f ,  vary, we denote by M, + M,. (If we pay at-
tention to  orientation, we can restrict MI +M, to have but one element.) 
The following lemma is easily proved. 

(3.4) LEMMA.The set M n  + D n  consists of one element, nameld M " .  

(3.5) LEMMA.Suppose a n  imbedding f: OD" Dn-"O M 1 5 i  null-
homoto~icwhere M i s  a compact manifold, n 2 2s + 2 and,  if s = 1,  
n 2 5. Then x(IM;f )  e M + H, for some ,I3 E z,-,(O(n - s)). 

PROOFOF (3.5). Let f:ODs x q -OM be the restriction of f where q 
is a fixed point in ODn-\ Then by dimensional reasons 1291,f can be ex-
tended to an  imbedding p:D" OM where the image of cp intersects the  
image o f f  only on 7.Next let T be a tubular neighborhood of p ( D 7  in 
M. This can be done so tha t  T is a cell, TU (D" D-9 is of the form H, 
and Ve M + H,. We leave the  details to the  reader. 

To prove (3.1), let H = x(Dn;f,, ., f&;s). Then f ,  defines a class 
7,E n,(H, Dn). Let y, e zs(OH) be the  image of yi under the inverse of 
the composition of the  isomorphisms n,(OH) - r ,(H) - rs(H, Dm)(using 
(3.2)). Define g of (3.1) by gD, = y,, i 5 k, and gD, = 0, i > k. That g 
satisfies (3.1) follows by induction from the  following lemma. 

(3.6) LEMMA.x(H; g,; s + 1)E S ( n ,  Ic - 1,s)  if the restriction of g, to 
aDS+'x 0 has homotopy class Y, e ns(OH). 

Now (3.6) follows from (3.3), (3.4) and (3.5), and the fact tha t  g, is dif-
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ferentiably isotopic to  g: whose image is in OHpn OH, where Hpis defined 
by (3.5) and f,. 

4. We prove here (1.2). First suppose s = 0. Then H EX(n ,  k, 0) is 
the disjoint union of n-disks, k + l  in number, and V=x(H; f,, .. ,f r ;  1). 
Since z,(V) = 1,  there exists a permutation of 1 ,  ..., r ,  i,, ...,i,.such 
tha t  Y = x(H; f,,, .- - ,f,,; 1) is connected. By (3.4), Y is diffeomorphic 
to Dn. Hence V = x(Y; f,, , .. ,f,,; 1) is in X(n ,  r - k, 1). 

Now consider the case s =1. Choose, by (3.1), g: G,-n,(OH) such tha t  
every manifold derived from g is diffeomorphic to Dm. Let Y = x(H; f,, 
. ,fr-,). Then z l ( Y ) = l  and by the  argument of (3.2), zl(OY) =1. Let 

g,:OD2x 0 -OH be disjoint imbeddings realizing the classes g(D,) e nl(OH) 
which are disjoint from the images of all f,, i = 1 , .  .., k. Then by (2.4) 
there exist imbeddings g,, ,g,: OD" D D " - 5OH extending the g, such 
that  V = x(Y; f,-,,,, ...,f,.) and x(Y; g,, ...,g,) are diffeomorphic. But 

X (Y, gi, ...,glc) = x(H; gi , . . . ,  gr,fi, . . . ,fr-lc) 

= x(DD",f i ,  ...,fr-r) E r - k, 2) . 
Hence so does V. 

For the case s > 1,  we use an  algebraic lemma. 

(4.1) LEMMA.Iff,g: G -G' a r e  epimorphisms where G and  G' a re  
jinitely generated free abelian groups, then there exists a n  automorphism 
a:G -G such that fa = g. 

PROOF.Let G" be a free abelian group of rank equal to rankG - rank G', 
and let p: G' + G"- G' be the  projection. Then, identifying elements 
of G and G' + G" under some isomorphism, i t  is sufficient to  prove the 
existence of a for g = p. Since the groups are free, the following exact 
sequence splits 

f0- f-l(0)-G-G'-0. 

Let h: G -f ~ ' ( 0 )be the corresponding projection and let k: f -l(0) -G" 
be some isomorphism. Then a:G -G' + G" defined by f + kh satisfies 
the requirements of (4.1). 

REMARK.Using Grusko's Theorem [6], one can also prove (4.1) when 
G and G' are free groups. 

Now take o = (H;f,, .,f,.; s + 1) of (1.2) and g: G, - n,(OH) of (3.1). 
Since n,(V) = 0, and s > 1,  f,: G, - z,(OH) is an epimorphism. By (3.2) 
and (4.1) there is an automorphism a: G, -G, such tha t  f,a = g. Then 
(2.1) implies tha t  Vis  in A ( n ,  r -k ,  s + l )  using the main property of g. 

5. The goal of this section is to prove the  following analogue of (1.2)-



(5.1) THEOREM.Let  n 2 2s + 2 ,  or i f  s = 1 ,  n 2 5 ,  Mn-' be a s imp ly  
connected, ( s  - 1)-connected closed mani fo ld  and X,(n, k ,  s )  the set of 
a l l  mani fo lds  having presentations of the f o r m  ( M x  [0, 11, M x  1;f l  ..., 
f , ; s ) .  Now let H e X , ( n , k , s ) , Q = O H - M x O ,  V = X ( H , Q ; ~ ~ , . . . , ~ , ;  
s 4- 1 )  and suppose n s (Mx 0 )-ns(V )i s  a n  isomorphism. Also suppose i f  

s = 1 ,  that  z , (x (H,  Q;gl, ...,9,-,; 2 ) )  = 1. Then  V e gAw(n,r - k ,  s + 1).  
One can easily obtain (1.2) from (5.1) by taking for M ,  the (n- 1)-

sphere. The following lemma is easy, following (3.2). 

(5.2) LEMMA.W i t h  definitions and conditions a s  in (5.1), ns(Q)= G, 
i f  s = 1 ,  and i f s  > 1 ,  ns(Q)= z , ( M )  + G,, 

Let p,: z,(Q) - z , ( M ) ,  p,: n,(Q) -G, be the  respective projections. 

(5.3) LEMMA.W i t h  definitions and conditions a s  in (5.1), there exists 
a homomorphism g: G,-z,(Q) such that  p,g i s  t r i v ia l ,  p,g i s  a n  epimor-
phism, and every realization of g i s  in ,U$(n, r - k ,  s + I ) ,  each r 2 k .  

The proof follows (3.1) closely. 
We now prove (5.1). The cases s = 0 and s = 1 are proved similarly to 

these cases in the  proof of (1.2). Suppose s > 1. From the  fact tha t  
x , ( M x  0 ) - z , (V )  is an isomorphism, i t  follows tha t  p,f ,  is trivial and p, f ,  
is an epimorphism where o = ( H ,  Q;  g,, ...,g,, s + 1).  Then apply (4.1) 
to obtain an automorphism a:G, -G, such that  p, f,a = p,g where g is 
a s  in (5.3). Then f,a = g, hence using (2.1), we obtain (5.1). 

6. The goal of this section is to prove the  following two theorems. 

(6.1) THEOREM.Suppose f i s  a C- func t ion  on  a compact mani fo ld  W 
wi th  no critical points on f - I [ - & ,  E ]  = N except k non-degenerate ones 
o n  f - '(O),  all  of index  X,and N n 0 W = 0.Then f - l [ - a,E ]  has a pre-
sentation of the form ( f  -I[- co , - & I ,  f -I(- E ) ;  f,,...,f,; X ) .  

(6.2) THEOREM.Let ( M ,  Q;f l ,  ...,f,; s )  be a presentation of a m a n i -
fold V ,  and g be a C" funct ion on M,  regular ,  in a neighborhood of Q,  
and constant w i t h  i t s  m a x i m u m  value on  Q. T h e n  there exists a C" 
func t ion  G on  V which agrees w i t h  g outside a neighborhood of Q ,  i s  
constant and regular on  OV - (OM - Q ) ,and has exactly k new critical 
points, al l  non-degenerate, w i t h  the same value and w i t h  index  s. 

SKETCHO F  PROOF OF (6.1). Let Pi denote the  critical points of f a t  level 
zero, i = 1 ,  ...,k with disjoint neighborhoods Vi. By a theorem of 
Morse [13]we can assume Vihas a coordinate system x =(x,,  ..,x,) such 
that  for I /  x / / 5 6, some 6 > 0 ,f ( x )  = - x ; = , x ~+ x ~ _ , + , x f .Let El be 
the (x, ,  ,x,) plane of Viand E, the  (x,,,, ..., x,) plane. Then for E, > O  
sufficiently small El n f -' [-el,  E,] is diffeomorphic to D".A sufficiently 
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small tubular neighborhood T of El will have the property that  T r= 
T nf - l [  - E,, el]is diffeomorphic to D k  x Dm-kwith T n f -'(-el) corres-

ponding to OD" D M .  
As we pass from f - l [ - a ,  -el] to f - l [ - a ,E,] ,  i t  happens tha t  one 

such T r  is added for each i, together with a tubular neighborhood of 
f -'(-el) SO that  f - l [ - a ,E,] is diffeomorphic to a manifold of the form 
x(f -'[- a ,  -el], f -'(-el); f l ,  ...,f,; A). Since there are no critical points 
between - E  and -el, E ,  and E ,  E ,  can be replaced by E in the preceding 
statement thus proving (6.1). 

Theorem (6.2) is roughly a converse of (6.1) and a sketch of the proof 
can be constructed similarly. 

7. In  this section we prove Theorems C and I of the Introduction. 
The following theorem was proved in [21]. 

(7.1) THEOREM.Let V "  be a C" compact manifold with O V the dis-
joint union of Vl  and V,, each V i  closed in OV. Then there exists a C" 
function f on V with non-degenerate critical points, regular on OV, 
f (V , )  = -(1/2), f (V,)  = n + (112)and at a critical point P o f f , f ( P )  = 
index p. 

Functions described in (7.1) are called nice functions. 
Suppose now M" is a closed C" manifold and f is the  function of (7.1). 

Let X ,  = f - '[O, s + (1/2)] ,s = 0 ,  . ., n. 

(7.2) LEMMA.For each s, the manifold X ,  has a presentation of the 
form (Xs-1;fl,  ...,f t ;  s). 

This follows from (6.1). 

(7.3). LEMMA.If H e  X(n,k ,  s ) ,  then there exists-a C" non-degener-
ate function f on H ,  f(OH) = s +(1/2),f has one critical point of index 
0,  value 0,  k critical points of index s,  value s and no other critical 
points. 

This follows from (6.2). 
The proof of Theorem C then goes as follows. Take a nice function f 

on M by (7.1), with X ,  defined as above. Note tha t  Xo e S (n ,q, 0 )  and 
no(Xl)= 0 ,  hence by (7.2) and (1.2),X ,  e X(n,k ,  1). Suppose now tha t  
7il(M)= 1 and n 2 6. The following argument suggested by H. Samel-
son simplifies and replaces a complicated one of the  author. Let X i  be the  
sum of X, and k copies HI ,  ...,H, of Dn-' x Sf Then since r l (X2 )= 0, 
(1.2) implies tha t  X i  e H(n,  r ,  2). Now let f i:  OD3x DnP3+OH,n OX; fo r  
i = 1, .., k be differentiable imbeddings such tha t  the composition 



is an  isomorphism. Then by (3.3) and (3.4), x(X;, f l ,  ..,fk;  3) is diffeo-
morphic to X,. Since X3= x(X,; g,, ,g,; 3) we have 

x3 = xtx; ,  f l ,  - 1  f k ,  g1, .,g,; 3) , 
and another application of (1.2) yields tha t  X, e H ( n ,  k + 1 - r, 3). 

Iteration of the  argument yields that  Xh e $(n, r ,  m). By applying 
(7.3), we can replace g by a new nice function h with type numbers satis-
fying Mo = 1,M, = 0, 0 < i < m. Now apply the preceding arguments 
to -h to yield that  hP1[n- m - (1/2), n]  = X: E X ( n ,  k,, m). Now 
we modify h by (7.3) on Xz to  get  a new nice function on M agreeing 
with h on M - X: and satisfying the conditions of Theorem C. 

The proof of Theorem I goes as follows. Let V" be a manifold with 
DV = V,- V,, n = 2m + 2. Take a nice function f on V by (7.1) with 
f (V,) = - (112) and f (  V,) = n + (112). 

Following the proof of Theorem C, replacing the use of (1.2) with (5.1), 
we obtain a new nice function g on V with g(Vl) = - (1/2), g(V,) = 

n + (112) and no critical points except possibly of index m + 1. The fol-
lowing lemma can be proved by the standard methods of Morse theory 
[121. 

(7.4) LEMMA.Let V be a s  i n  (7.1) and  f be a C " non-degenerate func-
tion on V with the same boundary conditions a s  i n  (7.1). Then 

xv = z( -1 ) 'MQ + xi I ' 
where x,, xr7,a r e  the respective Euler  characteristics, and  MQdenote the 
qth type number off. 

This lemma implies that  our function g has no critical points, and hence 
V, and V, are diffeomorphic. 

8. We have yet to prove Theorems F and G. For Theorem F, observe 
by Theorem C, there is a nice function f on M with vanishing type num-
bers except in dimensions M,, M,, M,_,, M,, and Mo= M, = 1. Also, by 
the Morse relation, observe tha t  the  Euler characteristic is the alternat-
ing sum of the type numbers, M, =M,,,,. Then by (7.2), f -l [O, m +(1/2)], 
f -'[m + (1/2), 2m + 11e X(2m + 1,M,, m) proving Theorem F. 

All but the last statement of Theorem G has been proved. For this just 
note that  M - D2" is diffeomorphic to f -'[O, m + (1/2)] which by (7.2) is 
in X(2m, k, m). 
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