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ABSTRACT. We study the topological properties of expanding invariant
foliations of C'* diffeomorphisms, in the context of partially hyperbolic
diffeomorphisms and laminations with 1-dimensional center bundle.

In this first version of the paper, we introduce a property we call
s-transversality of a partially hyperbolic lamination with 1-dimensional
center bundle, which is robust under C* perturbations. We prove that
under a weak expanding condition on the center bundle (called some
hyperbolicity, or “SH”), any s-transverse partially hyperbolic lamination
contains a disk tangent to the center-unstable direction (Theorem .

We obtain several corollaries, among them: if f is a C'* partially hy-
perbolic Anosov diffeomorphism with 1-dimensional expanding center,
and the (strong) unstable foliation W** of f is minimal, then W** is ro-
bustly minimal under C'-small perturbations, provided that the stable
and strong unstable bundles are not jointly integrable (Theorem .

Theorem [B| has applications in our upcoming work [4] with Eskin,
Potrie and Zhang, in which we prove that on T2, any C''*partially hy-
perbolic Anosov diffeomorphism with 1-dimensional expanding center
has a minimal strong unstable foliation, and has a unique uu-Gibbs
measure provided that the stable and strong unstable bundles are not
jointly integrable.

In a future work, we address the density (in any C" topology) of
minimality of strong unstable foliations for C'* partially hyperbolic
diffeomorphisms with 1-dimensional center and the SH property. Our
ultimate goal is to prove that, on any closed manifold, among the C"
(r > 1) partially hyperbolic Anosov diffeomorphisms with 1-dimensional
expanding center, there is a C'-open and C"-dense set of diffeomor-
phisms with minimal W** foliation.
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INTRODUCTION

Let f: M — M be a diffeomorphism of a closed, connected Riemannian
manifold M. Assume that there exists an f-invariant foliation F* of M with
C' leaves that is ezpanding, meaning that there exists N € N such that for
all v € TF" tangent to a leaf of ¥, we have || DfN (v)|| > 2|jv|| (a given dif-
feomorphism can have more than one expanding foliation). Such foliations
arise in the study of Anosov and partially hyperbolic diffeomorphisms as
well as in more general scenarios. The dynamics of such foliations have fun-
damental implications for the dynamics of the underlying diffeomorphisms.
This paper addresses the dynamics of expanding foliations.

The basic building block for the topological dynamics of such a foliation
F" is an F'“-lamination, which is a (non-necessarily invariant) compact set
consisting of a union of leaves of F*. The F“-lamination is minimal if
every of its leaf is dense in the lamination; it is dynamically minimal if it is
invariant and the orbit of every of its leaf is dense in the lamination.

The fundamental problem to address first is then the following.

Problem 1. Classify the F“-laminations for a fived F*. Is there a unique
(non-empty) F“-lamination? More generally, when are the minimal F*-
laminations smooth submanifolds of M ¢

We remark that if f has an attractor A, then A is an F“-lamination, but it
is also possible to have nontrivial F“-laminations without an attractor. For
example, the automorphism fy: (z,,2) — 2z +y,2+y,2) on T3 = T2 x T
has an expanding foliation F* tangent to the expanding eigenspace, and for
any zo € T, the set T2 x {20} is an F%lamination (which is not an attractor,
as 1 is an eigenvalue of f). Notice that for this example, the minimal (under
inclusion) F¥-laminations are smooth submanifolds of T3.

This illustrates a more general phenomenon in homogeneous dynamics.
If G is a connected Lie group and I' C G is a cocompact lattice, then any
automorphism A: G — G preserving I and a € G determine an affine diffeo-
morphism f of M = G/T via f(gl') = a- A(g)T'. If ¢* is the Lie subalgebra
generated by any collection of expanding generalized eigenspaces of the in-
duced map foz g — g, then the foliation F* tangent to ¢* is expanding. Any
such subalgebra ¢" is unipotent, and the work of Dani, Margulis, Ratner,
Starkov and Shah [13] [14], 22] 23] 24, 35| 38|, 39, 40] implies that all minimal

F"-laminations are of the form H/I', where H < G is a closed subgroup:
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in particular, they are submanifolds. Thus Problem [I] may also be seen as
proposing a nonlinear version of this homogeneous orbit closure theorem for
the dynamics of expanding foliations.

From the perspective of the topological dynamics of f, Problem [I| has
fundamental implications; for example the minimality of an f-invariant fo-
liation F* implies that f itself is topologically mixing.

Next, studying F* from a measure-theoretic angle, fundamental objects
are the F“-states, which are f-invariant probability measures whose dis-
integration along the leaves of F* is absolutely continuous with respect to
(leafwise) volume. F"-states were first defined by Pesin and Sinai [28], where
they proved that F'-states always exist. The properties of F!-states (also
called u-Gibbs measures) for f are key to understanding the dynamics of f;
for example, if there is a unique F“-state u, then it is automatically a phys-
ical measure (i.e., there is a full volume set B C M such that for x € B and
any continuous 1, lim, o = Zgil Y(f7(z)) = [ du). Further statistical
implications of the uniqueness of F"-states are derived in [15].

Problem [I| has the following measure-theoretic analogue.

Problem 2. Classify the F“-states for a fixed F*“. Is there a unique F"-
state? When are the ergodic F"-states the smooth invariant measures sup-
ported on smooth submanifolds?

In the homogeneous setting, this problem was solved by Ratner, in her
measure classification theorems [32, [33], 34], which imply in particular that
any J“-state is the induced Lebesgue-Haar measure on a homogeneous sub-
manifold. These measure classification results give the classication of orbit
closures above (as one can by averaging build invariant measures supported
on any orbit closure), thus solving Problem |1|in this context. As with Rat-
ner’s approach in the homogeneous setting, solutions to Problem [2| can be
used to answer Problem [

In the other direction, as demonstrated in our work below, solving Prob-
lem [1] can be also a key step toward solving Problem [2], as the support of
any J“-state is an F“-lamination. In the case where F" is the unstable
foliation of a C? transitive Anosov diffeomorphism f, we have a complete
understanding of its dynamics, going back to the work of Sinai, Ruelle and
Bowen: the foliation F* is minimal, and moreover there is a unique F“-state
(the SRB measure for f): when f preserves volume, this measure is volume.
Note that by replacing f by f~!, one can similarly classify the dynamics of
stable foliations.

Beyond Anosov diffeomorphisms, the next natural setting is when f: M —
M is a partially hyperbolic diffeomorphism with D f-invariant splitting T'M =
E" & B¢ @ E*, and F* = MW" is tangent to the (strong) unstable bundle
E"*. The dynamics of W** for f partially hyperbolic have been studied
extensively, especially in recent years, focusing largely, but not exclusively,
on the case where dim E¢ = 1, see e.g., [28] 6] [15], 311 [36] 20, 26], 27, 19, 25|
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121, 37, 10, 2, 18]. Denote by PH" (M) the set of all C”, partially hyperbolic
diffeomorphisms of M, and by P¥H"(M) the set of all f € PH"(M) with
dim E¢ = k. If the superscript r is not specified, we mean r = oco.

The topological questions in Problem [1| have been partially addressed in
the case where dim E¢ = 1, in the works [6, 36], where they show that C!
open and -densely in P'H (M), at least one of the two foliations W%, W5
is minimal. Some of these ideas were generalized by Pujals and Sambarino
[31], who showed (for any dim E°) that a weak expansion property called SH
(“some hyperbolicity”) in E¢ (which we describe in detail below) implies that
if W# is minimal, then it is robustly minimal (meaning the W** foliation for
any C! close diffeomorphism is minimal). The question of whether robust
minimality of both foliations should hold densely in P'H (M), even when
dim(M) = 3, was not settled.

Indeed, a particularly simple situation where this question has remained
open, mentioned in several works (e.g. [6, Problem 1.10], [26, Question
1.1], [20, Conjecture 1.2]) is the case where f: T3 — T3 is both Anosov and
partially hyperbolic, with £° uniformly expanded. An example is the family
fo(z,y,2) = 2z +y +esin(2rz),x + 2y + 2 + esin(2nz), y + 2) on T3, for e
small (see [20]).

In this setting on T3, the minimality of the foliations W* and WW** tangent
to B := E"™ @ E° and E*° follows from the Anosov property, but the
existence of a single example with W"* robustly minimal remained unknown.
In numerical experiments on f. and other families, Gogolev, Maimon and
Kolmogorov [20] found convincing evidence for minimality of W** for small
€ # 0. They also found numerical evidence of the uniqueness of W""-states
for these examples.

In this paper, we consider first the Anosov diffeomorphisms with expand-
ing 1-d center, that is, the f € P1H (M) such that E€ is uniformly expanded.
This is a C' open class, and examples exist in all dimensions > 3, including
these examples in [20]. For a perturbation f of any affine Anosov diffeo-
morphism on T3, either f or f~! belongs to P'H(T?). In this context, an
ultimate aim of a further version of this paper is to establish the following.

Theorem A. For any closed connected manifold M and r > 1, in the space
A"(M) of C" transitive Anosov diffeomorphisms of M with expanding 1-d
center, there is a C' open and C" dense set with minimal foliation W™,

A proof of such a result naturally breaks into two parts: openness and
density of minimality. The density will be treated in a subsequent version
of this paper, where we plan to construct a residual set in A" on which
minimality of W"" holds, using a probabilistic perturbative argument in
blenders, reminiscent of our methods in [3].

In this version of the paper (Part 1 of the argument), we establish a crite-
rion for openness using a property called s-transversality, which we introduce
here. In the case where f is partially hyperbolic, if W** is minimal, then
s-transversality holds if and only if £“* ¢ E** is not integrable. In our first
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main result, employing a novel “topological drift” argument, we show that
s-transversality, which is C'! robust, implies the minimality of W"*, giving
the desired openness criterion for W** minimality. In the context of Anosov
diffeomorphisms, we then obtain the following.

Theorem B. Let f € A"(M), for some r > 1. Suppose that the foliation
WU s minimal and E"* @ E* is not integrable. Then W' is C* robustly
minimal in A" (M).

In this (first) version of our paper, we establish Theorem |B| as a conse-
quence of a more general result (Theorem we state below, which applies
in particular to all f € PYH(M) satisfying the SH property in [31] under
additional hypotheses, and even to partially hyperbolic laminations in the
absence of a global partially hyperbolic structure. This latter case uses a
generalization of some of the fake foliation techniques introduced in [9].

We remark that the measure-theoretic questions in Problem [2 have also
been studied in the partially hyperbolic setting. Based on arguments going
back to Benoist and Quint in random dynamics [5], [I7, | 16], Katz [25]
established a criterion for uniqueness of YWW*“-states for C*° diffeomorphisms
in dimension 3 (here r = oo is essential: for an alternate approach for
finite k, see [2]). Katz’s condition, known as “QNI” (quantitiative non-
integrability) can be defined for any ergodic probability measure p with
exponents Ay > A2 > 0 > A3 such that p is absolutely continuous along
Pesin manifolds for the exponent Ay; when QNI holds, the disintegration of
w along the full Pesin unstable manifolds (for A1, A2) must also be absolutely
continuous (thus, in this nonuniform setting, “QNI = SRB”).

The challenge in applying Katz’s criterion in the (3-dimensional) partially
hyperbolic setting is to translate the QNI condition into a workable geomet-
ric condition on the foliations W"* and W?*. This has been carried out
recently by Eskin, Potrie, and Zhang [18], who showed in particular that
if f is smooth and partially hyperbolic in dimension 3 and u is an ergodic
WU¥-state with full support, then f satisfies the QNI condition if and only
if the bundle E"* @& E*° is not {-integrable for some order /.

Our results on s-transversality, combined with the work in [25| [I8], shed
complete light on the questions in [6], 26], 20] about Anosov diffeomorphisms
in PH(T3). In a forthcoming work with Eskin, Potrie and Zhang we show
that for every Anosov f € PYH(T?), if E** @ E*° is (-integrable at any
order ¢, then it is integrable, and then the Franks-Manning homeomorphism
h conjugating to its linearization f, carries all of the invariant foliations of
f to the (affine) invariant foliations for f.. Since these affine foliations are
all minimal, we obtain in []: Let f € A®(T3). Then the foliation W is
minimal, and either E** @ E%° is integrable, or there is a unique YW*"“-state.

Our results on the density of minimality of W** will be addressed in a
subsequent version of this paper.
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1. S-TRANSVERSALITY AND STATEMENTS OF THE MAIN RESULTS

Suppose f is a C'T diffeomorphism of a Riemannian manifold M and
A C M is a partially hyperbolic, f-invariant set with a splitting

TAM = E* @ E°® E%;  dim(E°) = 1.

We assume that A is a uu-lamination, i.e. it is saturated by W** leaves.

In order to state our main results, we will need to define a notion of
non-joint integrability of the laminations W** and W?*, one which we call s-
transversality. In the case where A = M (i.e. where f: M — M is partially
hyperbolic), s-transversality is implied by the pair of conditions that W"" is
minimal and the bundle E** @ E* is not integrable (see Proposition . In
the general case, there is subtlety involved in defining the condition correctly.

x
— .. I
W (@) T
........... '/ s A ‘ . A 1 e
............................. \ / W (J)

FIGURE 1. Informal definition of s-transversality.

1.1. The notion of “self-transversality” of a foliation. The informal
definition of s-transversality of A that we will require to state our main
result is this: there is a small constant 7 > 0 such that for any x € A, there
exist paths 7,7 in W**(z), at Hausdorff distance within 7 of each other,
that cross each other when viewed transversally to the E° direction, as in
Figure [I}

While Figure [I| depicts a type of “smoothly transverse” crossing of the
two paths, requiring such a nice crossing is too restrictive to be useful. For
reasons we will explain, we will a priori need to allow for paths v,+’ lying on
a common stable manifold for a large subinterval of their parametrization,
so that the crossing can only be seen by comparing the relative position of
the endpoints of 7,7/, as depicted in Figure

For our definition to be maximally applicable, we need it to be inde-
pendent of the scale 7; that is, if it holds for some 7, it should hold for all
7" € (0, 7). To establish such scale-independence requires applying f™, n > 0
to paths (see Proposition below), which means (given that the crossings
are not assumed to be transverse) that we must allow the paths v,7" be
arbitrarily long in our definition. Thus the property of 7, crossing each
other “transverse to the E® direction” cannot be localized by considering
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short paths. Even working locally, it is a delicate matter how one defines
the relative position of two paths “transverse to the £* direction;” for exam-
ple, two nearby curves cannot be compared by just using linear projections
“approximately in the stable direction,” as such projections do not behave
well under composition with f.

"}/ __________

Wibe(7)

FIiGURE 2.

Under additional hypotheses, there is a relatively straightforward way to
define this crossing property. For example, in the case where f is glob-
ally partially hyperbolic (so A = M) and dynamically coherent (meaning
that the bundles E“* ® E° and E° ® E° are integrable — see Section |3| for
definitions), one can fix a smooth disk 7" containing ([0, 1]) and tangent
to E" & E° and then project 7/ onto T using the globally-defined W3-
holonomy. Fixing an orientation on 7', one can then compare the relative
positions of the endpoints of v and + along leaves of the (1-dimensional)
center subfoliation W€ of T' (which is preserved by WW?* holonomy). If the
relative positions are opposite at the two ends, we say that v and +' cross
(transverse to W?). Since the stable foliation is invariant, one can iterate
crossing paths to obtain crossing paths, and one can prove that crossing at
scale T implies crossing at all scales. Even without dynamical coherence, if
A = M, the 1-dimensionality of E¢ allows for a similar definition of crossing
(see Proposition [1.4)).

We would like to imitate as closely as possible this definition when A # M
is a general f-invariant uu-lamination. In this setting, there is no global
invariant WW? foliation (not even in a neighborhood of A): local stable man-
ifolds Wj .(x) are defined only for z € A. Our definition will be based
on the picture in Figure there the local stable manifold of + divides a
7-neighborhood of 7 into two components, and the endpoints of 7/ lie in
different components. Thus to define s-transversality, we need to make rig-
orous this notion of “two components.” We start locally, using the notion
of brushes, which are canonically-defined objects built from local stable and
unstable manifolds of points in A.

1.2. Brushes. Let us fix a small scale ¢y > 0. For = € A, we set

pe(x) := W (z,e0), and Wi .(z) := W?(z,e0).

loc
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FIGURE 3. A brush.

The brush through x is defined by
Br(z):== |J W)

yeEW St ()

loc

It is a codimension-1 topological submanifold which in general is not C'.
For ¢ € g9 and x € A, we consider the set

Us(z) :== B(z,¢) \ Br(x).

If Br(x) were a C*!, codimension-1 submanifold (transverse to E¢), then it
would divide each U.(x) into exactly two path-connected components. We
would like to prove something similar for the topological manifold Br(x).

We first expand slightly the definition of path-component of U, (x) to allow
for paths that leave the neighborhood. Thus we say that points y,y" € U (z)
are in the same component if they can be joined by a continuous path -, ./
in U,y /¢, (w0) where Cp > 1 is an explicit constant that only depends on the
angle between the bundles E**, F¢ E°.

UZ (o)

FIGURE 4. The set Us(xp).

In Lemma we prove that for sufficiently small € > 0, the set U.(7)
has exactly two components, UX(x), as in Figure 4} moreover they do not
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depend on the choice of gg. We say that x,y € UZX(z) lie on the same
side of Br(z) if they are in the same component of U.(x). Since brushes
extend canonically along any YWW*"-leaf, the notion of being on the same side
of Br(z) (and on different sides) can then be locally continued along any
path ~ lying in the W**(z) leaf (see Lemma . Thus for a path v in
a leaf W¥%(x) there is a well-defined notion of points in y € U.(y(0)) and
y'" € U:(7(1)) being on the same (or different) side(s) of Br(y(0)). We say
that y,y" are on the same (or different) side(s) of W**(z) relative to ~.

It is this notion of being on opposite sides along a path that is key to
defining s-transversality.

1.3. S-transversality. We can now state the formal definition:

Definition 1.1. The wu-lamination A is s-transverse if for any T > 0 small
enough and for any x € A, there are paths v,~': [0,1] — W"(x) such that:
(1) d(v(t),7'(t)) < 7 for each t € [0,1],
(2) v'(0) and ~'(1) belong to U, (v(0)) and U-(v(1)) respectively, but are
on different sides of W*"(x) relative to .

It is locally s-transverse if v, can be chosen with diameter smaller than T.

Remark 1.2. In practice, it is enough to check the definition of s-transversa-
lity for a single sufficiently small value of T (see Lemma .

In order to illustrate this definition, we return to the case where f is a
dynamically coherent, partially hyperbolic diffeomorphism and the center
bundle E¢ is orientable, with orientation preserved by Df. Note that for
any x,y with d(z,y) < 7, the stable plaque W; .(y) intersects W((x) at a
unique point z and that Wy, (z) meets W/"(x). It is easy to see that two
points y,y’ are in the same component of U,(z) if the center arc joining
Wi (y) N Wi (z) to W (z) and the center arc joining W (y') N WS (x)
to W»(x) have the same orientation.

In this case, the uu-lamination A is s-transverse if for 7 > 0 small and for
any x € A there exists a “hexagonal loop” consisting of a concatenation of

6 nontrivial C'* arcs 1, -- ,76 with the following properties (see Figure [5)):
(1) The images of 1,74 lie in W*¥(x). For all ¢, d(y1(t),v4(1 —t)) < .
(2) The images of y2,76 lie in W} (v1(1)), W, .(71(0)) respectively.
(3) 73,75 have their images contained in W}, (74(0)), W}, .(74(1)) respec-
tively and have opposite orientations.
This notion of a hexagon gives rise to a simple criterion for checking s-
transversality in the global partially hyperbolic case.
We now state some properties of s-transversality that will be proved in
Section The s-transversality is C! robust:

Proposition 1.3. If A is an invariant s-transverse uu-lamination for a
diffeomorphism f, then there are neighborhoods U of A in M and U of f
in the space of C' diffeomorphisms such that for any g € U, any invariant
uu-lamination Ay C U is also s-transverse.
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FIGURE 5. Hexagonal loop attached to W (z).

The next criterion for s-transversality shows in particular that, if YW"* is
minimal and s-transverse, then it is locally s-transverse.

Proposition 1.4. Let f be a partially hyperbolic diffeomorphism with 1-
dimensional center, and assume that the foliation W** is dynamically min-
imal. If E""* ® E° is not integrable, then W"" is locally s-transverse.

A weaker notion of “non joint integrability” has been used in [11] in order
to prove the finiteness of attractors for globally partially hyperbolic diffeo-
morphisms. The same idea gives the following structure on dynamically
minimal uu-laminations.

Proposition 1.5. If Q is a non-invariant minimal s-transverse uu-lamina-
tion for a diffeomorphism f, then it is fixed by some iterate f¥, N > 1.

If A is an invariant dynamically minimal s-transverse uu-lamination, then
it decomposes as A = QU f(Q)U---U fN"YQ), where Q is a minimal uu-
lamination. The sets f(Q) are the connected components of A.

1.4. The SH (“some hyperbolicity”) property. Another concept we
will use in the statements of our main results is that of some hyperbolicity in
the center bundle E€ of a partially hyperbolic uu-lamination A, which was
introduced by Pujals and Sambarino [31]. This gives a natural weakening
of the hypothesis that A is hyperbolic with a dominated splitting of the
unstable bundle £* = E** @ E°. It has a topological flavor, and is different
from the measure-theoretic “mostly expanding” property defined in [I].

Definition 1.6. Let A be a partially hyperbolic uu-lamination. We say that
A has the SH property if there exist R > 0, C' > 0 and Agg > 1 such that
for every x € A, there exists x € W*"(x, R) such that, for all n,¢ > 1,

IDf™" gepenay | < CAgp-

Note that the constant R can be chosen as small as one likes in the
definition, at the expense of decreasing C.

The SH property is C* robust (i.e., every g sufficiently C' close to f has
the SH property), see Proposition below. For (globally) partially hyper-
bolic diffeomorphisms with the SH property, if the foliation W?* is minimal,
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then it is C'' robustly minimal ([31] and Proposition below). Note that
the property SH is not symmetric, hence it does not give the minimality of
WU for an Anosov diffeomorphism without further assumptions.

Examples: Besides partially hyperbolic Anosov diffeomorphisms, exam-
ples of SH uu-laminations can be constructed by deforming such systems:
this is the case of Shub’s and Mané’s examples, see [31]. If one considers
an hyperbolic attractor with a one-dimensional expanding center bundle,
one can perform similar deformations and obtain a partially hyperbolic uu-
lamination which satisfies the SH property and is proper.

1.5. A robust criterion for minimality. Our main results in Part 1 of
this paper concern the property of a uu-lamination containing a cu-disk.
By a cu-disk in a uu-lamination A, we mean a C! embedded disk in A
that is everywhere tangent to the distribution E** & E°. For example, in
the case that A is hyperbolic with 1-dimensional expanding center, a cu-
disk is merely a disk in A tangent to the (full) unstable lamination for f.
The existence of a cu disk has strong implications for the dynamics of A,
including the existence of a weak attractor when f has the SH property, or
the minimality of W"* (under additional assumptions). Our central result
in this part of this paper is:

Theorem C. Let f: M — M be a C'* diffeomorphism and A an s-transver-
se partially hyperbolic wu-lamination with 1-dimensional center and satisfy-
ing the SH property. Then A contains a cu-disk.

More precisely, there is a hyperbolic set Ky with unstable bundle E** & E°
such that A contains the unstable manifolds of K.

Corollary 1.7. In the setting of Theorem [, there exists an invariant uu-
lamination A" C A which is a transitive weak attractor: w(z) C A’ for all x
in a nonempty open subset of M and w(x) = A’ for some x € A.

If f is transitive and M connected, then A = M and W*" is minimal.

Proof. Let A’ C A be a dynamically minimal f-invariant uu-sublamination
of A (meaning that A’ contains no proper invariant sublamination: such an
A’ exists by Zorn’s lemma). Theorem |C| implies that A’ contains a disc D
tangent to EF** @ E°. Saturating D by local stable manifolds, we obtain an
open set U C M. Then every z € U lies in W*(y), for some y € A, and
so f™(z) accumulates on a subset of A’. Thus A’ is a weak attractor. Since
any dynamically minimal uu-lamination is a transitive set, A’ is transitive.

If f is transitive, then for x in a dense Gs subset of M we have both
w(z) ¢ A and w(z) = M, so M = A = A’. Proposition then implies
M =QuUf(Q)U---UfN~1Q) where Q is a minimal uu-lamination. If M is
connected, it then follows that N = 1, and hence W"" is a minimal foliation.
o

When A is a hyperbolic set, the SH property is the same as A having an
expanding center; if the center is contracting, then W** is just the hyperbolic
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unstable lamination of A. This set is an attractor, it has finitely many
connected components and W* is minimal on each of them. Note that a
hyperbolic transitive weak attractor A’ is an attractor, i.e. w(z) C A’ for all
z in a neighborhood of A. Combining with Proposition [I.5] we thus get:

Corollary 1.8. Let A be a uniformly hyperbolic, partially hyperbolic uu-
lamination for a C'F diffeomorphism f: M — M with 1-dimensional center.
If A is s-transverse, then it contains a hyperbolic transitive attractor A’, and
each connected component of A’ is a minimal uu-lamination.

From the robustness of the SH property (Propositions, Pujals-Sambari-
no’s robustness of W#-minimality (Proposition , the criterion for s-
transversality (Propositions , and the robustness of the s-transversality
(Proposition , Corollary implies following, which gives Theorem

Corollary 1.9. Suppose f: M — M is C'*, partially hyperbolic with 1-
dimensional center, has the SH property and a minimal W? foliation. If YW"*
is minimal and E"* @ E° not integrable, then W is C' robustly minimal:
any C'F diffeomorphism C' close to f has a minimal W** foliation.

In particular, if f is an Anosov diffeomorphism with 1-dimensional ex-
panding center such that W' is minimal and E** @ E° is not integrable,
then WY is C1 robustly minimal among C't diffeomorphisms.

1.6. Genericity of minimality. In a future version of this work, we will
state further results concerning the genericity of W"“-minimality among
(conservative and dissipative) Anosov diffeomorphisms with 1-dimensional
expanding center and related results about partially hyperbolic laminations
whose 1-dimensional center has the SH property.

2. PRELIMINARIES ON PARTIAL HYPERBOLICITY

2.1. Notations. Given a map f: X — X, a function &: X — Rs¢ and
n > 1, we write &u(z) = £(f"" L)) - E(f(@)) - E(), o Er(x) when we
want to emphasize the map f.

For a,b# 0 and A > 1, we write a < b to mean that a/b € [A~!, A] (in
particular if a <a b, then a and b have the same sign).

2.2. Partial hyperbolicity.

2.2.1. Tangent splittings. Let A C M be a compact set that is invariant
under a C'-diffeomorphism f. An invariant splitting of its tangent space
TyM = E & F is dominated if there is N > 1 such that for any x € A and
any unit vectors u € E,, v € F},

IDFY (@) < 3IDFY ().

The bundle F is uniformly contracted by Df if |DfN|p| < 3 for some
N > 1 and F is uniformly expanded if it is uniformly contracted by Df~!.

A uniformly expanded bundle E will usually be denoted by E" (or E"");
to each point = € A we associate a well-defined strong unstable leaf W"(x)
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tangent to E* (also denoted by W**(x) when E = E“*). To emphasize the
diffeomorphism f, we will also write W} ().

For R > 0, the ball of radius R centered at a point x € A inside W"(x)
will be denoted by W (x). Having fixed a small constant eg > 0, we will
also write W} (z) := W (x) and call it the local strong unstable manifold
of . Finally we set W} (A) = UpeaW}! ().

Similarly, when F' is uniformly contracted we will usually denote it by E*
(or E%%) and write W3(x) (or W**(x)) for the associated leaves.

2.2.2. Cone fields. We associate to a dominated splitting TAM = E & F
fixed cone fields C¥, C*' i.e. small neighborhoods of the bundles E and F
inside the corresponding tangent Grassmanniann bundles. The domination
property implies that these cone fields can be chosen invariant: for any
x € A, the closure of the image Df(CE) is contained in the interior of
Cj?(x), whereas the closure of the backward image Df(CL) is contained in

. . F
the interior of Cf,l(gﬁ).

2.2.3. Partial hyperbolicity. A compact, f-invariant set A is hyperbolic if
it admits a dominated splitting TaM = E" & E° such that E*, E° are
respectively uniformly expanded and contracted. A compact, f-invariant
set A is partially hyperbolic if it admits a dominated splitting ToM = E* &
E¢@E?® such that E*, E* are non-trivial and respectively uniformly expanded
and contracted.

An unstable lamination is a (not necessarily f-invariant) set A contained
in a partially hyperbolic set A such that A contains all the strong unstable
leaves W"(z) for x € A.

2.2.4. Quantitative partial hyperbolicity. Partial hyperbolicity of f implies
that there exist a smooth Riemannian structure on M, a neighborhood U
of A, a C'-neighborhood U of f and continuous functions

ko A pu U — (0,00), withk <1< dandk <p~ <pt <A

such that for any diffeomorphism g € U, we have that any g-invariant
compact set A C U has a (unique) partially hyperbolic splitting Ty M =
EY @ E€ @& E? into subbundles which have the same dimensions as for the
partially hyperbolic splitting on A for f and such that for any = € A:

sup  [[Deg(v)|| <r(z), A=) < inf | Dzg(v)],
vEES (z),||v]|=1 veEEY(z),||v]|=1

o (2) < ||Daglpel < ().
We also write Eg, E¢, Eg in order to emphasize the dependence on g.
2.3. Plaque families. We introduce a system of locally invariant plaque

families which will be useful when considering partially hyperbolic systems
that are not dynamically coherent.
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7)(18

FIGURE 6. Family of locally invariant P and P¢ plaques,
with the )7\/\; foliation of P*(x) depicted on the right. The
construction guarantees that P plaques for points in the
same W? leaf coincide along that W? leaf, and )7\/\2 CW; ().

Proposition 2.1. Let f be a C' diffeomorphism with a partially hyperbolic
set A and functions k, =, uT: U — (0,00) with k < 1 and k < p~ < p*
as above, on a neighborhood U of A. Then there exists € > 0, and for any
diffeomorphism g that is C* close to f, any g-invariant compact set A C U
and any point x € A, there exist:
— C'-embedded disks (plaques) PS(x) C P (x) containing x, and
— a foliation W;}x of Pg*(x) by C* discs,
with the following properties.
(1) The plaques Pg(x), Pg*(z) are tangent to Eg(x) and E(x) © Ej(r)
respectively and W;x(x) C Wy(x).
(2) Local invariance. For any x € A, any * € {cs,c} and any y €
Pg*(x,€), we have

9(Py(z,€)) C Pylg(x)), 97 (Py(x,¢)) € Pyg~ (2)),

IV o(4:€)) CTW; 0y (9®)s g W 0(y:€)) CW; o1y (97 (),
where Pg(x,e) denotes the e-neighborhood of x in Pg(x).

(3) Exponential growth bounds at local scales. For x € M and j € Z,
denote by x; the point ¢’(x). Given n > 1, suppose that yj,yg- €
B(zj,e/2) for all1 < j <n—1. Then the following holds.

~ Ify,y € P§*(x,¢), then yn,y, € Pg*(wn), and

d(yn,yn) < pdn(@)d(y,y').
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I~ YA / A
= Ify' e W, .(y,e), then y;, € Wy ,(yn,€), and

A(Yn, yp) < Kgn(@)d(y, y).
~ Ify,y' € Pg(x,¢), then yn,y, € Pg(x), and

tgn(@)d(y,y") < d(yn, yy,)-

(4) (g,x) — Pgs(ﬂE)\, Pg(x),w\gﬂ\vary continuously in the C' topology.
The spaces TyW, .(q), ¢ € W, ., depend continuously on (g,z,q).
(5) If g is C1T9, then there exists 0 € (0, @) such that the tangent bundles

to the plaques Pg*(x) and Py(x) are uniformly 0-Hélder continuous.

When there is no ambiguity ab@it the diffeomorphism, we will simply denote
the plaques by P (x), P¢(x), Wil(y).

Proof. The proof follows from the proof of Proposition 3.1 in [9]. There it
is proved that if f: M — M is C' and partially hyperbolic, then there exist
r > & > 0 such that, for every z € M, the neighborhood B(z, ) is foliated by
local foliations )7\/\5, )7\7\;, and Wgs such that the leaves of 17\/\;2 subfoliate the
leaves of Wgs (from Part (iv) of the proposition). In the language of Propo-
sition if we set P¢(z) = Wg(x) and P (z) = Wgs(m‘), then Properties
(1)-(3) and (5) for f (corresponding to Properties (i)-(vi) in [9, Proposition
3.1]) are satisfied. The arguments also apply to diffeomorphisms g that are
Cl-close to f. The C'-leaves P& (x), PS(x), Wg“’
as a fixed point of a C! map, hence vary continuously with (g, x,q) in the
C'-topology, which gives Property (4).

As in [9], Property (5) follows from a standard application of the Holder
section theorem [30, Theorem 3.2] to the invariant bundles appearing in the
proof of [9, Proposition 3.1]. ©

» at a point g are obtained

2.4. More on the SH property. We derive some basic properties of uu-
laminations with the SH property.

2.4.1. Robustness. We already mentioned that the SH property is robust.

Proposition 2.2 ([31]). Let A be a partially hyperbolic wu-lamination for
a diffeomorphism f: M — M. Assume that A has the SH property. Then
there exists a neighborhood U of A and U of f in Diff' (M) such that for all
g € U, every uu-lamination Ay C U has the SH property.

The SH property is a mechanism for robust minimality of the W* foliation.

Proposition 2.3 ([31]). Let f: M — M be a diffeomorphism that is par-
tially hyperbolic and satisfies the SH property. If W?* is minimal, then any
diffeomorphism C' close to f has a minimal foliation WS.

In particular f is C-robustly topologically mizing.
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2.4.2. W""_gections. Consider a uu-lamination A for f.

Definition 2.4. A set K C A is a W"%-section of A if it is compact,
forward f-invariant, and there exists R > 0 such that Wi (x) N K # 0 for
each x € A.

Note that if A satisfies the SH property (Definition with constants
C > 0 and Agg > 1, then the following set is a WW"“-section:

(1) K = {y EAN|DFT" | ge(perniy) | < CAgy for all n, £ > 1}.

We associate to K its hyperbolic core Ko := (), f™ (K ), which is an invari-
ant hyperbolic set. Note that K, Kq depend on C' > 0 and A\gz > 1.

Part 1. Robust minimality via s-transversality

Throughout this part, f is a C'T diffeomorphism of a Riemannian mani-
fold M and A is a partially hyperbolic, f-invariant set with a splitting

TAM = E* @ E°® E%;  dim(E°) = 1.

We assume that A is a wu-lamination, i.e. it is saturated by W"" leaves.
This part of the paper is devoted to a proof of Theorem [C| The general
proof uses several technical arguments to deal with the possibilities:

— there might not exist center-stable and center-unstable manifolds
that foliate a neighborhood of A, and
— the center bundle E° might not be uniformly expanded by Df.

Without these technicalities, the argument is relatively simple, and so we
present it first in a restricted setting.

3. A SKETCHED PROOF OF THEOREM [(] IN A SIMPLIFIED SETTING

We sketch a proof of Theorem [C] under these simplifying hypotheses:

(1) fis a C'* transitive Anosov diffeomorphism,

(2) f is partially hyperbolic and dynamically coherent,

(3) the center bundle is expanding, 1-dimensional and has an orientation
preserved by D f.

Theorem. If the above hypotheses - and s-transversality of W' hold,
then W' is a minimal foliation.

The assumptions and mean that there is a globally-defined D f-
invariant splitting TM = E** @ E¢ ® E°, where E° is uniformly expanded,
orientable and 1-dimensional; it follows that the center-unstable bundle
EY := E"™ @ E€ is uniquely integrable, tangent to the unstable foliation
W of the Anosov diffeomorphism f. The dynamical coherence assump-
tion means that the bundle £® @& E° is also integrable, tangent to an
f-invariant foliation W¢; by intersecting leaves of the foliations W and
W one obtains in addition an f-invariant center foliation W¢.
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These hypothesis hold, for example, if f is the perturbation of a hyper-
bolic toral automorphism that is partially hyperbolic with 1-dimensional
expanding center. They also hold for any f € A"(T3), r > 1, by [21], 29].

3.1. Preparation. The leaves of W are jointly subfoliated by the leaves
of W¢ and WY¢; the leaves of W" are jointly subfoliated by the leaves of WW**
and W€ Hence there are well-defined W** and W? holonomies between
center leaves. We will use the following facts about these holonomy maps.

— For any z € M and any 2/ € W}*(x), the (restricted) W"*-holonomy
hue: WE (z) — W (2') is C1, with derivative varying continuously
in the choice of z, z’.
— For any € M and any ' € W; (), the (restricted) VV*-holonomy
he: WE (z) — WE (2') is Ct, with derivative varying continuously
in the choice of z, z’.
The first item is a standard fact about expanding strong unstable subfolia-
tions and does not use the fact that the dimension of E° is 1. The second
item uses a center-bunching property (see [9]), which follows from the 1-
dimensionality of the bundle E*°.

We recall the notation a <A b introduced in Section We then say
that a and b are A-nearly equal, or just nearly equal, if A is understood to
be a constant that may be taken arbitrarily close to 1 in the context.

We fix an orientation on E°, and using this orientation we define the signed
center distance d” between two points on the same W€ plaque: for z € M
and ' € W[ (x), the signed distance d’(z,2) is just distance between x
and 2’ along Wy, . multiplied by +1 according to whether the geodesic arc
in W€ from x to 2’ is positively oriented or not.

Then we have the following standard distortion estimate on the derivative

D f|ge (compare with Corollary in Section [5.1.2)).

Lemma 3.1. For every § > 0, there is €5 > 0 such that for every xqg € M,
x1, 29 € WE (w0), and k > 1, if d(f*(x;), f¥(x;)) < s for all i, 3, then

d(z1,m0) _ d (fF(@1), fF(@0))
@ (wz,w0) 7 (M w2), (o)

When we say that a set of N points lying in a 1-dimensional W, . plaque
is A-nearly evenly spaced, we mean that d°-distances between any two neigh-
boring pairs of points are A-nearly equal.

By the lemma, given A > 1 there is A such that if xg, X1, Ta are positively
ordered and ﬁ-nearly evenly spaced apart along a W€ plaque, then the
iterates f*(z), f¥(x1), f*(x2) will remain positively ordered and (A-)nearly
evenly spaced as long as the distances between them remain small (< &5).

3.2. An inductive property. Fix 7 > 0 small so that the YW*-holonomies
(denoted by h®) between Wy plaques at 7-close points are well-defined.

Let us assume that W"" is s-transverse. There are R, x > 0 such that for
every x € M there exist curves v,7': [0, 1] — W§"(x) satisfying:
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(a) for all t € [0,1], v(t) € WE(+/(t)), and
(b) d"(h*(v'(0)),7(0)) < —x and d"(h*(y'(1)),7(1)) > x.
Let L > 1 be a constant depending only on R that bounds the norm of DR"*
and Dh®, where h** and h® are holonomy maps between W€ plaques along
paths of length smaller than 2R.
Fix an f-invariant uu-lamination A. We argue inductively (compare with
Proposition in Section @:

Inductive statement P(N). For every A > 1 and e € (0,ea), there exists
a set of N points which is A-nearly evenly-spaced, which lie in a single
plaque W[ () N A, and whose diameter (measured along Wy, (x)) belongs
to [e/|Dfl],e].

The case where N = 1 is trivial. We now suppose P(N) holds for some
N and prove P(N + 1). We are given a constant A > 1 and a scale ¢ > 0.

We fix some 1 < ﬁl, A, such that log A < log Ay < log A. Applying
P(N) to some A; and to some £ < & small, we obtain z1,...,xn € A,
a collection of ﬁl—nearly evenly spaced points on W[ (xn) with the max-
imum distance d(z1,zn) € [E/||Df|,€). The W** holonomy h“* between
WE (xn) and WE(y), for any y € W (zn) C A is C1, uniformly in R. Thus
for p > 0 sufficiently small, the derivative of the holonomy between W¢(zx)
and W¢(y) is nearly constant, which means that Ai-nearly evenly-spaced
points are sent to ﬁg—nearly evenly-spaced points. We assume that & < p.

The s-transversality property gives curves v, in Wg*(zy) C A satis-
fying the properties (a) and (b) above, with the given values of R,T,x.
Let z(t),...,2\(t) = 7/(t) € A be the images of z1,...,zy under the
holonomies h**: Wi(zy) — Wy .(7/(t)). These points vary continuously
with ¢ while they remain very nearly evenly spaced, since €, < p. The
distance between any successive points xj(t), zj,(t) is at most LE.

Define a function ¢: [0,1] — R by

o(t) = d (h; (7' (1)), 7(1)),
where hf: WE (7 (t)) = WL .(7(t)) is the local W* holonomy. This function
¢ continuous, and s-transversality implies that

$(0) < —x <0 < x < &(1).
We now choose a special value of ¢y € [0, 1]. There are two cases:
— For N =1, we select tg € [0,1] such that ¢(tg) = x/2.
— For N > 2, since 0 < d°(2y(t),2’y_,(t)) < L€ < ¥, it follows that
there exists ¢ € [0, 1] such that

d"(h}, (7' (o)), 7(t0)) = d"(y (to), &y _1 (t0))-

We set Ty41 = v(to) C A. We also set 2; = hi (zj(to)), for i =1,..., N.
Then &1,...,Zn41 lie on W (Zn41), are very nearly evenly spaced, with
distance between these points bounded above by L?g. The point &y.41
belongs to A, and &1, ..., & belong to Wi (2(to)) C Wi(A). See Figure[7 If
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TN

.’EQ:

t

Wioe(2n) Wi (@) Wise(@n41)

X1

F1GURE 7. Choice of the points 21, ...,Zy+1. Points belong-
ing to Ay(z) are colored in blue.

we then iterate the points 21, . .., #n41 forward by fF, the distances between
successive points become larger but, since f is C'T, the points remain A-
nearly evenly spaced as long as they remain within some fixed scale 5 > 0
(as given by Lemma. At the same time, the distance between f*(&n41)
and f¥(2/y_ ;) € A goes to zero exponentially fast. We take k such that
A(fE (@), Fo(@n) € [y )

We perform this construction for a sequence £, — 0 and get points

xo1 = f(201), . ontr o= [P (EoN) €A

A-nearly evenly spaced in Wy, (z¢n), with d(xe1,zen11) € [H[‘;—f”,s] and
d(zgNy1,A) = 0 as £ — oo. Extracting a subsequence (by compactness of
A), we obtain the desired limiting points z1 ...,zy41 € A, proving P(N+1),
and completing the induction.

3.3. Conclusion of the proof. We now fix A > 1 and € > 0 sufficiently
small. For each N > 1, Property P(NN) gives an ordered sequence of points

21(N),zo(N),...,zn(N) € A

A-nearly evenly spaced in Wf, (xn(N)) with d°(z1(N),zn(N)) € [”Dg—f”, £).
Sending N — oo and extracting a Hausdorff convergent subsequence of
{z1(N),...,zn(N)}, we obtain a center disk WS (x) C A, where £ €
[e/IIDfll,€ll]. Since A is W""-saturated and W" is bifoliated by W¢ and
W4 the union of W} plaques through points in WS (z) gives a W* disk
in A. Corollary then concludes that W** is mainimal. This completes
the outline of the proof of Theorem [C] under the simplifying assumptions.

4. PROPERTIES OF FOLIATED PLAQUES AND THE DETAILS ON
S-TRANSVERSALITY

In this section, we consider a C! diffeomorphism f preserving a partially
hyperbolic uu-lamination A with 1-dimensional center. We develop some
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properties of foliated plaque families for the proof of Theorem [C] We also
fill in the details about s-transversality (Propositions and .

4.1. Center and stable distances. Let d** be the induced Riemannian
metric on W*" leaves of A. For x € A let dS, d be the induced Riemannian
metrics on PS, and on the leaves of the local foliation 17\/\;, respectively.
Proposition implies the following lemma (see Figure . For z,y € A
close, this lemma gives a way to project y onto W;“(x) by intersecting with
the plaque P“(y).

In order to simplify the presentation, one will assume that the bundles
E* E° and E° are nearly orthogonal. To handle the general case, one
should replace explicit numbers in the estimates that follow by a constant
that only depends on the angles between these bundles.

Lemma 4.1. If g9 is small, then for every x € A and y € B(x, %) NA,
there is a unique path o = o1 - 09 - 03, 0;: [0,1] — M, from y to x with oy
geodesic in P°(y), o2 geodesic in Wy(o1(1)), and o3 geodesic in Wit (z).

This path varies continuously in (z,y).

We set

p°(y, ) = dy(y,01(1)) = Length(c1),
o (4,2) = d3(01(1), 73(0)) = Length(c).

While p¢, p® are not distances (they are not even symmetric), the maps p©
and p* are continuous on (B(zo, ) N A)?, for any z € A.

<

“(y, )
oY P (y, )

T

FIGURE 8. The paths in Lemma[4.1] which are used to define
the “distances” p°(y,z), p*(y, ).

The next lemma shows that given x,y € A close, y is the projection
(onto Wi(y)) of some point &’ € W/“(x). Hence the union of center-
stable plaques centered at points of the local manifolds W}*(x) is a uniform

neighborhood of .
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Lemma 4.2. If g is small enough, for any x € A and y € B(x, 53), there
exists ' € Wii(z) such that y € P®(x). In particular, there is z € P°(x’)
such that y € W2, ().

Proof. The bundle E° := E°@ E* is locally trivial, hence the spaces E°(z')
for 2’ close to = can be identified with E°(z). For p > 0 small, we construct
a continuous map H from the product of balls B**(z, p) x B (z,p) C T, M
to a neighborhood of x as follows. For any ({,&) in the product, let 2’ =
exp, (¢) and identify £ € E°(z) with some ¢’ € E°(2'). The point H((,¢)
is then defined to be the image of & by the exponential map at 2’ along the
submanifold P (z’). The image of H is thus contained in the union of the
plaques P*(z’) for 2’ € W“(x).

Note that when (¢, §) is close to (0,0), the distance d(H (¢, &), exp, (¢ +§))
is smaller than ||(+¢&||/100. In particular if £ is small enough, the restriction
of H to the boundary of B**(x,e0) x B“(x,&0) around any point in B(z, 7§)
has index 1. This implies that B(x, §§) is contained in the image of H. o

The center-stable plaques P are in general not coherent (i.e. they don’t
foliate a neighborhood of A) but the next lemma gives a level of control over
their noncoherence.

Lemma 4.3. If g is small enough, then the following holds. Consider any
z € A and o' € W (z) \ {x} such that P®(x), P (a’) intersect at some

loc

point y € B(z,e0), and let z € P¢(z) N Wi(y), 2 € P(2') N W;, (y). Then
d(z,7') < 55 min(d(z, z), d(z’, 2")).

Proof. We choose 0 < g9 < €1 small. Working in exponential charts, all the
bundles are close to constant bundles. Hence it is enough to show:

d(z,2") < min(d(z, 2),d(z', 2")).

This is proved as follows:

First iterate the points z,2’,y forward under f while d(x,y) remains
smaller than ;. By local invariance of the plaque families, the geometry of
the configuration remains bounded and controls the distance d(f™(x), f™(z')).

The distance between x and z’ is uniformly expanded; hence there is a
last iterate IV satisfying our assumptions on the configuration. At that time
d(fN(x), fN(2)) and d(fN(2), fN(2')) are larger than a fixed number and
d(fN(z), fN(x)) is smaller than a fixed number. Hence there exists C' > 0
such that

d(fN (), fN (@) < Cmin(d(fY (2), fY(2)),d(fN (), [N ().

Now iterate backward to return to the initial configuration. The integer
N can be assumed arbitrarily large if £1/¢q is large. By domination of the
splitting £ @ E¢, the ratio d(x,2')/d(f™ (x), f¥(2')) is much smaller than
min(d(z, 2), d(2’, 2))/ min(d(fV (z), ¥ (2)), d(f (), fN(2'))). This gives
the required estimate. ©
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4.2. Center orientation. We first prove that the neighborhood of any
point xzg € A is separated by the brush

BT(ZEO) = U Wlsoc(y)

yewuu (IO)

loc

into two components. This will allow us to define two sides of xg, locally.
For any 0 < € < g¢ and zg € A we introduce the set

Us(x0) := B(xzg,¢€) \ Br(zo).

As defined in Section two points y,y" € U-(x() are said to be in the same
component if they can be joined by a continuous path v, ./ in U, /c,(z0),
where Cy > 1 is a quantity that only depends on the angle between the
bundles E“*, E° E*.

Lemma 4.4. If g9 > 0 is small enough, then the set Us(x¢) has two com-
ponents in the above sense, denoted by UX(xz¢). Moreover one can choose
Yy to lie in B(xo, Coe). Hence UX(xo) do not depend on €.

Note that U (z0), U (xg) are defined independently of the plaque families
Pe, P, and W2,

Proof. For the proof and as in Section we will assume that the bundles
E* E° and E° are nearly orthogonal. This allows us to work with explicit
numbers rather than with a constant Cj.

Using the local coordinates of the exponential map at xg, we construct a
C! disc D with dimension dim(E%*)+1 that contains zg and is separated by
Wi (), such that for any y, x € B(xg,£0/100) with = € A and y € P (z),

loc
the leaf WW:(y) intersects D in a unique point.
By Lemma any point y € U:(zo) belongs to P“(x) for some = €

w(x0). The leaf Wj(y) intersects D at a point z but does not meet Br(xg)
by Lemma Since ¢ is small and and since y, z belong to B(xzg,¢), the
plaques are close to linear subspaces in the exponential chart at xy. Hence
there exists a path v, C Wj(y) that connects y to z in Usc(z0).

To any other point y' € U.(xg) we associate in a similar way an arc
Yy C Use(xg) that connects ¢ to some point 2’ € D. The set D\ W} (xzg)
has two connected components. If z, 2’ belong to the same component, they
can be connected by an arc v, .+ C Ujoe(2o) and y,y’ can be connected by
an arc which is the concatenation of 7,7, .,7, and which is contained in
Ui0e(xo). This shows that U.(xg) has at most two components.

Now consider two points y1,y2 which belong to different connected com-
ponents of D\ W/**(xq). We claim that they belong to different components
of Ug(xp); this will conclude the proof. Assume by contradiction that there
exists an arc ,, ,, connecting these two points and contained in U, /19(0)-

By Lemma any point y € 7, 4, can be projected to D: it belongs to

some leaf Wi (y) with o € W/%(zo) intersecting D \ W (x) at some point

z. Moreover, any point in a neighborhood of y can also be projected to D :
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W:(y)

FIGURE 9. First part of the proof of Lemma [4.4]

the projection is a priori not uniquely defined, but belongs to a connected
neighborhood of z in D, which by by Lemma is disjoint from Wj%(x).
Using these projections, we thus define a continuous arc inside D\ W}/*(x¢)

loc
that connects y; to o, contradicting the choice of the points. ¢

The next lemma proves that along any path v in a leaf W**(z), one can
continuously follow the two components U (x), UZ (z). This will allow us

to compare the components of points that are not close.

Lemma 4.5. Consider a leaf W*"(xo) with o € A and an arc v: [0,1] C
WU (x0).  For any component UZ(y(0)), there exists a path 7 satisfying
3(0) € UZ(~(0)) and F(t) € U:(y(t)) for all t € [0,1]. The component of
Us(y(1)) that contains ¥(1)) does not depend on 7.

Two points zg € U:(7(0)) and z; € U.(y(1)) will be said on the same side
of W (z) relative to +y if there exists an arc 7 as in Lemma [4.5| joining the
components of U.(7(0)), U:((1)) and containing zg, z1 respectively.

Proof. Choose z € PE(y(0)) in the component UZ(~(0)) and let 6 € (0,¢)
be the distance between v(0) and z inside P(y(0)). Since the plaque family
{P¢(x)} is continuous, one can continuously choose 7(t) in PS(y(t)) at a
distance ¢ from 7(t) inside P¢((t)). By Lemma 7(t) belongs to U-(y(t))
for any t¢.

Consider another arc 4’. Since the components U (z), U (z) are open in
U:(x), the set of parameters ¢ such that 7(¢) and 7'(¢) belong to the same
(resp. different) component of U((t)) is open. By connectedness, 7(t) and

7'(t) belong to the same component of U (y(t)) for all t. ©
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4.3. Robustness, minimality and s-transversality. We first establish
the robustness of the s-transversality property stated in Proposition [1.3

Proposition 4.6. Let A be an invariant s-transverse uu-lamination for f.
For 7 > 0 sufficiently small, there exist R,x > 0, a neighborhood U of A
in M and a C' neighborhood U of f, such that for any g € U, for any
g-invariant vu-lamination Ay C U, and for any x € Ay,

— Ay is s-transverse,

— Items (1)—(2) of Deﬁm'tion are satisfied at scale T by arcs vy, C

Wigt(x); moreover p°(7(0),7'(0)) > x and p(v(1),7(1)) > x.

Proof. Suppose A is s-transverse, and let 7 > 0 be given by Definition
Given x € A, the there exist R, x, > 0 satisfying the conditions of Defini-
tion at the scale T by ares v, C Wg(x), with p°(v(0),7/(0)) > x. and
p°(7(1),~4'(1)) > xz- The continuity of the plaque families and the construc-
tions in the previous subsection imply that for ' sufficiently close to x, one
can choose Ry = Ry, X2 = Xz- Compactness of A implies that y and p can
be chosen uniformly. This property persists under C'-small perturbations
(in both the set A and in f). ¢

We next justify Remark

Lemma 4.7. If A satisfies Items (1)-(2) of Definition for a given T
small, then it is s-transverse.

Proof. Suppose then that ~v,7" C W"*(x) satisfy Definition at scale 7.
Lemma [4.1] implies that these paths can be continuously parametrized so
that each point 7/(¢) lies in P (v(t)), as in Figure Denote by z(t) the
unique point in P¢(y(t)) such that /(t) € W34 (2(t)), and consider the
continuous function ¥ (t) := d (2(t),(t)), where d" is the signed distance in
P<(y(t)) with respect to some fixed orientation of E¢ along ~([0, 1]).

' P (1))

FIGURE 10. Reparametrizing +/.

Given any 7" € (0,7), we fix n > 0 small. Since +/(0) and +/(1) lie on
different sides of W"%(z) relative to =, for any n > 0 there exists a closed
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interval I = [a,b] C (0,1) such that ¥ (a),(b) # 0 have opposite signs and
|(t)] < n on [a,b]. If n has been chosen small enough, then there exists
n > 1large such that p°(f"(y(t)), f*(+/(t))) < 7'/3 for all t € [a, ], and since
the local stable manifolds are uniformly contracted p*(f™(y(t)), f™(7/'(t))) <

7'/3. This gives d(f"(y(2)), /" (v'(t))) < 7', whereas f"(y'(a)) and f"(v(b))
are on different sides of W**(f™(z)) relative to f"(). Hence Items (1)—(2)
of Definition are satisfied at scale 7/ by arcs f™(v), f*(7') at the point
f™(x). Since the point z is chosen arbitrarily in the invariant set A and since
n can be chosen independently from z, s-transversality holds at scale 7. ¢

We next prove Proposition [1.5] on the structure of dynamically minimal
uu-laminations.

Proof of Proposition[I.5 The previous proof shows that if A is s-transverse,
then there is R > 0 such that for any x € A there exist two different points
Y,z € W§*(x) such that y € W} .(2). By continuity of the lamination W**,
if z,2’ are close enough, then there exist y € Wi*(z), z € W§*(z) such
that y € Wj _(2). Consequently there exists n > 0 such that if Q,Q are
two uu-sublaminations at distance less than 7 from each other then they
intersect a common local stable leaf.

Fix Ny > Diam(M)/n. We claim that any (non necessarily invariant)
minimal wu-lamination Q C A is fixed by some iterate fV, N > 1. Indeed
for any ¢ > 1, two iterates f=%(Q),...,f7(Q) with £ < i < j < £+ Ny
share a common local stable manifold. Iterating by f’, we obtain that
and f77%(2) have two points whose distance apart is exponentially small in
Z; moreover 1 < j — i < Ny. There exists N > 1 and a sequence £ — oo
such that the associated iterates satisfy ji — i, = N. Passing to the limit,
it follows that © and V() intersect, and hence coincide, since they are
minimal wu-laminations.

Let  be a minimal wu-sublamination inside A. We have shown that
it is periodic; denote by N its smallest period. Since the iterates f"({2)
for n = 0,..., N7 are distinct minimal wu-laminations, they are disjoint.
Hence QU £(Q) U--- U fN=1(Q) is an invariant uu-lamination. Since A is
dynamically minimal it coincides with this disjoint union.

Each set f™(€) is connected since it is the closure of a leaf of W"".
Consequently it is a connected component of the disjoint union A = Q L

fQuU---u Q). o

The next lemma characterizes the integrability of E“*@® E° in the partially
hyperbolic setting.

Lemma 4.8. Let f be a diffeomorphism with a partially hyperbolic splitting
TM = E"®E‘GE?®, dim(E°) = 1. The following properties are equivalent:
(1) there exists an invariant foliation tangent to E"* & E*;
(2) there exists n > 0 such that for any x € M, y € Br(x)NB(x,n), the
local unstable manifold Wy (y) is contained in Br(x).
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Proof. (1)=(2) is clear. In the following we assume (2) and prove (1).

Fix a point x¢ and consider a chart in which the vertical is close to £¢ and
transverse to E** @ E*. In such a chart, each stable and unstable manifold
is a graph over the horizontal plane.

By assumption, for any x and any y € Br(x) N B(x,n) we have WX (y) C
Br(z), and hence Br(y)NB(y,e) C Br(z). Symmetrically, Br(z)NB(z,e) C
Br(y).

We claim that if y,z in Br(zg) are close to xy and project to the same
point in the horizontal plane, then y = z. Indeed, since z belongs to Br(z¢)N
B(xzg,n), it must be is contained in Br(y), and so it belongs to a plaque
Wi (1) with t € W/ (y). Since W*, W"* and the vertical are tangent
to transverse cones, the projection of z to the horizontal belongs to the
projection of Wi(y) only if z itself belongs to W;“(y). This implies the
claim.

We have proved that Br(z¢) N B(zo,n) is a graph over the horizontal. By
invariance of domain, its projection to the horizontal is open. Any points
z,y € Br(xzo) N B(zg,n) close to each other can be connected by a small
path tangent to E** @& E°. By uniform continuity of E** & E*, this shows
that the graph Br(xg) N B(zg,n) is C! and tangent to E“* @ E*.

By Proposition 1.6 and Remark 1.10 in [7], this implies that there exists
a continuous foliation with Cl-leaves tangent to E“* @ E*, proving (1). o

Finally we turn to the proof of Proposition [1.4] a criterion for checking
s-transversality.

Proof of Proposition[1.4. Fix 7 > 0 small. By Lemma [£.8]if E“*® E* is not
integrable, then for any 0 < n < 7 there are points z, y € Br(xz) N B(z,n)
such that W**(y) N B(z,n) is not contained in Br(z). Thus there exists an
arc 7, C Wi (y) connecting y to some point 2 € Us(z).

We claim that close to y there exists a point ¢’ belonging to the component
of Us(x) that does not contain z. This can be proved by examining the end
of the proof of Lemmal[d.4t consider again the disc D through x of dimension
dim(E""*) +1. The local manifold W; .(y) meets D at a unique point, which
belongs to Wj*(x). Since the projection on D by holonomy along W -
leaves is open on a neighborhood of ¥, there exists 3’ close to y such that
Wi (y) meets D at a point belonging to any given component UZ(z). Let
7 C WE(y') be an arc connecting ¥’ to z of length smaller than 27 that is
T-close to x. Define 7 to be the arc supported on {z}. Definition is now
satisfied at scale 7. Since 7,v" have diameter smaller than 7, the foliation

WU is locally s-transverse. ©

5. PREPARATION FOR THE PROOF OF THEOREM

This section and the next are is devoted to the proof of Theorem [C] We
thus fix a C'* diffeomorphism f: M — M and an f-invariant uu-lamination
A C M that is s-transverse and satisfies the property SH. We aim to show
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that A contains a cu-disk. We continue to use the notation introduced in
§ In this section, we introduce the necessary tools to address the
general case where A is not necessarily equal to M and E° is not necessarily
expanding.

5.1. Plaque holonomies and distortion.

5.1.1. Signed center distance. In Section |3, we introduced signed versions
d” and p° of d° and p¢ assuming that the center bundle is orientable. When
it is not orientable, signed distances can be introduced locally and can be
extended continuously in the neighborhood of a simple arc. There are two
choices for the sign locally, but the ratio of two signed distances does not
depend on this choice and is is thus well-defined.

5.1.2. Basic distortion. Item (5) of Propositionimplies that the tangent
bundles of the center plaques P¢(z) are §-Holder continuous, for some 6 €
(0,1). Let Cp > 0 be a uniform bound on their Hélder constants. For z € A,
e>0,k>0,let

k—1
ck(w, €) == exp <C’9Zmin{ao,Length(fi(Pc(w,E)))}9> .

=0
We have the standard distortion estimates.
Lemma 5.1. If the lengths of the first k iterates of P¢(x,e) are less than
€0, then for all y,z € P°(x,¢), we have
||Dyfk|735(a:,e)|| =ep(we) ||D2fk|73c(z,a)“'

Corollary 5.2. Let K C A be a hyperbolic set such that E€|k is uniformly
expanded. For any A > 1, there is €1 = £1(A) > 0 such that for any z € K,
To, 71,72 € P(2) and any k > 1, if d(f'(2), f'(zj)) < 1 for all j and
0<1i<k, then

EZ(azl, 1‘0) = aj"“(z)(fk(l'l)a fk(xO))
= XA = .
d2($27$0) d;k(z)(fk($2)afk(x0))
5.1.3. Basic distance controls. We will prove a sequence of lemmas control-
ling the distortion cj for very large k. This will require as a preliminary

finding a scale at which the bundles in the partially hyperbolic splitting are
nearly constant. The next lemma addresses the choice of this scale.

Lemma 5.3. For any d,n > 0, there exists eo = £2(0,n) > 0 such that for
any points z,z" € A with 2/ € W}*“(z,e3), the following holds.

loc

(1) For any k > 0, if d““(f*(2), fi(2')) < e2 fori=0,...,k —1, then
d"(fF(2), fE(2") = (1 + 0)Ak(2)d™ (2, 2").
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(2) Consider any € € (0,e2), and z,y € P(z,¢e), o',y € P(2') such
that there are points 2 € W3 (x, e2) N A, y" € Wi(y,e2) N A, 2" €
WZS,(:B ,€2) N Wloc( "), and y" € Ws (v e2) N WE(Y") (see Fig-
ure . If dS(2',y') > ne and € > max{di,,(a: x),d"(z,2")}, then:

dg ('T7 y) =146 di’ ('I/v y,)
| 2
Zu/
W2,
\ Iz //—~ >

x//<\"'y

/

\, 1

77"(2 £9)
P(z,e2)

UU
W

oc

FIGURE 11. Arrangement of points in Lemma Points in
A are colored blue.

Proof. Part (1) uses an elementary hyperbolic distortion estimate. At small
scale the bundles are almost constant. In particular, one may consider local
coordinates such that the center bundle is arbitrarily close to the vertical di-
rection. By our assumptions, all stable and unstable distances are controlled
from above by the center distance d$(z,y). This implies that moving z to
2’ along the “suus-path” through z” and z”, the difference of the vertical
coordinates of z and 2’ is small with respect to d$(x,y). The same property
holds when one moves y to 3. Consequently the ratio between d(x,y) and
d$,(«,y') is arbitrarily close to 1 if the scale is chosen small enough. ¢

5.1.4. W""-holonomy between center plaques. We need to introduce a type
of W"¥-holonomy between center plaques centered at points inside a com-
mon W4"¥-leaf. Since the system is not dynamically coherent, we have to
add a projection along a (fake) stable foliation, as in Figure

Fixing R > 0, if ¢ > 0 is sufficiently small, then for each z € A and
¥’ € W (z, R), we define as follows the W**-holonomy

K Pz, ) N A — P(a).

First, there exists § > 0 such that for € > 0 sufficiently small and for any
z €A, 2/ € Wz, R), and y € P°(x,e) N A, the intersection D'(y) :=
WU (y, R) N B(a',6) is connected and nonempty. We fix any z”(y) € D'(y)
and define 3 to be the unique point of intersection between W*(z"(y)) and
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Pe(x'). Then h*"(y) is the unique point in P¢(z’) such that W (h*"(y))
contains y”. This does not depend on the choice of z”(y).

It is well-known that for a dynamically coherent, partially hyperbolic dif-
feomorphism with 1-dimensional center, unstable holonomies are Lipschitz
between center manifolds. The following is a refined analogue of this state-
ment in the context of W*"-laminated partially hyperbolic sets, expressing
as well the fact that the Lipschitz norm of the holonomy is nearly constant
on small scales.

h’U.’U. ('rz

Z2
Zy

Zo

x

FI1GURE 12. W"* holonomy is Lipschitz on suitable scales.

Lemma 5.4. Given any R,n > 0 and L > 1 there exists e3 = e3(R,n, L)
such that for any ¢ € (0,e3), any x € A and any ' € W*(x, R), the
holonomy h**: P¢(z,e) N A — P(2’) has the following properties:

(1) For any xo € P¢(x,e) N A, if xg # = then h*“(zg) # .

(2) For any xg,x1,x3 € P(x,e) N A, if di(xs,x;) > ne for i # j, then

dy(1,20) _  dy (h*"(21), B (20))

—C ~L C
dx(.’I,'g,J)()) dxl(huu(x3)7huu(x0))

Proof. Given such a configuration of points with = # xg, iterate by f~" so
that the strong unstable distances become shorter than the center distance
between f~"(z) and f~"(z(). Lemma [5.3)implies that f~"(z) # f~"(z0).
This gives Item (1).

Let us now fix 1 < I/ < L'/3 and assume that e3 is small enough. The
distortion of f~™ along P¢(x) is controlled by Lemma and by the lengths
of the arcs f¥(P¢(x,e3)) for 0 < k < n: having chosen e3 small enough,
c_k(x,e3) is close to 1 for k > 0 smaller than some fixed large integer N.
For N < k < n, the curve f~%(P¢(x,e3)) has length smaller than the strong
unstable distance between f~*(x) and f=*(2’) (by definition of n), which is
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exponentially small with respect to k. This bounds c_,(x,e3) and gives:

dy(w1m0) _ dyn(ay (f " (21), /" (w0)
dy (w3, 70) Ay (f 7 (23), f(20))

The local geometry ensures that the strong stable curves do not get too
large. We compare distances at these scales using Lemma

8;—n(m/) (f—n(huu(xl))7 f—n(huu(xo))) ) E;—n(x) (f_n(xl), f_”($0))
ooy (- (0 (s), S (0 (@0)) oy (f " (s), " (w0)

Going back by f™, controlling distortion along P¢(f~"(x')) as before, we
obtain:

By (F B (@), B 0)) @ (B (), B (20))

oy (F7 (0 (3), = (B (o)) do(h(zs), hv(zo))
This gives Item (2). ¢

i P2
Pe(2) ()
Wice —\Q W2 (@)
.’EN \ ,
o~ X
Wiy 17
z—
[ ] Z/
2 [ )

FI1GURE 13. The suus relation. Points in A are colored blue.

5.1.5. The suus relation —. For z,2' € A, x € P°(z) and 2’ € P(2'), we
say that x, 2" are suus-related and write z —, . &’ (or just x — ') if there
exists 2’ € W5(z) N A such that Wj(x') NWE(a") # 0. See Figure
Observe that — is symmetric.

The next lemma gives a similar comparison between distances of suus-
related points lying on adjacent center plaques. This identification describes
something like a stable holonomy (for any z,w € A and x € P¢(z), there
may exist several 2’ € P¢(w), with x — 2’; hence it is a relation between
P¢(z) and P¢(w) rather than a function).

Lemma 5.5. Given L > 1,1 > 0, there is €4 = €4(n, L) > 0 such that for all
e € (0,e4), the following holds. Let z,xq,x1,x2, x), 2}, x5 such that z € A,
xo € ANP(2), z; € P(xo,€), @ € P(2,¢) with x; — x} (see Figure[14).
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(1) If xo # x1 then xjy, # .

ac
(2) If d§, (x5, 25) > ne for i # j, then =
20 (%2, T0)

(x1,x0) -, Ei(:z:l,:no)
=5 = )
d(x, xp)

WY/ u

loc

Pe(f"(wo)) Pf"(2))
FIGURE 14. Proof of Lemma [5.5l Points in A are colored blue.

Proof of Lemma 5.5 The proof is very similar to the proof of Lemma [5.4
Given such a configuration of points, we iterate by f™ so that the stable dis-
tances become shorter than the center distance between f"(x) and f"(y),
while this center distance remains small (less than €) and the points remain
in the center plaque of f™(w). This is depicted in Figure One then com-
pares distances along the center using Lemma [5.3] and iterates backwards,
using distortion control. ¢

5.2. A key proposition for the SH case. The following proposition is
fairly technical and is needed to handle the case where A is not hyperbolic
but merely satisfies the SH property. It gives a method to transfer configu-
rations between points z; in a center plaque P¢(z), to another center plaque
Pe(Z') with 2/ € WH*(z). Note that the SH property is not used in its proof.

Proposition 5.6. Given ¢, R,n >0 and A, L > 1, there exists
g5 = e5(e, Rym, A, L) > 0 such that for all € € (0,¢e5), the following holds.
For any z € A there exists m € N such that for any
2 eD:=fmW"(f"(2),R)),
for any x4, o, 25 € P(2',€) such that df,(x;,x}) > n€ when i # j, and for
any o, 1, x2 € P(2,€) with x; — i for i =0,1,2, we have:
(1) dck(z,)(fk(z’),fk(xg)) <eforall0<k<mandi=0,1,2;
) L) D@, 1@t
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di (1, x0 do (),
(3) dc( ) - ( 1 0)‘

D
Z/
T
)
)
T2
PC (Z) PC (Z/>

F1GURE 15. Configuration in Conclusion (3) of Proposition

Proof. Recall the functions £ < pu < X\ that were introduced in §[2.2.4] and
let

Ko =supk, Ao =infX, pg=supp, vo=supfk,

b e (max{)\al, Yo, Ko}, 1).
Item (5) of Proposition states that the tangent bundles of the center
plaques P¢(w) are §-Holder continuous, for some 6 € (0,1); we denote by

Y

Cyp > 0 a Holder constant. The center bundle E° on A is also Hoélder
continuous, with some exponent o > 0 and Hoélder constant Cy, > 0.

The following choices of constants could be compressed, but to make
things easier to read, we have chosen to leave the choices as closely aligned
as possible with their application in the proof. The proof is broken into 4
steps; we indicate where appropriate in which step each choice is used.

Let e,m > 0, A, L > 1 be given. We choose A > 1, §,7 € (0, 1), satisfying:

o AY(1+0)? < min{L, A} (Steps 1 and 3),
o A?exp (Con®/(1— Ag®)) <2 (Steps 1 and 2), and
e 77 <n/4 (Step 1).
Let 5 = £5(0,7]) be given by Lemma and o < min{eg, 7,1} such that
o exp(Cy(271r0)? /(1 — 7)) < AL/2 (Steps 1 and 2).
Asin § the size of local manifolds is €p. Fix £y > 1 such that
o méoso < rp (Step 0),
and choose ¢35 > 1 such that for every w € A,
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o POV, ) D W (w), R (Step 3).

Now choose integers N1, No > 1 such that
o 7 T max{v, \g 1 }V2 < N2 (Step 2),
° 5r0u€36N2 < e (Step 3),
o exp(Cyls(5uf B2)0r0) < A (Step 3),

o 3% < (o1 +H)IDSIY) " (Step 2), and

~_1 n1—1

o 2uon ko' < ™ for any integer ny > Ny (Step 1).
Finally we choose e5 = e5(¢, R, A, L,n) € (0, 1) satisfying
o c5ub < o for all 0 <i </ (Step 1),
. exp(09€0(255uf)°)9) < A2 (Steps 1 and 2), and
o 2u0 N ey < YD - MYy (Step 1).
Having chosen the constants, we continue to the proof. Fix £ € (0,¢5)
and z € A. We will choose integers ni,n2 > 0 and consider the points:

2o = f(z), =z1:=f"(2), z2:=f"(2), and z3 := f"(z), where

mo = Lo, m1=Llo+ny, me=~Llo+ni+ng, m=m3=~Lly+n;+na+{3.
We denote &; = Length(f™i(P(z,¢))) for i € {0, 1,2}.
We fix round unstable disks D1, Do, D3 centered at z1, z2, z3:

Dy := W™ (21,781), Do =W"" (2, ﬁ), D3 = W*"(z3, R).

Iterations at Step 0 are a preparation, ensuring that all distances are small
during the two next steps. The disk D; will ensure Conclusion (3) holds at
Step 1. The disk Dy will be shown to be included in f"2(D;) and will ensure
Conclusion (2) holds at Step 2. Finally iterating at Step 3 will be used to
recover the unstable size R: the disk D3 gives D = f~"(D3). Conclusion
(1) is obtained in this last step.

Step 0: Iterate fy times. Prove that the images of local stable manifolds
through any w € A have diameter less than ro and that €y < 25;%0.

The size of the stable manifolds is controlled by the condition /436060 < 1p.
Then observe that £y = Length(f%(P¢(z,8))) < 2§,u€0.

Step 1: Iterate until the first time ny that Diam(f™ (W?*(29,10))) is smaller
than ) Length( ™0+ (P<(2,€))). Prove&; < f™ry and for all 2’ € f~™(Dy),

em, (2,8) < A and 21 < Length(f™ (P°(2',8))) < 221.

Then prove Conclusion (3) for all 2’ € f~™1(Dy).

Here are the details. For k > 0, Length(f™0+*(P¢(2,8))) < 2ul" ™z, and
the diameter of f*(W?*(20,70)) is at least || Df~!|7%ro. Our choices of &, &5
give 2u0"0TNIT1E < =1 D =N =Dyg which implies ny > Nj.

The diameter of f™ = (W?(zg,70)) is at most 2k~ 'rg, and is greater
than 7 - Length(f™+"1=1(P¢(2,2))), by our choice of ny. It follows that



34

A. AVILA, S. CROVISIER, A. WILKINSON

I
N
"
& J0
0
7" (Dh)
20 ,
20
/
7 Yo

P(20) P(20)

P(21) P(21)
FiGUurE 16. Choice of ny and D; in the proof of Proposi-

tion[5.6} after ny iterations, the stable and unstable distances
are smaller than 77 times the center lengths.

g1 < 2pomn

that 2o Lkt

1/181_17"0.

Our choice of N; and the fact that ny > N imply
< ™. Hence g1 < ™.
Now we do the distortion and comparison estimates for 2’ € f~™1 (D).
Claim. For all 2/ € f~™ (D), we have ¢y, (,8) < A and

381 < Length(f™ (P°(¢,2))) < 221.
Proof. First we note that for any 0 < k < mg = £,

Length(f*(P%(2,8))) < 28uk < esuf < eo.
By definition of ni, each 0 < k < n; satisfies

Length(f™""*(P*(z,8))) < 7" Diam(f*(P*(20,70))) < 20 rigro <7~ f*ro.
Fix an arbitrary 2’ € f~"1(D;). An inductive argument gives that for all
0 S k S my:

LLength(f*(P°(2,2))) < Length(f*(P°(,2))) < 2Length(f*(P*(z,2)).
With the definition in §5.1.2] these inequalities imply

cr1(2,8) < exp(Colo(2e5p10”)%) exp(Co(277'r0)? /(1 = 87)) < A.
The distortion estimate in Lemma [5.1] then gives

Length(f*H1(P(+', 8))) =3 IDF*1(2)|p<||2.
Note that d(f*(z), fi(2')) < NG ™& < AL ™. In particular

IDF () e
| log 5 e ey

Cafl®
DY

k
< Co Y _(HAT™)™ <
=0
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We thus obtain

Length(f*(Pe(+'.,9)))
98 Tength(/*(Pe(2,2))

< 1 )\a +210gA < log?2,

with our choices of rg, A. "This completes the induction. As explained before,
this implies ¢, (2/,8) < A. ¢

To prove Conclusion (3) of the proposition, we fix 2 € f~™1(D;) and
points g, z1,x2 € P(2,€) and z(, 2}, 2, € P(,€) with z; — 2} and
ds, (), ’)>77§fori7éj

Let zg € Wi (xo) N A be the point satisfying W} (z() N W () # 0,
guaranteed by xo — xp. Since 281 < 2™ ry < 2e9, we are in the position to
apply Lemma to the points f™ (x;), f™ (x}); we just need to show that
the center distances between the points f™ (z! ) fmi(z}) are larger than
nmax; dm, (fml( "), f™(«})) and that max; d fm1 ) (fml( ), fm(at)) is
larger than the stable distance between f™1(z), f™ (z”) and the unstable
distance between f™1(z) and f™!(2').

For i # j, since by assumption dg, (zf, z};) > ILength(f*(P¢(z',£))) and

as we have controlled the distortion ¢, (2,8) < A, we obtain
Ay (o) (S (@), S™ (25)) > "2 Length(f™ (P°(',2))) > 257 > fjAc:.
Since max; d<,(2/, 2}) < 3Length(P¢(z',£)), we also get
max dfon, () (™ (), /™ (1) < S ength(f™ (P°(#,2))) < AZ).
On the other hand, our choice of n; implies that
T (o (™ (@), 7 (") < 7 Lengthf™ (P*(2,8)) = g1 < A&,
Finally, by our choice of Dy, we get d"“(f™(z), f™(2')) < ne1 < AZ.
Thus the hypotheses of Lemma are satisfied. Ttem (2) gives for i # j
d;‘ml(z)(fm1 (:Bl)v ™ (xj)) =143 fml (fm ( ;)7 ™ (x;»
Taking ratios, iterating by f~™!, and using the distortion controls, we get
32(1'171'0) - ~ 82;(.%'/1,.%6)
d (a2, w0) S (2t )
which gives Conclusion (3), since A%(1 + )2

Step 2: Itemte until the first time ny that the inner radius of f"2(D1) is
greater than Hence Dy C f™(Dy). Prove ng < Na, 9 < ™1y and

Ao(l 3)’
Length(f"2(P%(w,281))) < 582 and ¢y, (w,281) < A for all w € Dy.

Here are the details. Since the inner radius of f¥(D;) is at most || D f||*7g; <
1
| Df||* 78N 7g, and since N1 < (nAo(l + 6)|]DfHN2) , we obtain ng > Nj.
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The definition of ny and Item (1) of Lemma imply, for 0 < k < ng,
InnerRadius(f*(Dy)) < N2y,
Write v := f™(P¢(z,€)). The definition of vy gives

Length(f*()/Length()
InnerRadius(f*(D;))/Radius(Dy) 0

Since Radius(D;) = 1 Length(y), we obtain
i~ 'Length(f*(y))/Length(y)
InnerRadius(f*(D1))/Radius(D;)
< A g < B < B,

Length(f*(v)) InnerRadius(f*(D;))

since ng > Na, and No was chosen so that 7~ max{p, )\al}NQ < N2 In
particular g2 < ro™2 and ¢y, (21,281) < A.
We next need to show that ¢y, (w,281) < A for all w € Ds.

Claim. For all w € f~"2(Dy), we have cn,(w,281) < A and
Length(f"2(P“(w,2¢1))) < bea.

Proof. The proof is identical to the proof of the claim in Step 1. ¢

Step 3: Iterate (3 times. Prove f%(Dg) D W (f%(2), R) = D3 and
¢, (w,582) < A for all w € Ds.
Finish the proof of the proposition.

Our choice of f3 implies that f%(Dg) D W™(f%(z9), R). By Steps 1
and 2, the length of f™(P¢(Z/,€)) for 2/ € f=™ (W (f™(z), R)) is less than
5,u€3§2 < 5u€3 8™ rg which is smaller than e, by our choice of No. This gives
Conclusion (1) of Proposition We also get, for all w € D,

s (w, 5ea) < exp(C9€3(5u€3B”2ro)9) <A.

Since D C f7™2(Dg) C f~™(Dy), and using for any z’ € D the distortion
controls ¢, (2/,€), eny (f™1(2)), 281), coy(f™2(2'), 5€2), we get from the pre-
vious steps ¢ (2/,8) < A* < A. Together with Lemma [5.1| this implies that
Conclusion (2) of Proposition holds.

Using again D C f~™ (D), we deduce from Step 1 that Conclusion (3)

holds. This completes the proof of Proposition 5.6} ©
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6. A CRITERION FOR EXISTENCE OF cu-DISCS: PROOF OF THEOREM [C]

We continue to fix a C'* diffeomorphism f: M — M and an f-invariant
uu-lamination A C M that is s-transverse and satisfies the property SH,
retaining the notation of the previous sections in this part of the paper. In
this section, we prove that A contains a cu-disk, establishing Theorem [C]

We fix 7 > 0 small. By Proposition the s-transversality property of
A is satisfied at scale 7 for any = € A, between arcs 7, contained in the
strong unstable plaque W"*(z, R). Moreover, there exists x > 0 such that

(2) P50y (7(0),7(0)) > x, and p5)(v(1),7'(1)) > x-

Let K be the W"%-section of A given by the SH property as in §
By enlarging R if necessary, for any x € A, the set W"%(z, R) meets some
point of K. Let Ko = Ny>0f™(K) be its hyperbolic core.

We prove by induction the following property:

Proposition 6.1. For any § > 0 sufficiently small, there exists eg = £¢(0)
such that for any € € (0,e6) and any N > 0, there are points xg,...,xny € A
that satisfy:

(1) xn € Ko and xq,...,xn—1 € P(zN),
(2) di(xo,zn) € [/ Df],€], and

(8) for 0 <i < N, we have E;N(xo,xi) =X (146) iﬁ;N(xg,xl).

Proof of Proposition [6-1. Fix § > 0 arbitrarily. We choose some numbers
L,A,é > 1 close to 1, which will control the Lipschitz constant of holonomies
and distortion under iteration, such that

A’L3(1+6)2 < 1+6.

We fix ¢ > 0 smaller than ¢ := min(x/||Df]|,e1) where £1(A) is given by
Corollary applied to the hyperbolic set K.

We then prove the property inductively on N. The case N = 0 is trivial.
The case N = 1 will be explained at the end of the proof. We now assume
the property for N — 1 > 2 and prove it for N.

Let n = 1/[(1 + 0)L(N +1)], let e3(R,n, L), €a(n/L,L) > 0 be given
by Lemmas and and let es(e/||Df]|l,R,n,A,L) > 0 be given by
Proposition We fix £ > 0 smaller than min{e/||Df||,e3,e4,¢5,6(d)}-
We apply the inductive assumption for 5,5 to get N points Zg,...,TN_1.
They all belong to P¢(Tn—_1), with Zy_1 € K.

The s-transversality of A gives arcs v,y C€ W"*(Zy_1, R). Lemma
shows that one can parametrize them so that +/(t) € P (y(t)) for all ¢.

For each t, one can define points h{"“(Zy),...,h"(Zy_1) in P(y(t))
as in § one first moves z; by uu-holonomy to some point Z}(t) €
WU (z;) NP (7/(t)); one then projects along the leaves of Wj,(t) so that

hy*(z;) belongs to Wi,(t) (@(t)).
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Pcs (7/ t

FIGURE 17. Holonomy to two different P¢-plaques.

By Lemma one can also project each T(t) to Pc(y(t))jnd define

~

a point T;(t): this is the unique point in P¢(y(t)) such that Wi(t)(xi(t))
intersects W)X (Z.(t)). In this way, h{"(z;) and Z;(t) are suus-related. Each
point Z;(t) is the image of z; under a composition of two operations: first
the strong unstable holonomy h{": P(zo) — P°(7'(t)), and second, the
suus-holonomy relation between P¢(+/(t)) and P¢(v(t)).

Remember that we have assumed N > 2, so that Zo(t),Z1(¢) are defined.
By Items (1) in Lemmas 5.4 and the points Zo(t) and T (t) are distinct.
We then consider the function

Ay (@n- (t)=7(t))
M = G 1)

Note that it does not depend on the choice of a center orientation and that
it is continuous. The point Zy_1(t) is the projection of /() = Z'\_,(¢) to
Pe(v(t)). Werecall that 4/(0) and /(1) are on different sides of W**(Zny_1, R)
relative to ~y; hence 82(0) (Zn-1(0),7(0)), 82(1)(551\[_1(1), v(1)) have different
signs and satisfy

—C

[450) (@v-1(0),7(0))] > x and [d50) (Zn—1(1), ¥(1)] > x-

On the other hand |&§(t) (Zo(t),x1(t))| does not vanish and is smaller than
X- One deduces that ¢(0), ¢(1) have different signs and have modulus larger
than 1. In particular there exists ¢ such that ¢(#) = 1. We set 2 := ({).
Consider the points Zy := z and Z; := Z;(¢). All the points h**(;)
belong to P¢(v/(t)), all the points Z; belong to P¢(y(¢)) and ~'(¢) belongs
to P*(v(t)). By our choice of n, Items (2) in Lemmas 5.4 and |5.5| hold, and
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P (En-1) P(2)

FI1GURE 18. Proof of Proposition choice of Z.

we obtain for 0 <i# j#k < N
d(3,8;) _ oy, (@ 3)

=, < = ~L2 = — .
d;($]’xk) dﬂc{f}vfl (.’I)], l‘k)

. . . . —C s~ ~ —C s~ ~ .
This, our inductive assumption and dz(Zo, 1) = dz(Tn_1,TnN) give

(3) d:(To, T;) Xpa(4dy b di(Zo, 1) fori=1,... N.

When E€ is not uniformly expanded we need to move the point z = Zj.
Proposition [5.6] implies that there exist an integer m > 1 and a disk D C
WU (Zo, R) such that f™(D) = W"%(f™(z), R) and that for any z € D, the
distortion of f™ on P¢(Z) is controlled by A.

Claim. For everyZTy := z € D, there exist points To, ..., Tn—1 in P¢(z,€)N
Wi (A), such that for any 0 < i < N, we have

—C ,__ .=C

d,(To, T;) =psasz i d,(To,T1).
Proof. Fix z € D. The points T; € P¢(z) have been obtained by projecting
points 7 close to z. The points Z; are obtained similarly by projecting z,
to P(z) using Lemma so that Wi(7;) intersects W} _(Z7).

In this way the points Z; and Z; are suus-related. Combining Item (3) in
Proposition with , one gets the desired inequalities of the claim. ¢

Next, we select z € D such that f(z) € K and set Ty = z. We also fix
Zo, ..., ZN—1 € P(Zn,E) MW .(A) given by the previous claim. Finally, we
choose n so that d;n(z)(f”(EN), f™(@o)) € [e/|IDf]],€).

Note that n > m by Item (1) in Proposition Item (2) in Proposi-
tion and Corollary [5.2] then imply

Tl | Ein)
d;"(z) (fnf()v fn§1> dz (fo, El)
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With our choice of numbers L, A, g, this ensures for any 0 <i < N
() (f'T0, f7Ti) <148 @ dgn(y (f"To0, f7T1).

For a sequence € — 0, we repeat the construction of points Z;(k) and for-
ward times nj; — oo. Extracting convergent subsequences f"*(z;(k)) — x;,
we obtain the points xo, ... zy € A satisfying the Item (3) in Proposition
The points ZTo(k), ..., Zn—-1(k) belong to the center plaque P°(Zn(k)) and
to the union of local stable manifolds of A, with Zo(k) € K, and so the limits
xo,...,xN belong to A, with z¢ € Kp, and lie an interval in P¢(z() whose
length is contained in [¢/||Df||,e]. We have thus checked all the inductive
assumptions when N > 2.

In the case N = 1, the proof is similar but simpler: we select the points
z and then 77 in a similar way as Ty, but we do not consider points z;,
i > 1. The projection of some point Z, € W**(Z¢) to P(To, &) defines the
point T1 # Tg but we do not need to check the estimates of the claim. As
before the points xg, 21 are obtained as limits of sequences f™*(z;(k)). The
proposition is now proved.o

Having proved Proposition[6.1] we fix 4, > 0 arbitrarily and let N — oo.
Extracting a subsequence of center plaques produced by Proposition [6.1]
we obtain a center plaque P¢(x,e) C A, with 2 € K. Recall that Ky is a
compact hyperbolic set so that P¢(z, ) is contained in the unstable set of x.
In particular, the union D(y) of the local W"* plaques through the points
y € P°(z,¢) is contained in the unstable manifold of x, which is tangent at
points of A to E¢ @ E"*, and which is contained in A by construction. This
proves that A contains a cu-disk, completing the proof of Theorem [C] O
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