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HOLDER FOLIATIONS

CHARLES PUGH, MICHAEL SHUB, AND AMIE WILKINSON

1. Introduction. It is the goal of this paper to estimate the regularity of the
holonomy maps of certain dynamically invariant foliations. They are 0-H61der.
This H61der regularity is a crucial component of the analysis appearing in our
papers, Pugh and Shub [12] and Wilkinson [16], where we establish stable
ergodicity for a wide class of dynamical systems, a class which includes Anosov
diffeomorphisms, the time t-maps of many Anosov flows, and many examples
defined on homogeneous spaces of Lie groups. We state here our main results,
place them in context, and then go on to explain them more fully in 2. The
notation re(T) stands for the conorm (or minimum norm) of a linear transforma-
tion, m(T) T-111-X.
THEOREM A. Suppose that f: M M is a C2 diffeomorphism, partially hyper-

bolic with respect to the splittin# TM E E Es. Then, for some 0 (0, 1) and
all p M, its expansion and contraction rates satisfy a 0-pinching condition

T,fll Tfll < m(T,f) and T,fll < m(Tf)m(T,f).
For any such O, the local unstable and stable holonomy maps are uniformly
O-Hflder.

THEOREM B. Suppose that f: M-M is a partially hyperbolic C2 diffeomor-
phism and f leaves invariant a foliation 1 tangent to the center direction E. (The
tanlent plane to the /’-leaf at p is E.) If the expansion and contraction rates
satisfy the center bunching conditions

Zfll Zfll < m(T,f) and Zfll < m(T,f)m(T,f),

then the local unstable and local stable holonomy maps are uniformly C when
restricted to each center unstable and each center stable leaf, respectively.

A C2 volume-preserving diffeomorphism of a compact, connected manifold
M M is stably ergodic if it and all its C2 small volume-preserving perturbations
are ergodic. In 1962 Anosov [2-1 proved that totally hyperbolic diffeomorphisms
are stably ergodic. By contrast, the theory of Kolmogorov, Arnold, and Moser
produces open sets of nonergodic diffeomorphisms that have no hyperbolicity at
all. In a series of recent papers, we have been studying the mixed situation, in
which the dynamical system is partially, but not totally, hyperbolic. Our main
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theme is that a little hyperbolicity goes a long way toward guaranteeing stably
ergodic behavior, and that such behavior is more prevalent than one might have
thought. Our analysis proceeds by examining the stable and unstable manifold
structure of a partially hyperbolic dynamical system, especially the holonomy
along the stable and unstable leaves. In the Anosov case (totally hyperbolic), the
stable and unstable leaves have complementary dimensions and are transverse to
each other, while in the partially hyperbolic case there is also a center (fairly
neutral) direction, so transversality between stable and unstable leaves is lost. The
regularity results we prove in this paper are used to overcome the technical diffi-
culties caused by this lack of transversality.

J. Schmeling and Ra. Siegmund-Schultze [13] have proved H61der holonomy
results like Theorem A when the diffeomorphism f is totally hyperbolic. Even
in this restricted case, our proofs are simpler. H61der regularity results that are
analogous to Theorem A, but stated in terms of the splitting TM E" E ) E
instead of the holonomy maps of the foliations, have been proved by Boris
Hasselblatt [9]. As Hasselblatt points out, they neither imply nor are implied by
holonomy results such as Theorem A.
The organization of the rest of the paper is as follows. In 2 we define the

concepts relevant to Theorems A and B and discuss some examples. In 3 we
show how to dynamically trivialize a vector bundle. It is a result of independent
interest, especially useful in simplifying proofs that involve the invariant section
technique. Also in 3 we discuss a H61der invariant section theorem. In 4 we
prove Theorem A, and in 5 we prove Theorem B. In 6 we discuss the general
issue of regularity of foliations.

2. Partially hyperbolic dynamics. Recall that the norm, conorm, and bolicity
(or condition number) of a linear transformation T from one normed linear space
to another are

IITII sup {ITvl: Ivl 1},

re(T) inf {ITvl: Ivl- 1}, and

bol(T)
m(T)

If TII < 1, then T contracts the length of each vector by a factor < 1, while if
m(T) > 1, then T expands the length of each vector by a factor > 1. When T is
invertible, m(T) T-x II-X and bol(T) TII T-x II. Bolicity measures the extent
to which a linear transformation distorts the shape of the unit ball. If E is a
vector bundle over a base space X, and the fibers of E are normed linear spaces,
and if F: E ---, E is a vector bundle morphism, then we write IIFII sup IIFll and
re(F) inf m(Fx), where Fx is the restriction of F to the fiber Ex, and x varies over
the base space X. If IIFII < 1, then F contracts the bundle E, while if re(F) > 1,
then F expands it.
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Let f: M M be a diffeomorphism of a compact, connected, boundaryless
manifold M, and assume that TM splits as the sum of three continuous vector
subbundles,

TM=EUECEs,

each of which is invariant under Tf, and E # 0 # Es. We say that f is partially
hyperbolic if, with respect to some Riemann structure on TM, Tf expands E, Tf
contracts E’, and for all p e M

(1) IITfll < m(T,f) and IITfll < m(T,f),

where T"f, T% TSf refer to the restrictions of Tf to E", Ec, Es. Equation (1) means
that Tf contracts more sharply than Tf does, while T"f expands more sharply
than TCf does. Since M is compact, (1) can be rewritten as

(1’) sup Zfll Tpf-1 < 1 and sup Tpf- TTII < 1,

the suprema being taken as p varies in M. The bundles Eu, E, E are called
unstable (or stron9 unstable), center, and stable (or stron9 stable), while the bun-
dles E E" E and E E E are called center unstable and center stable.
The diffeomorphism f is uniformly partially hyperbolic if it is partially hyperbolic
and if (1) can be strengthened to

(2) TTII < m(Ty) and Tfll < m(T"f).

If E is the zero bundle, E 0, then (1) is vacuously true, and a partially hyper-
bolic diffeomorphism f is totally hyperbolic, or Anosov. Note that the 0-pinching
condition

(3) T,fll T,fll < rn(T,f) and T,fll < rn(T, f)m(T,f)

in Theorem A is merely (1) with factors Tfll and m(T,f) inserted. Thus every
partially hyperbolic diffeomorphism satisfies the 0-pinching condition for some
0 (0, 1); (3) is not an additional assumption, it merely expresses the extent to
which (1) can be relaxed. In contrast, consider the center bunching condition in
Theorem B

(4) TTII Zfll < m(Tf) and T,fll < m(T, f)m(T,f).

It is (1) with factors T,fll and m(T[,f) inserted, and it does present an additional
assumption. One can rewrite (4) in terms of the center bolicity b Tfll/m(Tf)
as

1
(4’) TSfll < and b, < m(T"f).

%



520 PUGH, SHUB, AND WILKINSON

This concludes our discussion of the hypotheses in Theorems A and B, and we
pass to the conclusions. According to Hirsch, Pugh, and Shub [10], there are
unique f-invariant foliations, /C and s tangent to E and Es. Although the
foliations // and F have leaves of class C1, this does not make them C folia-
tions. (See 6 for a more wide-ranging discussion of these regularity issues.) What
are the holonomy maps of such foliations and what does it mean that they are
H61der? In the present section, we will analyze the holonomy of a general folia-
tion - of M, such that each leaf is tangent at p to a plane F, TpM, and
p Fp is a continuous section of the Grassmannian of TM.

At two nearby points p, q M, we draw local transversals z,, zq to - and
examine the effect of sending y z, to h(y) zq by sliding along the leaves of -.
The map Jh: zp --, z is the holonomy of -.
The foliation - has locally O-Hflder holonomy if

d(h(y), h(y’)) < Hd,(y, y,)O,

where y, y’ zp, and d,, d refer to natural metrics on z,, z, say, path metrics with
respect to a fixed Riemann structure on TM. The constant H is the H61der con-
stant, and it should be independent of the choice of "reasonable" transversals. We
now spell out just which transversals to a foliation - are reasonable.

Fix a smooth Riemann structure on TM, and let exp be its exponential map.
Fix a positive number L. Let F+/- be the orthogonal complement to F T’,

FIGURE 1. The holonomy map h of-
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TM F F. Consider a C function

such that t(O) 0 and the derivative of has norm <L everywhere in F(6). If 6
is small, then the disc

exp({v + t(v) TM: v F(6)}) "r

is well defined and transverse to ’. In fact, by compactness of M and continuity
of T’, there is a 6 > 0 such that all such discs : , of size 6 at all points p e M
are uniformly transverse to ’. Let , v be two transversals of size 6. Assume
that p, q lie on a common leaf of " and that they can be joined by a path V of
length < 1 in the leaf. Because " is a foliation, V lifts continuously to nearby
leaves. Thus the holonomy map h: ,(p) is well defined at all points y with
d(y, p)< p. Compactness implies that we can choose a uniform 19 > 0 for all
such transversals ,, v. Here then is the conclusion of Theorem A relative to the
foliation ""

There are constants p, H such that for all points p, q which can be joined by
a path of length < 1 in a common leaf of "/’" and for all transversals , as
above, the holonomy map h" z,(p) is well defined and, relative to the
Riemann path metrics on z, , it satisfies the H61der estimate

(5) d(h(y), h(y’)) < Hd(y, y,)O for all y, y’ z(p).

Theorem A also makes the same assertions for the stable foliation ’. Note that
reversing p and q shows that the inverse of h is also H61der, so Theorem A
actually asserts that the holonomy maps are uniformly 0-biH61der.

In Theorem B we assume that f leaves invariant a foliation q’ integrating the
center direction E. The fact that the partially hyperbolic diffeomorphism f leaves
g’ invariant is equivalent to f being 1-normally hyperbolic at ". Normal
hyperbolicity is investigated at length in [10], and it is shown that through each
leaf L of an invariant 1-normally hyperbolic foliation there pass a weak unstable
leaf and a weak stable leaf. They are C leaf immersed and meet transversally at
L; they are composed of strong unstable and strong stable leaves, respectively. In
our case, L W and the two leaves are W’" and W. Thus "/’" foliates W" and
"/ foliates W. Theorem B asserts that the foliations of each W" by "#" and
each W by "/’ are of class C. To a large extent, the proof appears in [10].
A priori, g’ foliates neither W nor W". Also, the leaves W" need not fit

together to form a foliation "/", nor need the leaves W form a foliation% for
a leaf immersion can have nontrivial tangential self-intersection. This leads us to
say that the partially hyperbolic diffeomorphism f is dynamically coherent if, tan-
gent to E% E, E% there are f-invariant foliations q’% , ’ such that "/"
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and /-c subfoliate cu, while //-c and s subfoliate cs. (One foliation sub-
foliates a second if the leaves of the second are unions of leaves of the first.) The
phrase "dynamically coherent" indicates that the unstable, center unstable, center,
center stable, and stable orbit-classes fit together nicely. A restatement of Theo-
rem B in this context is the following.

COROLLARY 2.1. If the partially hyperbolic, C2 diffeomorphism f is dynamically
coherent and center bunched, then t/TM C subfoliates t and t C subfoliates

Theorems A and B have generalizations to the case where f is partially hyper-
bolic on a subset of M, rather than on all of M. The natural definition of this
concept is that A c M is an f-invariant, compact subset of M, and Tf leaves
invariant a continuous splitting

TAM E E 9 E,
where E v 0 v E, Tf expands Eu, Tf contracts Es, and the inequalities

T;TII < m(T;,f) and TTII < m(T, f)

hold for all p A. Clearly, iff is partially hyperbolic at A M, then f is partially
hyperbolic in the sense discussed above. Also, if E 0, then A is a hyperbolic set
for f. It is shown in [10] that tangent to E and E there are laminations through
A, invariant under f. (A lamination is a partial foliation. Its leaves, or lamina, do
not necessarily foliate a full neighborhood of A.)

THEOREM A’. Suppose that f: M M is a C2 diffeomorphism that is partially
hyperbolic at a compact f-invariant subset A c M. For some 0 (0, 1), it satisfies a
O-pinching condition at the invariant set A. The local holonomy maps along its
stable and unstable laminations through A are uniformly O-Hflder.

THEOREM B’. Suppose that f: M M is a C2 diffeomorphism that is partially
hyperbolic at a compact f-invariant subset A M, and the center direction E inte-
grates to an f-invariant lamination .’ of A. If f satisfies the center bunching
condition in Theorem B, then the local unstable and local stable holonomy maps are
uniformly C when restricted to each center unstable leaf and center stable leaf,
respectively.

Dynamic coherence is defined as before: all five bundles E, Ec, E, E, E
integrate to laminations through A, the center and unstable laminations sub-
foliate the center unstable lamination, while the center and stable laminations
subfoliate the center stable lamination. Then Theorem B’ implies the following.

COROLLARY 2.2. Iff is as in Theorem B’ and is dynamically coherent, then
and / C subfoliate t and t/", respectively.
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See 4 and 5 for the proofs of Theorem A’ and B’.
Here are some examples of partially hyperbolic diffeomorphisms. All are uni-

formly partially hyperbolic. First, of course, there are the totally hyperbolic
Anosov diffeomorphisms. Second, there are time t-maps of Anosov flows. Recall
that under an Anosov flow p on M, the tangent bundle splits as

TM E E Es,

and for some Riemann structure on TM and for all > 0, Tcpt expands Eu while it
contracts Es. The Anosov vector field X that generates cp is nonvanishing, so E is
a line field, and the Riemann structure can be chosen so that Xl 1. As for any
smooth flow, T,cpt: X(p) X(cptp). Thus Tcpt sends T’M isometrically to TpM,
and qgt is partially hyperbolic with respect to the Anosov splitting.

Third, there are the algebraic examples analyzed by Brezin and Shub [4]. Let
G be a connected Lie group, and let F c G be a lattice. Fix any g G that leaves
F invariant and any automorphism A" G--+ G. Set M G/F and consider the
affine diffeomorphism f of M to itself induced by projecting Lg o A: G --. G down
to M. This gives an automorphism ad(g)DA(e) of the Lie algebra of G and splits
TG into the sum of generalized eigenspaces corresponding to eigenvalues with
magnitude > 1, 1, and < 1. Translate the splitting to the other tangent spaces
ThG, and project it down to TM. When the first and third subspaces are non-
zero, this gives a partially hyperbolic splitting for f. Other partially hyperbolic
splittings arise by starting with generalized eigenspaces corresponding to eigen-
values with magnitude < p, between p and 1/p, and > I/p, where 0 < p < 1 is a
constant.

Fourth, there are hyperbolic basic sets for Axiom A diffeomorphisms and flows.
They are partially hyperbolic, not on the whole manifold M, but only at a com-
pact f-invariant subset A M. Fifth, there are perturbations of the first four
types of examples. For, as is shown in [10], a diffeomorphism remains partially
hyperbolic under C small perturbations. Sixth, there are iterates of the preceding
examples.

3. Bundle dynamics. In this section we discuss two topics: trivialization of a
vector bundle with prescribed dynamics in the base space, and dynamically in-
variant sections of a Banach bundle.

In differential topology, it is well known that a vector bundle E over a compact
base X has an inverse bundle, a vector bundle E’ over X for which there is a
vector bundle automorphism

EE’ e

d
X X,
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where e is a trivial bundle" e X x IRN for some N. One says that E’ trivializes E.
Less well known and underappreciated is the following elementary result from
K-theory, which was explained to us by Jeremy Kahn.

LEMMA 3.1 (Dynamic trivialization). Given a vector bundle E over the compact
base X, there exists an inverse bundle E" over X such that each vector bundle
isomorphism covering a base homeomorphism

E E

fX X

extends to a vector bundle isomorphism

TO) T"
E O) E" -----’-

1 1
fX X.

When E and T are smooth, so are E" and T".

Proof #1. Let E’ trivialize E, and let z: E @ E’ e be a trivialization. Set
E" E’ @ E @ E’. Clearly, E" trivializes E since E 0) E" E E’ @ E @ E’ - e e
is trivial. Using the pullback notation, we have

f’E" f*(E’ 3 E E’)- f*(E’ E)f*E’- f*(e) O) f*E’ e f*E’

E’f*Ef*E’

" E’ f*(E E’)- E’ f*(e) E’ )e

E’O)EE’=E".

For the reader who wants to keep track of what happens at the vector level
under these bundle maps, we offer a second proof.
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Proof # 2. Define E"= E’ E E’ as above. We construct a bundle iso-
morphism T": E" E" covering f. We have bundle isomorphisms S, $’ defined by
the commutative diagrams

X

where sw switches the order of E and E’. This gives isomorphisms of the fibers
s,dE (E’ E) E

The composition is T’: E E, and Tg’ is a continuous function of x since all
the maps Sx, S’, Tx are. If T is smooth, we can choose z smooth. Then T" and E"
are smooth. El

The proof that the local unstable manifold at p of a partially hyperbolic diffeo-
morphism is a H61der function of p relies on the invariant section theorem in
[10], improved to the H61der world in Shub [14] and Wilkinson [16]. The in-
variant section theorem concerns the existence, uniqueness, and regularity of a
section of a bundle, when the section is required to be invariant under a fiber
contraction. Let us recall the definitions. Commutativity of the diagram

F
E ElsE

h
X XIX
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defines a bundle map F. The fibers E r-l(x) are assumed to be complete,
nonempty, uniformly bounded metric spaces, and the base map h is assumed to
biject X onto a set that contains X. (We say that h overflows X.) Finally, F is
assumed to contract fibers in the sense that for all y, y’ e Ex, and for all x e X,

dhx(F(y), F(y’)) < kxd(y, y’),

where sup k k < 1, and the notation dx refers to the metric on the fiber E,.
The constant kx is the fiber constant. Under these assumptions F is a fiber con-
traction, and there exists a unique section tr: X E which is invariant under F in
the sense that for all x e X,

a o h(x) F o o(x).

The proof is natural and straightforward. Merely consider the space E of all
sections tr" X ---, E, furnished with the sup metric

d(tr, a’) sup{dx(a(x), a’(x)): x e X}.

E is complete, and the natural F-action F#: E E defined by

F#(a)(x) F o tro h-X(x) for all x e X

is a contraction of E. The unique fixed point of F# is the unique F-invariant
section of E.
The unique F-invariant section of E is denoted as av. If we start with any

section tr of E and iterate it under F, it converges to try; F(a) trv as n .
Thus if F leaves invariant a closed subbundle P of E, then trr is a section of P.

Existence and uniqueness were essentially trivial, but regularity of av is some-
what subtler. For example, if F and h-1 are continuous, then so is at. For F#

X

FIGURE 2. A fiber contraction and its invariant section
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sends the closed subspace of continuous sections E c 2; into itself, and so the
fixed point ere of F# must lie in Ec. Conditions that guarantee that ere is Cr, r > 1,
are at the heart of stable manifold theory; see also the proof of Theorem B. Here
are sufficient conditions on a fiber contraction which imply that crr is 0-H61der:

(a) E X x Y, where X is a compact metric space and Y is a closed, bounded
subset of a Banach space;

(b) there exists a > 0 such that for each x X,

d(h(x), h(x’)).
inf[ d(x, x’)

x’ e X and d(x, x’) < 6}, cox > O,

and inf cox co > 0;
(c) sup kxco < 1;
(d) there exists a constant L > 1 such that for all x, x’ X, and all y Y,

lEt(x, y)- Fr(x’, Y)I < Ld(x, x’).
The constant cox is the base constant. It describes how sharply h contracts the
base space at x. Condition (c) says that F contracts the fiber at x more sharply at
H61der scale 0 than it contracts the base at x. The fiber constant 0-dominates the
base constant. In condition (d), Fr is the Y-component of F, and the inequality in
(d) amounts to the assumption that F is 0-H61der. To summarize, we have the
following.

THEOREM 3.2. (Pointwise H61der section). Under hypotheses (a)-(d), the
unique F-invariant section of X x Y is O-Hblder; i.e., if we write at(x) (x, s(x))
X x Y, then

(6) Is(x) s(x’)l < Hd(x, x’) for all x, x’ X.

Moreover, ifR bounds the diameter of Y, then the Hflder constant H is no greater
than

(7)
LR

col(1 sup kxco-)

The proof of Theorem 3.2 appears in Wilkinson [16, pp. 29-36]. Under the
uniform assumption kco- < 1, instead of (c), and a Lipschitz assumption, rather
than (d), the proof appears in Shub [14, pp. 44-48]. Like the proof of every
regularity result for invariant sections, the idea is to show that the natural map
F# on the space of sections carries a subspace 0 into itself, where E is the set of
0-H61der sections as in (6), with H61der constant as in (7). Clearly, E is a closed
subset of 2;c, and hence the unique fixed point of F#, err, lies in 2.

4. Proof of Theorem A. Recall from 2 that Theorem A becomes Theorem A’
when the diffeomorphism f is assumed to be partially hyperbolic at a compact
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invariant subset A c M, instead of all of M, so it suffices to prove Theorem A’.
The proof has three steps. First, using Theorem 3.2, it is shown that the function
taking a point to its local unstable manifold is 0-H61der. This is Corollary 4.2.
Then it is shown that this conclusion implies that the holonomy maps are 0-
H61der at sufficiently small scale. This is Corollary 4.4. After the proof of Corol-
lary 4.4, we deduce Theorem A’.
To apply Theorem 3.2, the H61der section theorem, we use some simple facts

from differential topology. First, recall that a function defined on a dosed set A in
a manifold M is said to be smooth if it extends to a smooth function defined on a
neighborhood of A. Next recall what this means in terms of vector bundles. Let E
be a smooth vector bundle over M, and let C be a continuous vector subbundle
of EIA where A is a closed subset of M. Using the Tietze extension theorem and a
partition of unity, such a C always extends to a continuous subbundle C of
where U is a neighborhood of A in M. If one such extension C is smooth, then C
itself is said to be smooth. A bundle map T’C C is said to be smooth if it
extends to a smooth bundle map of a smooth local extension of C. Any C can be
approximated by a smooth C EIA a_nd_any _bundle map T" C -, C can be ap-
proximated by a smooth bundle map T: C -, C. Finally, if C is trivial, then any
extension is trivial, at least when is restricted to a small enough neighbor-
hood of A; an approximation to a trivial bundle is trivial; and a smooth approxi-
mation to a trivial bundle is smoothly trivial.
We assume that f is partially hyperbolic at a compact invariant subset A = M,

with respect to the splitting TAM EUEE. We lift f to TM using the
exponential of the fixed smooth Riemann structure. Commutativity of the dia-
gram

T,M 6 f’ T,M

M M

defines a C2 map f: TM(6) TM that covers f. Given 0: E(6)E, define the
special norm

sup
Ig(x)l

Ixl

where x, of course, ranges over the nonzero vectors in E(6). The set of continu-
ous function 0 with 10l. < forms a Banach space (*. Define

(,= {g e (*" Lip g < 1}.
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This gives a bundle (q over A with fiber fqp at p, on whichf acts naturally accord-
ing to the graph transform:

graphf# f(graph g) (Er,(6) x E)

It is a standard calculation (see, for instance, [10, p. 57], [14, p. 64], or [16,
pp. 35-36]) that with respect to the special norm, f# is a fiber contraction and

(8) f# has fiber constant TCSfll/m(TUf) and

f# has base constant m(T;,Sf).

We would like to use the HSlder Section Theorem 3.2 to show that the unique
f#-invariant section trT# of (q is 0-HSlder. For trT# describes the local unstable
manifolds of f, and its H61derness would imply that the local unstable manifold
through p is a 0-H61der function of p. A priori, (q is neither trivial nor a H61der
bundle, so Theorem 3.2 cannot be applied as it stands; it does not even make
sense to assert that try# is H61der. We must modify f# and f#.

We first approximate E" and~E b_y smooth subbundles_ E" and E in TAM.
Respecting the splitting T^M E E125, the derivative off, at v e TM() is

where
Ao" Eu

-* E Bo" E -* E

Co" E -* E Ko" E -* Ec5.

When 6 is small and Eu, E closely approximate Eu, Ec5, the linear maps
Co, Ko closely ap_proximate T.,f, O, O, T;,Sf, respectively. The set of continuous
maps g: E(6)--2 E, whose special norm I1,- sup I(x)l/Ixl is finite forms a
Banach space fq*. The subset f, {g

_
(*: Lip g < 1} is closed and bounded.

This gives a bundle fq over A with fiber f# at p, which is a smoothing of f9, and on
which f also acts naturally according to the graph transform:

graph f#o f(graph 9) (Ep(6) x E)

A s .A.

Although not trivial, f9 is smooth, and it has a unique f#-invariant section
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THEOREM 4.1. The unique f#-invariant section " A --, fg is O-H6lder.

Proof. The dynamic trivialization Lemma 3.1 implies that there are smooth
bundles H1 and H2 over A that trivialize u and/cs, and further that there are 2
bundle isomorphisms SI:H H and $2:H2 H2 covering f. Fix a smooth
inner product structure on H H H. After multiplying S and $2 by appro-
priate positive constants, we can assume that

$1 expands H much more sharply than Tf expands Eu, and
S contracts H much more sharply than Tf contracts E’.

TM carries a smooth Riemann structure with respect to which hypotheses (1), (3)
of Theorem A hold. It is said to be adapted to f. Together with the chosen inner
product structure on H, this gives preferred inner product structures on Eu @ Ht,
cs[ H2 and TAM H. The trivial bundles A x IRml, A x IRm2, A x IRml+’
carry constant, Euclidean inner product structures, but the trivializing bundle
automorphisms

EuH - A x ]Rm,

E H - A x IRm,

TAM H

need not be isometric.
To cope with this lack of isometry, we recall a fact from linear algebra. If

( 1 and ( 2 are inner products on the same finite-dimensional vector
space V, then there is a canonical automorphism Q: V v that sends the first
inner product structure to the second, in the sense that for all v, w V,

<Qv, Qw>2 (I,

To find Q, note that for each v e V, there is a unique v’ V such that for all w V,

(1)’, W)2 (/),

The mapping T: v v’ is an automorphism of V, which is easily seen to be
positive definite symmetric with respect to the inner product (,)2. Set
Q x//, the unique positive definite symmetric square root of T. Then, for all v,
wV,

(Qv, Qw)2 (Q2v, w)2 (Tv, W)2 (V, W)I.
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Applying this fact from linear algebra fiber-by-fiber gives bundle automor-
phisms

that carry the Euclidean inner product structures to the preferred inner product
structures. Since all the inner product structures are smooth, so are the auto-
morphisms at, a2. Set a al a2, and define F by commutativity of

A x IR’’+"(5) r ,Ax IR,,+m2

T^M(6) H yes, TaM H

A A.

F is C2 and has the same properties with respect to the Euclidean inner product
structure on A x IRm+’ that f S has with respect to the preferred inner prod-
uct structure on TAM H.
Thus writing Fp F(p, with respect to IRm’ x IRm2 gives the Taylor expres-

sion

+ r(z),(9) F,(z) ,
where z (x, y), A, A, Sx, Kp K, $2, and rp is the remainder. Since F is
C2 and sends the zero section A x 0 to itself, we get an estimate

(10) IG(z) G(z)l < Lip(DF) d(p, q).
Izl

The C mean value theorem gives F(z) F(z) F(0) o (DFp),z dt z, and so

Jo II(DF),z -(DFa)=II dt IzlIG(z) G(z)
Izl Izl < Lip(DF)d(p, q).
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When the point z IRml +m2 has norm < 6, 6 is small, and/", closely approxi-
mate E", E’, we see that the C-size of the remainder is small, say IlDrll < e. (The
remainder absorbs the off-diagonal linear terms B, C, but these terms are Ct-

small when /", /cs closely approximate E", Ecs. On the other hand, although
finite, the Lipschitz constant of DF grows large as E", E more and more closely
approximate E", E.)
The Banach space G {9 C(IRm’(6), lRm)" 191, < }, equipped with the

special norm 101, sup IO(x)/lxl as above, contains the closed, bounded set

Y= {g G: Lip O < 1}.

By construction, A, K, is partially hyperbolic with approximately the same
pinching that Tf has. Thus F acts naturally on maps O Y, and we get a fiber
contraction

AxY ’# AxY

A f A

where F#(p, g) (fp, gv) and graph gv Fv(graph g) (]Rm() x ]Rm2).
We claim that the H61der Section Theorem 3.2 applies to F, and that con-

sequently its unique invariant section is 0-HSlder. By construction, the bundle
space A x Y is trivial and Y is a closed, bounded subset of the Banach space G.
(In fact, Y is compact.) This verifies hypothesis (a) of Theorem 3.2. Since the
remainder in the Taylor expansion (9) is Cl-small, (8) becomes

(11) F# has fiber constant IIT,’fll/m(T,f) and

F# has base constant m(T"f).

Together with the 0-pinching condition (3), (11) verifies hypotheses (b), (c) of The-
orem 3.2. It remains to verify hypothesis (d). We actually prove more: not only is

F# H61der, it is Lipschitz. Given p, q e A and O e Y, we claim that for some
constant L,

(12) ](F#)r(p, O) (F#)r(q, )1, < L d(p, q).

The Y-component of F#(p, g) is the function g, referred to above. Its graph is
contained in the image under Fp of the graph of g. We must show that

10.(x)-
Ixl < L d(p, q).
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The formula for gp is

gp(X) F2p(h- (x), g(h; (x))) and hp(x) Fap(x, g(x)),

where Fp(z)=(Fap(z), F2p(z)) with respect to ]Rm’ x ]Rm2. The map hp" ]Rm’(6)"]Rmx
overflows and is an expansion since hp(x)= Apx + rip(X, g(x)) and rap has small
Ca-size. Thus Lip(ha) < 1. Set zp (h-l(x), g(h-;a(x))) and z (ha(x), 9(h-l(x))).
Then, by (10),

I(x)- (x)l < IF(z)- F(z)l + IF(z)- F,(z)l

< Lip(OF) d(p, q)lzpl + Lip(F)lzp zal

< Lip(DF) d(p, q)lxl + Lip(F)lzp zl.

Now

Ih;X(x)- hX(x)l--Ih; o h o h-X(x)- h; o h o h-X(x)l

< Lip(h;a)lha o h-a(x)- hp o ha(x)l

< IV.(z.)- F,(z.)l

< Lip(OF) d(p, q)lzl

Lip(OF) d(p, q)lxl.

Since Lip g < 1, this implies that Izp zl < 2 Lip(OF) d(p, q)lxl, and

This verifies (12) and hypothesis (d) of Theorem 3.2, so we conclude that the
unique F#-invariant section of A x Y is 0-H61der. The bundle A Y contains
a subbundle P consisting of pairs (p, g) such that g sends E(6)c lRm’(6) into
Ep c IRm2. Since F leaves TAM invariant, F# leaves P invariant. The subbundle P
is closed in A x Y. Thus the unique F#-invariant section of A x Y actually is a
section of P.
For each p e A let y," E(6) E be the restriction of ar (p) to E(6). The map

p p is a section of bundle if, and it is invariant under f#. Hence it is the
unique f#-invariant section of ft. Since the restriction of a H61der function is
H61der, y is 0-H61der. 121

COROLLARY 4.2. Iff is partially hyperbolic at A and Tf satisfies the O-pinching
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condition (3), then the local unstable manifold off at p A can be represented as
the exponential image of the graph of a function in TvM that depends in a O-
Hflder fashion on p.

Proof. The local unstable manifold off at p is exp, graph ,.
THEOREM 4.3. If . is a lamination and locally the leaf of .’ can be represented

as the exponential image of the graph of a function in TvM that depends in a
O-Hflder continuous fashion on p, then the holonomy of . is locally uniformly
O-H61der at small scale.

Proof. For simplicity we first give the proof when laminates all of M,
i.e., when we have a foliation #" of M by k-dimensional leaves. Fix a smooth
Riemann structure on TM, fix a point p e M, and use exp to lift " to a folia-
tion " of a small neighborhood of the origin in TM. The leaves of " are
plaques: they are small, fairly fiat, k-dimensional discs embedded in TM. It
suffices to show that #" has uniformly 0-H6lder holonomy at small scale near the
origin of TM. Split TM as F F +/- where F is the tangent plane to the ’-leaf at
p. Fix any Xo F(6) with > 0 small, and express the ’-plaque through (Xo, y)
as the graph of a C function, g/F(6) F +/-. Call q exp,(Xo, y). Then
exp graph is a neighborhood of q in , O(Xo) y, and y #y is a 0-H61der
function F +/-(6) -} C(F(6), F ).

If Xo, xt e F(gi), set Vo Xo x FX(gi)and Vt xl x F x. They are vertical trans-
versals to ’, and the ’-holonomy from Vo to Vt is given as hv’y v.-} gv(x). By
construction hv is 0-H61der. We also want to show that the #--holonomy between
other transversals is 0-H61der.

Fix a number L > 0. When gi > 0 is small, supx, II(Dg)x]l < 1/L. For if
Xo x y 0, then Dgv 0. Let to, tt" F +/---}F be C functions such that
to(0) Xo, tt(0) xl, and the norms of Dto and Dtt are no greater than L. The
graphs Zo, zt of to, tt have coslope < L. Near the origin, Zo and z are

(Xo, y)

xo

FIGURE 3. Plaques in TvM and M
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FIGURE 4. Comparing the holonomy in T,M between vertical transversals and
between transversals of coslope <L

transversals, and we have the ’-holonomy map h: Zo 1. Let h(yo)= yl and
h(wo) w for Yo, Woe Vo. Let Zo, z be the points where ’,o strikes Vo, Vx.
We know that Iz: Yxl < Hlzo Yol. The ratio Iw: yxl/Izx YxI is bounded

since the slopes of the --leaves are uniformly less than the slopes of the transver-
sals, < 1/L. Similarly, Iwo yol/lZo yol is bounded away from zero. Thus,

Ih(wo)- h(yo)l < n’lwo Yol

where H’ is a multiple of H. In fact, by trigonometry, one easily shows that

H’ H(2-1
-IL
+ L=}’]

suffices. Hence the ’-holonomy from Zo to z is uniformly 0-H/51der.
This completes the proof of Theorem 4.3 for foliations, and we turn to the case

of laminations. Let be a lamination through a compact subset A c M. As
before, we fix a smooth Riemann structure on TM, fix a point p M, and use
exp to lift .W to a lamination through , expel(A) in TM. Then we try to
show that the ff-holonomy is uniformly 0-H61der. Split TM as F F +/-, where F
is tangent to L. Just as for foliations, the natural holonomy map between verti-
cal transversals, Vo A Vx, is 0-H/51der, for it merely expresses the fact that (in
the exponential coordinate system at p) the plaque of ff at q is a 0-H61der contin-
uous function of q A.

Unfortunately, this is not completely satisfactory. For even when A is non-
trivial, A may fail to meet Vo except at p. Then 0-H61derness of the -holonomy
Vo c A V1 is vacuous and implies nothing about the ff-holonomy between non-
vertical transversals. Instead of A, consider the set A(p)= ,Aa(p), where
(p) is the plaque of radius p at p. Thus, a(p) is the exponential image of the
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graph of a function F(p) --+ F, and A(p) is a compact subset of M that contains
A. If the leaves of happen to lie in A (i.e., Aa laminates A), then A(p) A, but
in general A(p) is strictly larger than A. In the hypothesis of Theorem 4.3, we
assumed that "locally the leaf of can be represented as the exponential image
of the graph of a function in TM that depends in a 0-H61der continuous fashion
on p." We shall interpret this to mean that for some 6 > 0, Aa(p) is a 0-H61der
function of q A(6). Reducing the size of p lets us assume that p 6; i.e., q
.e(p) is a H6lder continuous function of q e A(p). Note that these assumptions
are stronger than q .(p) being 0-H61der as q varies in A, and we must pay
attention to this in the proofs of Corollary 4.4 and Theorem A’. For, as we show
by example after the proof of Corollary 4.4, H6lder continuity of q .a(p) as q
varies in A does not imply H/51der local -holonomy.
The set ,(p, v)= {v TM(v): exp(v) A} is a neighborhood of p in .. Its

plaque saturate is (p, v, p)= [,.)(p), where v varies in (p, v). As above, let
L > 0 be fixed, and choose

0 < di << v << p << 1.

FIGtm. 5. The local holonomy along
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Let Zo, z be transversals to. ff in TpM(v) that are graphs of C functions to,
l" F +/-(v) F whose derivatives have norm < L. These transversals have coslope
< L. The set Zo(di)= Zo c TpM(6)c A(p, v, p) is a natural domain of definition
of the local Sa-holonomy map h, and in fact h sends Zo(6) homeomorphically into

(v). For the Sa-plaques through Zo c TM(6) are part of the plaque saturate, and
these plaques stretch all the way from Zo across z l. We must prove that h is
uniformly 0-H61der.
As in the foliation case, we first consider vertical transversals

Vo(6) (Xo x F x(6)) c .(p, v, p)

V (xl x F +/-) c .(p, v, p),

where Xo, x F(6). The -plaque through (Xo, y) Vo(6) contains the graph of a
unique function #r" F(6) F +/-, and /r is C with #r(Xo)= y and II(D/y)ll small.
Since q L(p) is 0-H61der, so is the map y 9r that sends Vo(di) into
C(F(6),F+/-). Thus the holonomy h: y - #r(xt) is a 0-H61der map Vo(6)--* V.
Then the same trigonometry argument as in the foliation case lets us pass from
vertical transversals to general transversals o, in TpM(6) having coslope < L.
Note that the argument is valid because the saturating plaques crossing from
to also cross vertical transversals.

COROLLARY 4.4. Iff is partially hyperbolic at A and Tf satisfies the O-pinchin9
condition (3), then the holonomy alono the unstable manifold lamination /.u throuoh
A is O-H61der at small scale.

Proof. If A M or u laminates A, the corollary is immediate from the
theorem, for, by Corollary 4.2, p W"(p, p) is a 0-H61der function of p A. On
the other hand, if A is a proper subset of M, we must show that q W"(q, p) is a
0-H61der function of q A(p). This is not hard. The set A(p) UpA WU(p P) is
compact and f overflows it, f(A(p)) A(p). In the proof of Theorem 4.1, we
could just as well have worked with an overflowing base map, instead of a base
homeomorphism. For Theorem 3.2 is valid in this generality. Thus Corollary 4.2
is true on A(p): the local unstable manifold of f at q A(p) can be represented as
the exponential image of the graph of a function in TM that depends in a 0-
H61der fashion on q A(p). Corollary 4.4 then follows from Theorem 4.3. 121

Example. If we only assume that is Co at A, rather than on A(p), the
holonomy maps may fail to be C. Let ! (-1/2, 3/2), J (-3/5, 3/5), and K
(-1/5, 1/5). Set

g(x, y) [4x2 + (1 4x2)e-/Y2]y,

and define G" I x J --, ]R2 by G(x, y) (x, g(x, y)). We observe that G is a homeo-
morphism to its image U, and U includes the rectangle I x K. Consider the
lamination Sa of U whose leaves are the G-images of the horizontal lines
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x 1/2 x 0 x 1/2 x x 3/2

FIGURE 6. Overpinched holonomy

y const. In fact, is a foliation of U. Its properties are
(i) the leaf of .o through (1/2, y) is the graph of x #(x, y);
(ii) y 0(., Y) is a Co (in fact, C) map K --, C(I, IR);
(iii) x O(x, y) is uniformly smooth with respect to x;
(iv) the holonomy map h" Vo --, V1 fails to be Co for all 0 > 0.

The transversals are Vo 0 x K and V1 1 x IR. The holonomy map

ho" 1/2 x K Vo
is y ye-/, a smooth homeomorphism which is infinitely flat at y 0. The
holonomy map h" 1/2 K V is y -o (4 3e-/’")y, a diffeomorphism. Thus,
the holonomy map h’Vo V is h h o h. It has infinitely steep graph at
y 0, and for all 0 > 0, it fails to be 0-H61der.

Proof of Theorem A’. It only remains to show that small scale 0-H61der holo-
nomy implies 0-H61der holonomy at unit scale. For general foliations, this may
well be false, since the composition of an a-H61der map and a/-H61der map is
only /-H51der. In the case at hand, the holonomy is invariant under the par-
tially hyperbolic diffeomorphism f. A high iterate f transforms plaques W(p, p)
to unit plaques, and the small scale 0-H61der holonomy becomes unit scale 0-
H61der holonomy. El

5. Proof of Theorem B. From 2 we know that Theorem B becomes Theorem
B’ when the diffeomorphism f is assumed to be partially hyperbolic at a compact
invariant subset A c M, instead on all of M, so it suffices to prove Theorem B’.
A hypothesis of Theorem B’ is that the center plane field E integrates to an
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W(p)

W(p)

FGURE 7. The foliation of W(p) by strong unstable manifolds WU(q)

invariant lamination of A. The leaves of lie in A, and f is 1-normally-
hyperbolic at . In [10, 6, 7] it is shown that through the leaves of a 1-
normally-hyperbolic lamination there pass unique, f-invariant C leaf-immersed
submanifolds W. Existence of this family of center unstable manifolds W is
true regardless of whether E integrates to a lamination . Besides, each W is
foliated by strong unstable manifolds W(q), q W(p), and W is tangent to E
at q.
We are trying to show that the subfoliation of W by the strong unstable

manifolds is uniformly C. The tangent bundle of W is only C, so it is foolish
to hope for a C section of this bundle that is tangent to the strong unstable
manifolds. Instead of focusing attention on the tangent bundle to //, we em-
ploy the method of 4, and construct directly the leaves of / via the C in-
variant section theorem. This theorem, proved in [10] and [14], is more standard
than the H61der Invariant Section Theorem 3.2.
Think of W(p) as the base space, and the fiber at z W(p) as fg where f is

the set of functions E(6) E described in the proof of Theorem 4.1. The base is
contracted at worst by m(Tf), f overflows the base, and the fiber is contracted
by (m(Tf))- IITfll. Center bunching implies that the fiber contraction domi-
nates the first power of the base contraction, and so the resulting invariant sec-
tion is a C function of z W. Thus the leaves of ’lrr are uniformly C, and
they depend in a C fashion on their centerpoint z. According to the following
theorem, which is merely Theorem 4.3 in the C world, this implies that the
subfoliation of W by // is C.
THEOREM 5.1. If iS a foliation and locally the leaf of can be represented

If f were 2-normally-hyperbolic at c instead of 1-normally-hyperbolic, then W would be 2
and its tangent bundle could support a C subbundle. In fact, in this case, the restriction of E to W
is indeed C, and we get a second proof that ’ is a C subfoliation of W’".
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as the exponential image of the graph of a function in TpM that depends in a C
fashion on p, then the holonomy of is locally uniformly C.

Proof. This is the same as the proof of Theorem 4.3. See also Theorem 6.1.

6. Regularity of foliations. It is widely agreed that a topolooical foliation
is a division of a manifold M into disjoint subsets called leaves of the foliation
and denoted p, such that

Each p is an injectively immersed k-dimensional (connected) manifold and

is locally trivial in the sense that each p M has a neighborhood U
homeomorphic to the product of open discs by a map 4: Dkx Dm-k U,
such that (Dk x y) c , where q (0, y) and y Dm-k.

The map is a foliation chart of ’. Local triviality amounts to saying that near a
point p, looks like a stack of pancakes. By invariance of domain, the set
(Dk y) is a neighborhood of q in , and k is independent of p.
A simple example of a foliation is the product foliation of the cylinder S x W

by the copies of l/V, 0 x W, for 0 S and W compact. The next simplest example
is the irrational foliation of the 2-torus by lines whose slope is a fixed irrational
number. Each leaf in the first foliation is compact. Each leaf in the second is
dense. It is not hard to see, even at the topological level, that the leaves are as
complete as M. By local triviality, you cannot travel to the edge of a leaf without
getting to the edge of the manifold.
Now we turn to the question of regularity. When is a foliation " of class C’,

r IN? Here general agreement is harder to come by. Three natural variants of
the definition exist:

(a) the leaves are tangent to a C plane field;

(b) the foliation charts are C diffeomorphisms;

(c) the leaves and the local holonomy maps along them are uniformly C.

FIGURE 8. The foliation chart
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TABLE 1

541

general r, r > 1

general r + 0, r > 1 and 0 < 0 < Lip

r=l

(a) + + (c)

=:"
(b) .**. (e)(a) +

=*" (b) ., (c)(a) +
(a) , (b) (c)

Note that (a), (b), (c) continue to make sense when the positive integer r is re-
placed by r + 0 and 0 < 0 < Lip. The relations among (a), (b), (c) are summarized
in Table 1. After discussing these implications, we go on to analyze leaf unique-
ness and foliations with mixed differentiability.
To fix terminology, we focus on (b) as the natural concept of a ’ foliation: by

definition the foliation " is of class C if and only if M can be covered by C’
foliation charts.
The origin of (a) is Frobenius’s theorem; see [1, pp. 93-95]. It states that if

p F, is a C’ k-plane field on M (i.e., a C’ section of the Grassmannian GkM), if
r > 1, and if F is involutive in the sense that it is closed under Lie brackets, then
through each point p there passes a unique integral manifold, and together the
integral manifolds C’ foliate M. That is, (a)=..(b). An integral manifold of a k-
plane field is an injectively immersed k-dimensional submanifold V c M every-
where tangent to F. For each p V, TV F,. The submanifold V must be maxi-
mal in the sense that it is part of no larger (connected) submanifold tangent to F.
The topology of V is permitted to differ from its induced topology as a subset of
M, as is the case for the irrational foliation of the 2-torus.
The tangent bundle to ’, T-, is the plane field F. It certainly exists when " is

C’, r > 1, and it also exists if the leaves of " are differentiable. If - is a foliation
with differentiable leaves and its tangent bundle is continuous, we call " an
inte#ral foliation. All foliations in hyperbolic dynamics are integral foliations, as
are the foliations discussed in jl through 5.

Clearly, each integral manifold of a C’ k-plane field is of class C"+1, r > 0, and
so (b) implies (a) if and only if r 03. According to Hart’s smoothing theorem,
however, if r > 1, then a foliation " with C" foliation charts is diffeomorphic,
by an ambient C’ diffeomorphism M M, to a foliation " with a C’ tangent
bundle. The foliation " is just slightly smoother than ’. (See [7].) Thus, modulo
a C’ change of variables, (b) does imply (a) when r > 1. The corresponding ques-
tion in the topological category has a negative answer. There are topological
foliations of smooth manifolds which are not homeomorphic to integral folia-
tions. Take any topological manifold V such that V has no smooth structure but
S x V does have a smooth structure. (The existence of such manifolds in dimen-
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sion four is a consequence of the work of Freedman, Donaldson, and others, as
was explained to us by Andrew Casson.) The product foliation of M S x V
cannot be homeomorphic to an integral foliation since the homeomorphic image
of V would then have a continuous tangent bundle; hence V would have a C
structure, and hence V would have a smooth structure.
Next we discuss (c), uniformly C leaves and uniformly C" holonomy. Intu-

itively, the plaque of " at p should be a C embedded disc whose r-jet depends
continuously on p, and the local -holonomy should be a C diffeomorphism
whose r-jet depends continuously on the transversals.
As in 4, we analyze - by lifting it to TM. We fix a smooth Riemann structure

on TM, we fix a point p M, and we consider exp(-). It foliates a neigh-
borhood of the origin in T,M and has the same local regularity properties as
The plaques of - lift to plaques of , and the latter are represented as graphs of
functions g(., y): Fp(di) F, where g(0, y) y. The map

b: (x, y) expp o (x, #(x, y))

is a natural foliation chart for ’. We say that - has uniformly C" leaves and
uniformly C holonomy if the plaques of " have these properties in a neighbor-
hood of the origin in TpM. That is,

The plaque map x g(x, y) is C’ and its derivatives of order < r with re-
spect to x depend continuously on (x, y).

The holonomy map h" y g(x, y) is C’ and its derivatives of order <r with
respect to y depend continuously on (x, y).

This shows that if r > 1 then (b)= (c). For if - is a C’ foliation, then O(x, y) is a

’ function of (x, y). Also, if r 1, then (c) = (b).
Note that the foregoing discussion of uniformly C" holonomy makes perfect

sense when r 0. The r-jet of the holonomy map h is just h itself. Note too that
when r 0, (c)= (b) is vacuous, for, by definition, every foliation has foliation
charts that cover M.
What happens when r 2? The plaques of " are graphs of functions g(x, y)

that have jointly continuous first- and second-order partials with respect to x and
jointly continuous first- and second-order partials with respect to y. This, how-
ever, does not imply that is C2. Mixed partials may fail to exist. That is, exis-
tence and joint continuity of 0, gx, #xx, #y, #y does not in general imply existence
of 0r. A counterexample is the function IR2 IR defined by

g(x, y)= {Yo + xy logllog(lxl + lyl)l if (x, y) : (0, 0)
if (x, y)= (0, 0),

as can be checked by several applications of L’Hospital’s rule. The foliation of IR2
whose leaf through (0, y) is the graph of x #(x, y) has uniformly C2 leaves and
uniformly C2 local holonomy, but it is not a C’ foliation. It has no C foliation
chart at the origin.
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The amazing thing is that if r is replaced by r + 0 where 0 < 0 < 1, then the
difficulties disappear. According to Lemma 2.3 of de la Llave, Marco, and Modyon
[5], as improved by Journ6 [11], if a function g(x, y) is uniformly Cr+ with
respect to x and also uniformly C’+ with respect to y, then it is jointly C’+. Pure
x and y derivatives do give rise automatically to mixed derivatives! Consequently,
we have the following theorem.

THEOREM 6.1. About uniformly regular foliations we know the following:
(i) /f r > 1 is an integer and 0 < 0 < 1, then a foliation that has uniformly C"+

leaves and uniformly C"+ local holonomy is a C"+ foliation;
(ii) a foliation with uniformly Coo leaves and uniformly Coo local holonomy is Coo;

(iii) a foliation with uniformly C leaves and uniformly C local holonomy is C;
(iv) a foliation with uniformly C2 leaves and uniformly C2 local holonomy is not

necessarily C2.

The assumption that - has uniformly C" local holonomy is important. It is
quite possible for a foliation to have uniformly COO leaves and Coo local holonomy,
yet fail to be C. Just draw a foliation in lR2 whose leaves are pictured below. The
bumps tend to 0 in each C’ norm, so the leaves are uniformly C. The local
holonomy maps between vertical transversals are all Coo. Indeed, every holonomy
between Coo transversals, not necessarily vertical transversals, is Coo. But the
holonomy maps are not uniformly Cx, and there is no C foliation chart for ," at
the origin.

This completes our analysis of the relationships between the three possible
definitions of the C’ regularity of a foliation. Next we discuss the extent to which
the leaves of a foliation are unique, in analogy to the uniqueness property of
solutions to ordinary differential equations.

(0, O)

FURE . A foliation whosc lcavcs arc uniformly Coo and whosc holonomy is
Coo, but which does not have uniformly C holonomy and is thcrcforc not a C

foliation
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Let " be an integral foliation. We say that T" is uniquely integrable if each
differentiable curve everywhere tangent to T- lies wholly in a leaf of -. It
cannot travel from leaf to leaf.

PROPOSITION 6.2. If r > 1 and is C, then T is uniquely inte#rable.
Proof. The issue is local, and we can examine in a foliation chart, since the

chart is C’, r > 1. The path ), will still be tangent to T’, but in the chart T is
constantly the horizontal plane field, so too is horizontal. It stays in its leaf. E!

As Anosov showed, the stable and unstable foliations of a smooth totally hy-
perbolic system are uniquely integrable despite the fact that they are not usually
C, r > 1. Unique integrability is also valid for the strong stable and strong un-
stable foliations of a partially hyperbolic diffeomorphism, as can be shown by
similar dynamical means. Unique integrability of the center foliation , when
/" exists, is an open question.
An equally natural definition of unique integrability might seem to be that any

injectively immersed k-dimensional manifold V M that is everywhere tangent
to the k-plane field T" is contained in a leaf of ’. Unique integrability in the
first sense clearly implies unique integrability in the second, but the converse fails.
An example is constructed as follows. Let be the diagonal foliation in lR3

whose leaves are the planes z x- Xo, and let " be the image of under the
smooth homeomorphism h: 1R3 -, lR3, defined by

h(x, y, z) (x, y, z3 + y2g).
Under h, all points of the (x, y)-plane stay fixed and

Dh= 0 1 0
0 2yz 3Z2 d- y2

Except at the x-axis, Dh is nonsingular. Tangent to the -leaf at (x, y, z) is the
span of e + e3 and e2, so tangent to the --leaf at p h(x, y, z) is the span of
e + (3z2 q- y2)ea and e2 q- 2yzea. This plane depends continuously on p, so T
exists and is continuous. Off the x-axis, - is smooth. Since each leaf is tangent to
the x-axis, fails to be uniquely integrable in the first sense. The x-axis travels
from leaf to leaf. On the other hand, suppose that V is an injectively immersed
open 2-disc in IRa that is tangent to T-. Since T is never vertical (i.e., it never
contains the vector e3), V is transverse to the (x, z)-plane H. The intersection
Vc H consists of at most countably many curves 7, and each lies in the closure of
two connected components of Vo V\(Vc H). Each component of Vo is every-
where tangent to T" and is disjoint from the x-axis, so it lies wholly in a leaf of-. The same is true of its closure, so each lies wholly in an --leaf. Thus V lies
wholly in an --leaf. Any injectively immersed surface is built from overlapping
injectively immersed 2-discs, so - is uniquely integrable in the second sense, but
not the first. Therefore, it is natural to define unique integrability of a foliation to
mean that a curve tangent to leaves lies wholly in a leaf.
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y=-I y=0 y=l

FIGURE 10. The trace of a nonunique foliation on three (x, z)-planes

Finally, we consider foliations with mixed differentiability. If a foliation has
uniformly C leaves and uniformly C holonomy, we say that it is of class C^.
We always assume r > 1; that is, is an integral foliation. The symbol r ^ s is
meant to suggest "C in x and C in y." We can restate the conclusions of Theo-
rems A and B as follows:

(A) W"u and are foliations of class C ^0;
(B) u C subfoliates each CU-leaf W% and

C subfoliates each -leaf Ws.
In fact, if the partially hyperbolic diffeomorphism f is C’, r > 2, then it is not
hard to see that (A), (B) can be improved to
() W" and are foliations of class C ^;
() C subfoliates each -leaf W, and
q C subfoliates each C-leaf W.

That is, the leaves of u and s are uniformly C. If, in addition, f satisfies/th-
order center bunching conditions, 1 < < r (i.e., f is/-normally-hyperbolic at the

center foliation), then (B) can be further improved to
(B) C ^ subfoliates each U-leaf W and

C’^ subfoliates each -leaf Wc.
Not only do foliations with a low degree of regularity occur naturally in smooth

nonlinear dynamics, they have basic features distinct from smooth foliations. An
interesting ease in point is the contrast between results of Bill Thurston [15] and
Raoul Bott [3]. If E is a continuous k-plane field contained in the tangent bundle
of a compact manifold, then one can ask whether E is homotopie to a plane field
tangent to the leaves of a foliation. Is E integrable modulo a homotopy? If k 1,
the answer is obviously "yes": since E is a line field, it can be approximated by a
smooth line field, and the latter integrates to a smooth 1-dimensional foliation.
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Also, any approximation to E is homotopic to E. On the other hand, if 2 < k <
dim M 2, then Thurston’s answer is "always," while Bott’s is "not unless certain
Pontrjagin classes vanish"the difference being that Bott’s foliation is of class
C2, while Thurston’s has smooth leaves but is not transversally smooth. An out-
standing question in hyperbolic dynamics is whether every Anosov diffeomor-
phism of a compact manifold is conjugate to one of the known linear examples.
The stable and unstable foliations of these linear examples are C. A first step in
finding a new example might be in constructing a pair of transverse foliations to
serve as its stable and unstable manifold foliations, and doing so in a way that
Thurston’s criteria are met, but Bott’s are not.
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