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Abstract. We prove several rigidity results about the centralizer of a
smooth diffeomorphism, concentrating on two families of examples: dif-
feomorphisms with transitive centralizer, and perturbations of isometric
extensions of Anosov diffeomorphisms of nilmanifolds.

We classify all smooth diffeomorphisms with transitive centralizer:
they are exactly the maps that preserve a principal fiber bundle struc-
ture, acting minimally on the fibers and trivially on the base.

We also show that for any smooth, accessible isometric extension
f0 : M →M of an Anosov diffeomorphism of a nilmanifold, subject to a
spectral bunching condition, any f ∈ Diff∞(M) sufficiently C1-close to
f0 has centralizer a Lie group. If the dimension of this Lie group equals
the dimension of the fiber, then f is a principal fiber bundle morphism
covering an Anosov diffeomorphism.

Using the results of this paper, we classify the centralizer of any par-
tially hyperbolic diffeomorphism of a 3-dimensional, nontoral nilmani-
fold: either the centralizer is virtually trivial, or the diffeomorphism is
an isometric extension of an Anosov diffeomorphism, and the centralizer
is virtually Z× T.

Contents

1. Introduction 1
2. A general result about isometric extensions of Anosov

diffeomorphisms 4
3. Preliminaries 6
3.1. Partially hyperbolic dynamics 6
3.2. su-holonomy 8
3.3. Leafwise structural stability 8
3.4. Stable accessibility 8
3.5. Z1(f)-invariance of f -invariant foliations 11
3.6. Normal form theory 12
4. Proof of Theorem 1 13
4.1. A useful regularity result 13
4.2. Nice subgroups and nice filtrations 14
4.3. Proof of Theorem 1 17
4.4. A byproduct of the proof of Theorem 1 18
5. Applications to fibered partially hyperbolic systems:

the center fixing centralizer and the proof of Theorem 3 18
1
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1. Introduction

Let M be a closed, connected smooth manifold. The centralizer Z(f) of a
diffeomorphism f : M →M is the set of all diffeomorphisms that commute
with f under composition. The centralizer may be regarded as the set of
smooth symmetries of f . The group Z(f) always contains the iterates of f
as a normal subgroup: Z(f)B〈f〉. For the C1-generic diffeomorphism f of a
closed manifold, the centralizer is no bigger than its iterates, i.e. Z(f) = 〈f〉
[4]. In the latter case, we say that f has trivial centralizer. Whether this
genericity of trivial centralizers remains true in higher regularity classes (say
C2) remains an open question, except on the circle [19].

In this paper and our earlier work [10] we address the general question:

If Z(f) is nontrivial, what can we say about f?

Consider the most extreme situation in which the centralizer f is Diff(M).
In this case, if there is a point x that is not fixed by f , then there is an
element g ∈ Z(f) fixing x and not fixing f(x). This leads to a contradiction,
since g(f(x)) = f(g(x)) = f(x) = x. Thus Z(f) = Diff(M) implies that
f = IdM . Indeed, as long as Z(f) acts doubly transitively on M , the same
conclusion holds.1

Even the weaker case in which Z(f) acts transitively on M puts strong
constraints on f . For example if f is minimal and Z(f) acts transitively,
then f is a minimal translation on a torus (after a smooth conjugacy). More
generally, we show:2

Theorem 1. Let f be homeomorphism of a connected closed manifold M ,
and denote by Zr(f) the Cr centralizer of f for r ∈ Z≥1. Then Zr(f) acts
transitively on M if and only if M is a Cr principal Tk ×Z/dZ fiber bundle
for some k ≥ 0, d ≥ 1, and f acts as the identity on the base and a constant
minimal translation on the fibers.

Moreover if Zr(f) acts transitively on M , then f is minimal on M if and
only if f is Cr conjugate to a minimal translation on a torus.

Thus a sufficiently rich centralizer characterizes some systems of low com-
plexity.

1All this argument requires is that for every x, y ∈M , there exists g ∈ Z(f) such that
g(x) = x and g(y) 6= y.

2For r ∈ (0, 1), it is possible there is a similar result assuming only Hölder regularity.
For r = 0, this appears to be open at least in dimension at least 2.
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At the other extreme of dynamical complexity are the Anosov diffeomor-
phisms. A diffeomorphism f : M → M is Anosov if there exists a Riemann
structure on M , a Df -invariant splitting of the tangent bundle

TM = Eu ⊕ Es

and a constant λ ∈ (0, 1) such that for all vu ∈ Eu, vs ∈ Es and n ≥ 0, we
have

‖Dfn(vs)‖ ≤ λn‖vs‖, and ‖Df−n(vu)‖ ≤ λn‖vu‖.
Anosov diffeomorphisms are well-studied and exhibit striking chaotic dy-
namical features, such as positive entropy, topological mixing, and exponen-
tial growth of periodic orbits. The simplest examples of Anosov diffeomor-
phisms are given by the automorphism of the torus Tn = Rn/Zn induced
by a hyperbolic matrix A ∈ SL(n,Z), and more generally by a “linear”
diffeomorphism of G/Γ, where G is a nilpotent Lie group and Γ < G is co-
compact, induced by a hyperbolic automorphism of G preserving Γ. As the
Anosov condition is C1-open, all perturbations of such linear examples are
also Anosov. All known Anosov of diffeomorphisms are (up to finite covers)
on nilmanifolds, and all such diffeomorphisms are topologically conjugate to
such automorphisms (which can be defined by their action on π1).

For an irreducible Anosov diffeomorphism of a torus3, there are only
finitely many possibilities for the centralizer (up to isomorphism and fi-
nite index subgroups), all free abelian. More generally, the centralizer of a
transitive Anosov diffeomorphism is always discrete.

A much broader class of diffeomorphisms retaining some of the chaotic
features of the Anosov diffeomorphisms (e.g. positive entropy) and contain-
ing the Anosov diffeomorphisms are the partially hyperbolic diffeomorphisms,
which we define in Section 3.1. In this paper, we further develop the meth-
ods in the proof of Theorem 1 to understand the centralizer of a class of
partially hyperbolic diffeomorphisms known as the isometric extensions of
Anosov diffeomorphisms. We discuss our main result for such systems in
the next section and remark here on a striking corollary.

Non-Anosov partially hyperbolic diffeomorphisms first appear in dimen-
sion 3. The possibilities for their centralizer is in general a much more deli-
cate question than for the Anosov diffeomorphisms. On T3, every partially
hyperbolic diffeomorphism is homotopic to a partially hyperbolic automor-
phism [6], and the possibilities for the centralizer depend strongly on the
reducibility of this automorphism.

Reducible partially hyperbolic automorphisms on T3 are of the form
Anosov|T2 ×±id|T1 and themselves have a huge centralizer, due to the triv-
iality of the second factor; we study perturbations of such a system in some
depth in [10]. Such perturbations are homotopically reducible, meaning they
are homotopic to a reducible automorphism of T3. It would be interesting

3For a toral Anosov diffeomorphism f , irreducibility means that the linearization f0 of
f does not preserve a proper invariant subtorus.
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to undertake a classification of the centralizer of such homotopically re-
ducible systems; this would require a better topological understanding than
currently available of the dynamics that can occur in this case.

For the homotopically irreducible partially hyperbolic diffeomorphisms,
which are homotopic to (necessarily hyperbolic) irreducible automorphisms
of T3, a type of rigidity arises for the centralizer. Gan et al [11] prove that
for such “derived from Anosov” systems, the centralizer is either virtually
Z or virtually Z× Z; in the latter case, f is smoothly conjugate to a linear
system.

A class 3-manifolds that strictly contains the tori are the nilmanifolds.
Non-toral nilmanifolds in dimension 3 are (up to finite covers) diffeomor-
phic to a Heisenberg nilmanifold, and they admit partially hyperbolic dif-
feomorphisms in the homotopy class of any automorphism with a non-unital
eigenvalue. Such systems have been coarsely classified (up to leaf conjugacy)
by Hammerlindl and Potrie [13].

Combining work in [13] with our second main result (Theorem 3 below),
we obtain a complete classification of the centralizer of such partially hy-
perbolic diffeomorphisms, in a similar spirit to the derived from Anosov
systems, but with a subtler answer. In particular we show:

Theorem 2. Let f ∈ Diff∞(M) be a partially hyperbolic diffeomorphism of
a 3-dimensional nilmanifold M , M 6= T3. Then Z∞(f) is either virtually Z
or virtually Z× T1.

In the latter case, there exists an f -invariant, C∞ principal T1-bundle
structure T ↪→M → T2 such that the diffeomorphism of T2 induced by f is
Anosov.

The affine models of partially hyperbolic diffeomorphisms on Heisenberg
nilmanifolds are isometric extensions of linear Anosov automorphisms of T2,
with constant rotation on the circle fibers, and one might ask whether the
conclusion of Theorem 2 can be strengthened to obtain a conclusion similar
to the derived from Anosov case in [11]; that is, when the centralizer of f
is not virtually Z, then is f smoothly conjugate to an affine diffeomorphism
of the Heisenberg manifold? The answer is no, as it is possible to start
with such an automorphism and perturb both the Anosov diffeomorphism
on the base T2, and the constant rotation on the fibers, to obtain new, non-
affine isometric extensions. What Theorem 2 implies is that beyond such
perturbations, there is no other way to obtain a centralizer “larger than”
(up to finite index subgroups) Z.

One byproduct of the proof of Theorem 1 allows us to obtain a principal
fiber bundle structure on any manifold which has a transitive action by a
“nice” group of diffeomorphisms (Theorem 4 in Section 4.4) by studying the
centralizer of the acting group. This leads to our main result for partially
hyperbolic systems which we describe in the next section.
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2. A general result about isometric extensions of Anosov
diffeomorphisms

In this section we formulate our second main result. It concerns systems
that combine features of low and high complexity on manifolds of any dimen-
sion. Namely, we consider isometric extensions of Anosov diffeomorphisms
of arbitrary nilmanifolds, and their perturbations.

Such extensions are given by a smooth fiber bundle F ↪→M → N , where
M is closed and connected and N is a nilmanifold, and a diffeomorphism
f0 ∈ Diff∞(M) preserving the fiber bundle structure, acting isometrically
on fibers, and projecting to an Anosov diffeomorphism f̄0 of N , see [3].

We assume a generic condition on f0 called accessibility and that f̄0 satis-
fies a spectral condition (satisfied, for example, by any C1-small perturbation
of an affine diffeomorphism of a nilmanifold). For precise definitions and fur-
ther discussion, see Section 3. Under these assumptions, we obtain a type
of centralizer rigidity, whose proof uses elements of the proof of Theorem 1.

Theorem 3. Let f0 ∈ Diff∞(M) be an accessible isometric extension of
an Anosov diffeomorphism f̄0 : N → N of a closed nilmanifold N . Assume

that Df̄0|Es
f̄0

and Df̄0
−1|Eu

f̄0
have narrow spectrum. Then there exists s0 =

s0(f0) > 0 such that for any s ≥ s0 and any f ∈ Diff∞(M) that is sufficiently
C1-close to f0, the group Zs(f) is a C0-closed, k-dimensional Lie subgroup
of Diffs(M), with k ≤ dimEcf0

. Moreover, at least one of the following
possibilities holds:

(1) k = 0, and Zs(f) is a countable discrete subgroup of Homeo(M), or
(2) k > 0, and there exist a k-dimensional compact Lie group G and

r � s such that M admits a Cr, f -invariant principal G-bundle
structure that is subordinate to Wc

f . Along each G-fiber f acts as

left translation, and Zs(f) is a countable extension by the group
(∼= G) formed by all the right translations along G-fibers.

(3) k = dimEcf0
, and f is an automorphism of a C∞ principal fiber

bundle projecting to an Anosov diffeomorphism with either narrow
or (pointwise) 1

2 -pinched spectrum.

Remark 1. Note that in Theorem 3 (in contrast to Theorem 1), the group
G might not be abelian, as the following example shows. Fix a compact
group G, and an Anosov diffeomorphism f̄ : N → N of a closed manifold
N . Let θ : N → G be a smooth function. The manifold M = N × G is a
principal G-bundle with respect to the right action g · (x, h) = (x, hg). The
diffeomorphism f̄θ : M →M defined by f̄θ(x, h) = (f̄(x), θ(x)h) is partially
hyperbolic and commutes with the right action of G.

Theorem B of [7] shows that if N is nilmanifold, then for the generic such
θ (in a very strong sense), the map f̄θ is also accessible. Indeed [7, Theorem
B] classifies all non-accessible examples: for example, if G is semisimple, and
f̄θ is ergodic, then f̄θ is accessible.
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Remark 2. Since any infinite compact Lie group contains subgroups isomor-
phic to T1, Theorem 3 has the following consequence: if Wc

f does not admit

a free T1 action, then Zs(f) is C0-discrete subgroup of Diffs(M). For ex-
ample, any accessible isometric extension of an Anosov automorphism with
S2 fiber has discrete countable centralizer. More generally, if the fiber has
non-zero Euler characteristic, then the centralizer is discrete.

Remark 3. The centralizer of a diffeomorphism in general is not C0-closed.
For example, consider a diffeomorphism f of the circle with Liouville rotation
number, which is not C1 conjugate to a rotation. Then Z2(f) = 〈f〉, which
is not closed in Homeo(S1) but is discrete, and hence closed, in Diff(S1).

Theorem 3 and its variants have various applications in the study of the
centralizer of partially hyperbolic systems. Theorem 2 is one application
which we feature in this paper. Another application is that by using Theo-
rem 3, it is now possible to strengthen some the results in [10] by removing
the volume-preserving hypotheses. In this prior work, we classified possible
centralizers for volume preserving perturbations of isometric (circle) exten-
sions on tori and certain discretized Anosov flows. Barthelmé and Gogolev
[5] extended this work to discretized Anosov flows on 3-manifolds. Both in
[10] and [5] the center foliation of the partially hyperbolic systems in ques-
tion is 1-dimensional. Theorem 3 is the first step in our forthcoming work
which aims at understanding centralizers of partially hyperbolic systems on
nilmanifolds with higher dimensional center foliations.

Recently, Wendy Zhijing Wang [24] has generalized Theorem 3 to the
more general setting of accessible dynamically coherent partially hyperbolic
diffeomorphisms, showing that the so-called center fixing centralizer (see
Section 5.1 for a definition) is a Lie group. This work can also be used
to remove the volume preserving assumptions for the results on discretized
Anosov flows in [10, 5]. In particular, [24] obtains as a corollary, using [5],
that for any 3-manifold M with nonsolvable fundamental group supporting
an Anosov flow ϕt, any C1-small, smooth perturbation of ϕ1 either has
virtually trivial centralizer or embeds in a smooth Anosov flow.
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2019-67250. A.W. is supported by NSF grants DMS-1900411 and DMS-
2154796. D.X. is supported by NSFC grant 12090015.
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Tekniska Högskolan and the University of Chicago for hospitality during his
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The authors thank Artur Avila for many useful discussions during an
early stage of this project.
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3.1. Partially hyperbolic dynamics. We recall some definitions from
smooth dynamics. Let M be a complete Riemannian manifold, and let
f ∈ Diff(M). A dominated splitting for f is a direct sum decomposition of
the tangent bundle

TM = E1
f ⊕ E2

f ⊕ · · · ⊕ Ekf
such that

• the bundles Eif are Df -invariant: for every i ∈ {1, . . . , k} and x ∈
M , we have Dxf(Eif (x)) = Eif (f(x)); and

• Df |Eif dominates Df |Ei+1
f

: there exists N ≥ 1 such that for any

x ∈M and any unit vectors u ∈ Ei+1
f , and v ∈ Eif :

‖Dxf
N (u)‖ ≤ 1

2
‖Dxf

N (v)‖.

A C1 diffeomorphism f : M →M of a complete Riemannian manifold M
is partially hyperbolic if there is a dominated splitting TM = Euf ⊕Ecf ⊕Esf
and N ≥ 1 such that for any x ∈ M , and any choice of unit vectors vs ∈
Esf (x) and vu ∈ Euf (x), we have

max{‖Dxf
N (vs)‖, ‖Dxf

−N (vu)‖} < 1/2.

We always assume the bundles Esf and Euf are nontrivial. If Ecf is trivial

then f is Anosov4.
In many cases of interest here, we consider a partially hyperbolic dif-

feomorphism f equipped with a center foliation Wc
f that is tangent to Ecf

and whose leaves are compact, forming a fibration. We distinguish between
several cases of such fibered systems.

Definition 1. Let f be a partially hyperbolic diffeomorphism of a closed
manifold M . Assume that there exists an f−invariant center foliation Wc

f

with compact leaves.

• IfWc
f is a topological fibration of M , i.e. the quotient space M/Wc

f is

a topological manifold5, then f is called a fibered partially hyperbolic
system, and the map f̄ : M/Wc

f →M/Wc
f canonically induced by f

is called the base map.
• A fibered partially hyperbolic system f is smoothly fibered (or Cr

fibered, for r ≥ 1 ) if Wc
f is a C∞ (respectively Cr) foliation, and f

is C∞ (resp. Cr). In this case, the base map is an Anosov diffeo-
morphism.
• A smoothly fibered partially hyperbolic system f is an isometric ex-

tension of an Anosov diffeomorphism, if there is a C∞, f−invariant
metric on Ecf .

4 The equivalence of this definition of Anosov with the one given in the introduction
can be found in [9, Section 2.4]

5Or, equivalently, if Wc
f has trivial holonomy; see [3]
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• A smoothly fibered partially hyperbolic system f is a compact Lie
group extension of an Anosov diffeomorphism if there is a compact
Lie group G and a C∞ f−invariant principle G-bundle structure
π : M →M/Wc

f such that, restricted to every fiber, f acts as a left
G-translation.

Remark 4. For the last two items in Definition 1, the partial hyperbolicity
assumptions are not necessary, since any isometric extension of an Anosov
diffeomorphism is partially hyperbolic; see [12, Proposition 5.3].

If f is partially hyperbolic, then there are foliations Wu
f and W s

f tangent
to the bundles Euf and Ecf , respectively.

Definition 2. We say that x, y ∈ M are in the same accessibility class if
they can be joined by an su-path, that is, a piecewise C1 path such that
every arc (or leg) is contained in a single leaf of Ws

f or a single leaf of Wu
f .

We say that f is accessible if M consists of a single accessibility class.

Definition 3. For r ≥ 1, we say that a partially hyperbolic diffeomorphism
f of a Riemannian manifold M is r−bunched if there exists k ≥ 1 such that:

sup
p

{
‖Dpf

k|Es‖ · ‖(Dpf
k|Ec)−1‖r, ‖(Dpf

k|Eu)−1‖ · ‖Dpf
k|Ec‖r

}
< 1,

sup
p
‖Dpf

k|Es‖ · ‖(Dpf
k|Ec)−1‖ · ‖Dpf

k|Ec‖r < 1, and

sup
p
‖(Dpf

k|Eu)−1‖ · ‖Dpf
k|Ec‖ · ‖(Dpf

k|Ec)−1‖r < 1.

If f is an isometric extension of an Anosov diffeomorphism, then f is ∞-
bunched (i.e. r-bunched, for all r). For any such f , and any finite r > 1, if

f̂ is Cr and sufficiently C1-close to f , then f̂ is r-bunched.
If f is an r-bunched, Cr fibered partially hyperbolic diffeomorphism, then

the leaves of Wc
f ,Wcs

f ,Wcu
f are Cr, moreover, if f is Cr+1, then the stable

and unstable holonomies and the bundles Esf , E
u
f are Cr along Wc

f ; see

[20, 25].

Definition 4. Denote by CZs(f) the group of all g ∈ Zs(f), s = 0, 1, . . .
fixing the center leaves of f ; that is, g ∈ CZs(f) if and only if gWc(x) =
Wc(x), for all x ∈M.

3.2. su-holonomy. Every fibered partially system f ∈ Diff(M) admits
global su-holonomies, meaning that for any su-path γ in M from x to y,
there exists a unique homoemorphism Hγ : Wc

f (x)→Wc
f (y) with the prop-

erties:

• Hγ(x) = y;
• Hγ1·γ2 = Hγ2◦Hγ1 , where γ1 ·γ2 is the concatenation of two su-paths;

and
• if γ is tangent to Ws

f (resp Wu
f ), then Hγ is the Ws

f (resp Wu
f )

holonomy, restricted to Wc
f leaves.
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The set of su-holonomies from a fixed center leaf Wc
f (x0) to itself form

a group, which we denote by Hf (x0). If f is r-bunched, then Hf (x0) <
Diffr(Wc

f (x0)).

3.3. Leafwise structural stability. In the setting of fibered partially hy-
perbolic systems, there is a variety of results we will use, starting with the
Hirsch-Pugh-Shub perturbation theory [15, Theorems 7.5 and 7.6] (see Re-
mark 4 on p. 117), [15, Theorem 7.1], and [20, Theorems A and B]. See also
the discussion in [20, Section 3].

3.4. Stable accessibility. In this section we establish the stable accessi-
bility of any isometric extension of an Anosov diffeomorphism.

Proposition 5. Let f ∈ Diff∞(M) be an isometric extension of an Anosov
diffeomorphism. If f is accessible, then f is stably accessible, i.e. any g
sufficiently C1-close to f is accessible.

Proof. We follow the strategy of [7]. Since most of the proofs are the same
or similar, we only sketch the proof here and recommend reading [7] for
background. Fix a center leaf Wc

f (x0).

Step 1: accessibility implies local accessibility. Any f -invariant G-
structure on the leaves ofWc

f is also invariant under the stable and unstable
holonomies between Wc

f leaves; since f is an isometric extension, all the su-

holonomies fromWc
f (x0) to itself are isometries ofWc

f (x0). Let H = Hf (x0)

be the group all such holonomies, and denote by H0 the subgroup of H
consisting of all the holonomies Hγ with π ◦ γ a closed, contractible path
in the base. Note that such a π ◦ γ is also an su-path, for the base Anosov
diffeomorphism f̄ and that Hγ depends only on the projection π ◦ γ.

Then H is a subgroup of the Lie group Iso(Wc
f (x0)), and H0 is the iden-

tity component of H. Any element Hγ of H0 can be isotoped to the identity
through maps Hγt with π ◦ γt an isotopy to the trivial path through closed
su-paths for f̄ (“Brin’s argument”). Thus H0 is path connected. A re-
sult of Kuranashi-Yamabe [26] then implies that H0 is a Lie subgroup of
Iso(Wc

f (x0)).

The quotient H/H0 has at most countably many elements (since each
coset corresponds to an element of π1(M/Wc

f , x̄0)). The Baire category

theorem then implies that Image(H0 · x0) has nonempty interior. Since
H0 is a Lie subgroup of the isometry group of Wc

f (x0), this implies that

Image(H0 · x0) = Wc
f (x0). Hence f is accessible through those su-paths

that project to null-homotopic, closed paths in M/Wc.

Step 2: a homogeneous space structure on the leaves of the cen-
ter foliation. From Step 1, we have that H0 is a connected Lie group
acting transitively on Wc

f (x0). This extends to a transitive action of H0
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on every center leaf via conjugation (for each x ∈ M , one fixes an su-
holonomy betweenWc

f (x) andWc
f (x0) and conjugates the H0-action by this

map). Thus Wc
f is an H0-bundle; i.e., there is an f -invariant homogeneous

space structure on the foliationWc
f obtained by identifying eachWc

f (x) with

H0(x)/Stab(x), where Stab(x) is the stabilizer of x.

Step 3: a useful criterion for stable accessibility. The paper [7]
contains a useful criterion for stable accessibility of dynamically coherent
partially hyperbolic diffeomorphisms, which will be used in our proof. We
say that a partially hyperbolic diffeomorphism f is dynamically coherent if
there exist f -invariant center stable and center unstable foliations Wcu

f and
Wcs
f tangent to the bundles Ecf ⊕Euf and Ecf ⊕Esf , respectively. The fibered

partially hyperbolic maps we consider here are dynamically coherent (see
Theorem 8 in [10]).

Let f be a dynamically coherent partially hyperbolic diffeomorphism, and
let dc be the dimension of Ecf . A point q0 ∈ M is centrally engulfed from a

point p0 ∈M if there is a continuous map Γ : Z × [0, 1]→M such that:

(1) Z is a compact, connected, orientable, dc-dimensional manifold with
boundary;

(2) for each z ∈ Z, the curve γz(·) = Γ(z, ·) is an su-path with γz(0) = p0

and γz(1) ∈ Wc
f (q0);

(3) there is a constant C such that every path γz has at most C legs;
(4) γz(1) 6= q0,∀z ∈ ∂Z;
(5) the map (Z, ∂Z)→ (Wc

f (q0),Wc
f (q0)− {q0}) defined by z → Γ(z, 1)

has positive degree.

We have the following criterion for stable accessibility.

Theorem 6 (Corollary 5.3 in [7]). Let f be a dynamically coherent partially
hyperbolic diffeomorphism. Suppose that f is accessible and that exist p0 ∈
M such that p0 can be centrally engulfed from p0. Then f is stably accessible.

Step 4: achievable and approximable paths. By Theorem 6, it suffices
to show x0 is centrally engulfed from x0. We follow the strategy of Section
9 of [7]: the key is to use the homogeneous space structure of Wc

f (x0) to

construct the map Γ. We say that ψ : Z → H0 is achievable if it is the
“endpoint map” of a continuous family of su-holonomies that begin and
end in Wc

f (x0) and project to null-homotopic loops in M/Wc
f (i.e. through

elements of H0
x0

(f)).
More precisely, ψ is achievable if there exist a continuous function

Ξ = (Ξ1,Ξ2) : Z × [0, 1]→ {(x̄, gx) : x̄ ∈M/Wc
f , gx ∈ Iso(Wc

f (x0),Wc
f (x))}

and an integer C ≥ 1 such that

(1) for each z ∈ Z, Ξ1(z, t) is an su-path on the base M/Wc
f beginning

and ending in x̄0, with at most C legs;
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(2) for each z ∈ Z and t ∈ [0, 1], Ξ2(z, t) is the (isometric) su-holonomy
induced by lifting the su-path Ξ1(z, t); and

(3) the path ξz : [0, 1]→M defined by ξz(t) = Ξ2(z, t) has the property
that ξz(1) maps any y ∈ Wc

f (x0) to ψ(z) · y.

Following [7], we say a map ψ : Z → H0 is approximable if for each ε > 0
there is an achievable map ψε : Z → H0 such that distC0(ψ,ψε) < ε.

Lemma 7 (Lemma 9.2 of [7]). Let ψi : Zi → G, 1 ≤ i ≤ k be approximable
maps. Then the product map

(z1, . . . , zk) 7→ ψk(zk)ψk−1(zk−1) · · ·ψ2(z2)ψ1(z1)

is approximable.

Step 5: geodesics in H0 are approximable. By the same proof as Propo-
sition 9.3 of [7], we have that for any v in the Lie algebra of H0, the map
σv : [−1, 1] → H0, z 7→ exp(zv) is approximable. Hence by Lemma 7, for
any v1, . . . , vdc in the Lie algebra of H0, the map ψv1,...,vdc

: [−1, 1]dc → H0

defined by (z1, . . . , zdc) 7→
∏1
i=dc

exp(zivi) is approximable. Let 〈·, ·〉 be the
invariant inner product on the Lie algebra of Iso(Wc

f (x0)). With respect to

〈·, ·〉 , we choose the vi such that

(1) 〈vi, vj〉 = ηδij , for some small η, so that exp is “almost an isometry”
on the η-neighborhood of 0; and

(2) the angle between the subspace spanned by the vi and the Lie algebra
of Stab(x0) is greater than 1/10.

Then ψv1,...,vdc
is a parametrization of a dc-dimensional submanifold of H0,

whose interior contains the identity element id and is uniformly transverse
to Stab(x0). Since ψv1,...,vdc

is approximable, it has an achievable approxi-

mation ψ : [−1, 1]dc → H0. Let Z = [−1, 1]dc , and let

Ξ = (Ξ1,Ξ2) : Z × [0, 1]→ {(x̄, gx) : x̄ ∈M/Wc
f , gx ∈ Iso(Wc

f (x0),Wc
f (x))}

be the map satisfying properties (1)-(3) in the previous step for the achiev-
able map ψ, for some C ≥ 1.

Now consider the evaluation map Γ: [−1, 1]dc × [0, 1] → M defined by
Γ(z1, . . . , zdc , t) = Ξ2(z1, . . . , zdc , t)(x0). By the 1/10-transversality of the
subspaces Span(v1, . . . , vdc) and the Lie algebra of Stab(x0), if η is suffi-
ciently small and the achievable approximation ψ is chosen sufficiently close,
the map Γ will satisfy conditions (1)-(5) in Step 3 (with p0, q0 equal to x0),
and so x0 is centrally engulfed from x0. Theorem 6 then implies that f is
stably accessible, completing the proof of Proposition 5. �

3.5. Z1(f)-invariance of f-invariant foliations. If a diffeomorphism g
commutes with a partially hyperbolic diffeomorphism f , the derivative Dg
preserves the Df -invariant partially hyperbolic splitting for f and the fo-

liations Ws/u
f . Perhaps surprisingly, it is unknown in general whether if,

under the additional assumption that f is dynamically coherent, such a g
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must also preserve even one of the foliations Wcu
f ,Wcs

f , or Wc
f . Even in the

case of a fibered partially hyperbolic diffeomorphism, this appears to be an
open question. We do have the following result in the case that the base is
a nilmanifold (and this alone accounts for our assumption that the base be
a nilmanifold in Theorem 3).

Proposition 8. Let f ∈ Diff(M) be a fibered partially hyperbolic diffeomor-
phism such that M/Wc

f is homeomorphic to a nilmanifold N . Then for any

g ∈ Z1(f), we have gWc
f =Wc

f .

Proof. For any fibered partially hyperbolic diffeomorphism f , [3] shows that
the quotient dynamics f̄ : M/Wc

f →M/Wc
f is expansive and has the pseudo

orbit tracing property (unique shadowing of pseudo-orbits). Theorem D of
[12] then implies that f̄ is topologically conjugate to an Anosov automor-
phism of N . From now on we identify M/Wc

f with N through the conjugacy
map so that f : M →M can be viewed as a bundle automorphism of a con-
tinuous fiber bundle M → N over an Anosov automorphism f̄ .

In particular, f̄ has a fixed point x̄0, and so f has an invariant fiber
Wc
f (x0) = π−1(x̄0). The universal cover of N is a nilpotent Lie group GN .

We may assume that x̄0 lifts to the identity 0 ∈ GN . Consider the canonical
covering map p : (GN , 0) → (M/Wc

f ,Wc
f (x0)). The pullback fiber bundle

p∗(Wc
f ) is a covering space over the contractible space GN and hence is a

trivial bundle. In particular, for every g ∈ ZDiff(M)(f) there exist lifts f̂ , ĝ

of f, g to p∗(Wc
f ) such that f̂ commutes with ĝ.

To establish Proposition 8 it suffices to show that ĝ preserves the fibration

Ŵc
f of the bundle p∗(Wc

f ). By uniform compactness of the leaves of Wc
f and

f -invariance ofWc
f , it follows that for any two points x̂, ŷ ∈ p∗(Wc

f ), we have

ŷ ∈ Ŵc
f (x̂) if and only if for any n ∈ Z, there is a C1-path γn connecting

f̂n(x̂) to f̂n(ŷ) whose length is bounded by some C > 0 independent of n;
in fact we can take C = maxx∈M diam(Wc

f (x)). Here we use the fact the

induced action of f̄ is an Anosov automorphism of N .
Now consider the points ĝ(x), ĝ(y). For any n ∈ Z the points f̂n(ĝ(x))

and f̂n(ĝ(y)) can be linked by the path ĝ(γn), where γn is defined in the
previous paragraph. Moreover we have

the length of ĝ(γn) ≤ ‖g‖C1 · the length of γn ≤ ‖g‖C1 · C,

where C is defined in the previous paragraph and is independent of the

choice of n. This implies that ĝ(x), ĝ(y) are contained in the same Ŵc
f leaf;

hence ĝ preserves Ŵc
f . �

3.6. Normal form theory. In this section we introduce some useful as-
pects of the normal form theory for contracting foliations from [17], omitting
some technical details, for which we refer the reader to the source.
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Definition 5. Let f be a C∞ diffeomorphism of a compact manifold X and
letW be an f -invariant continuous foliation of X with uniformly C∞ leaves.
Suppose that ‖Df |TW‖ < 1. We say that Df |TW

(1) satisfies the (pointwise) 1
2 -pinching condition if there exist C > 0

and γ < 1 such that

‖(Dfn|TxW)−1‖ · ‖Dfn|TxW‖2 ≤ C · γn, for all x ∈ X,n ∈ N.
(2) has (χ, ε)-spectrum if there exists an f -invariant dominated splitting

of TW =
⊕
Ei and a continuous Riemannian metric on ‖ · ‖ on TW

such that

eχi−ε‖v‖ ≤ ‖Df(v)‖ ≤ eχi+ε‖v‖ for all v ∈ Ei.
Here χ = (χ1, χ2, . . . , χl) satisfies χ1 < · · · < χl < 0, and we assume
ε > 0.

(3) has narrow spectrum if Df |TW has (χ, ε)-spectrum for some χ1 <
· · · < χl < 0 and ε ∈ (0, ε0(χ)), where ε0(χ) is defined in [17, Section
3.4] to guarantee that the “bands” (χi − ε, χi + ε) are narrow (see
[17] for more details).

The following lemma summarizes results from Section 3.4 and Theorem
4.6 of [17].

Lemma 9. Let f,X,W be as in Definition 5, and suppose that Df |TW
satisfies the 1

2 -pinching condition or has narrow spectrum. Then there exist
d, s0 = s0(f) ≥ 1 and a family {Ψx}x∈M of C∞ diffeomorphisms Ψx :
W(x)→ Ex := TxW(x) such that

(1) Px = Ψf(x) ◦ f ◦Ψ−1
x : Ex → Ef(x) is a polynomial map with degree

at most d for each x ∈M ;
(2) Ψx(x) = 0 and DxΨx is the identity map for each x ∈M ,
(3) Ψx depends continuously on x ∈M in the C∞ topology and depends

smoothly on x along the leaves of W.
(4) For any g ∈ Z0(f), if g is uniformly Cs0 along W, then Ψg(x) ◦ g ◦

Ψ−1
x : Ex → Eg(x) is also a polynomial map with degree at most d,

for each x ∈M . In particular, g is C∞ when restricted to the leaves

of Ws/u
f .

Remark 10. If f has narrow spectrum, i.e. f has specified (χ, ε)-spectrum on
W, the parameter s0(f) can be taken to depend only on χ, ε. In particular,
for (χ′, ε′) sufficiently close to (χ, ε), and for any f ′ that has (χ′, ε′) spectrum
on a contracting foliationW ′, we have that s0(f ′) is close to s0(f). The same
stability under C1-small perturbations holds for the 1/2-pinching condition.

4. Proof of Theorem 1

We return to the topic of diffeomorphisms with transitive centralizer. Let
f : M →M be a homeomorphism of a closed manifold M , and suppose that
Zr(f) acts transitively on M , for some r ≥ 1.
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4.1. A useful regularity result. We have the following useful proposition
about the regularity of mappings.

Proposition 11. Let r ≥ 1 be an integer, and let g : M → M be a con-
tinuous map on a compact manifold M . If for any x, x′ ∈ M there exists
ϕ ∈ Zr(g) such that ϕ(x) = x′, then g is a Cr map.

Proof. By continuity of g and compactness ofM , the graph Γg := {(x, g(x)), x ∈
M} of g is a compact subset ofM×M . For any two points (x, g(x)), (x′, g(x′))
in Γg, there exists ϕ ∈ Zr(g) such that ϕ(x) = x′. Then

ϕ× ϕ(x, g(x)) = (ϕ(x), ϕ(g(x)))

= (x′, g(ϕ(x))) = (x′, g(x′)).

Since ϕ × ϕ is a Cr diffeomorphism, this means that the compact set Γg
is Cr homogeneous (in the sense of [25, p.8]). Every locally compact, Cr

homogeneous subset of a manifold is a Cr submanifold [25, Theorem B] (see
also [21]); it follows that Γg is a Cr submanifold in M ×M , and hence the
projection maps Pr1,2|Γg to each factor of M ×M are Cr when restricted
to Γg. Moreover, Pr1|Γg is a Cr homeomorphism. By Sard’s theorem, (see
[14]), there exists a point (x, g(x)) ∈ Γg such that (x, g(x)) is not a critical
point of Pr1|Γg .

The inverse mapping theorem implies that Pr1|Γg has a Cr inverse in a
neighborhood of x, which implies that g is Cr in a neighborhood of x. Now
for an arbitrary point x′ ∈M and a sufficiently small neighborhood B(x′) ⊂
M of x′, we take a Cr diffeomorphism ψ ∈ Zr(g) such that ψ(x) = x′. Then
in a suitably small neighborhood U of x, we have

g|B(x′) = ψ|g(x) ◦ g|U ◦ ψ−1|x′ ,

which implies g is also Cr in a possibly smaller neighborhood of x′. As
x′ ∈M was arbitrary, g is Cr. �

4.2. Nice subgroups and nice filtrations.

Definition 6. Let H be a topological group. A subgroup K ⊂ H is called
nice if there exists a countable increasing family of compact sets Ki, i =
1, 2, . . . such that K = ∪∞i=1Ki, and for any i, j ∈ Z+, there exists l =

l(i, j) ∈ Z+ such that Ki · Kj ⊂ Kl and K−1
i ⊂ Kl. The family {Ki} is

called a nice filtration of K. It is easy to see a nice subgroup K may contain
many nice filtrations.

Examples:

• Let M be a compact manifold and H = Homeo(M) be the group
of homeomorphisms of M . Then the subgroup of H formed by
the bi-Lipchitz homeomorphisms Lip(M) is nice since Lip(M) =
∪∞k=1Lipk(M), where Lipk(M) is the set of all bi-Lipchitz homeo-
morphism of M with Lipchitz constant bounded by k.
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• Similarly, the subgroup of H formed by all bi-Hölder homeomor-
phisms of M , Hol(M) = ∪k=1Holk(M) is nice, here Holk(M) denote
the set of bi-Hölder homeomorphisms with exponents bounded by
1/k and constants bounded by k.
• Lemma 18 gives examples arising in partially hyperbolic dynamics.

Combining the nice property with Proposition 11, we have the following
crucial proposition.

Proposition 12. Let r ≥ 0 be an integer, and let g : M → M be a home-
omorphism of a connected closed manifold M . Suppose that K is a nice
subgroup of Zr(g) such that for every x, x′ ∈ X there exists ϕ ∈ K such that
ϕ(x) = x′. Then the following holds:

(1) g is a Cr diffeomorphism (a homeomorphism if r = 0).
(2) Let {Ki}i∈Z+ be a nice filtration of K. There exists N ≥ 1 such

that for every ε > 0, there is δ > 0 satisfying: for all x, x′ ∈ M ,
d(x, x′) < δ implies existence of ϕ ∈ KN with dCr(ϕ, id) < ε and
ϕ(x) = x′.

(3) The family {gn : n ∈ Z} is precompact in the C0 topology. The action

by G := {gn : n ∈ Z}C
0

is a free compact abelian group action on M .
(4) Moreover, if g is minimal, then there exist a Cr diffeomorphism

h : Td → M and ρ ∈ Td such that h−1 ◦ g ◦ h(x) = x + ρ, for all
x ∈ Td.

Question: Does the same result in (3) hold if we remove the σ-compact
assumption and only assume X is a compact metric space? That is, suppose
that g : X → X is a minimal homeomorphism and that for every x, x′ ∈ X,
there exists a homeomorphism h : X → X such that hg = gh and h(x) = x′.
Is X a compact abelian group?

Proof of Proposition 12. Since Zr(g) = Zr(g−1), Proposition 11 and the
transitivity of Zr(g) imply that both g and g−1 are Cr, and so g is a Cr

diffeomorphism.
Fix a nice filtration {Ki} of K. Fix z ∈ M and consider the evaluation

map Φ: Zr(g)→M defined by

Φ(ϕ) = ϕ(z).

The compactness of Ki in Zr(g) implies that for any z ∈M , Ki ·z is compact
in M (since the evaluation map is continuous) A straightforward application
of Baire category theorem gives the following.

Lemma 13. There exists N0 > 0 such that for any y, z ∈ M , there exists
ϕ ∈ KN0 such that ϕ(z) = y.

Proof. Since K admits a nice filtration {Ki}, it suffices to show a slightly
weaker version of this lemma: for any z ∈ M , there exists N1 ∈ Z+ such
that for every y ∈M , there exists ϕ ∈ KN1 such that ϕ(z) = y.
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Fix z ∈M . The transitivity of the K action implies that

M =
⋃
i∈N

Ki · z.

is a countable union of closed subsets of a complete metric space M . The
Baire category theorem implies that there exists i ∈ N such that Ki · z has
nonempty interior in M . Fix z′ ∈ M and δ > 0 such that B(z′, δ) ⊂ Ki · z.
For y ∈ M , there exists ϕ = ϕz′,y ∈ K such that ϕ(z′) = y. Then there
existsNy such that for every y′ ∈ ϕ(B(z′, δ)), there exists ϕ′ ∈ KNy such that
ϕ′(z) = y′: one just composes an element of Ki to go from z to an element
of B(z′, δ) with ϕz′,y. One thus obtains an open cover of M ; extracting a
finite subcover gives the result. �

Following the treatment in Avila-Santamaria-Viana [2], we consider a
continuous map Φ: A → B between topological spaces A and B. We say
a point x ∈ A is regular if for every neighborhood V of x we have Φ(x) ∈
int (Φ(V)). A point y ∈ B is a regular value of Φ if every point of Φ−1(y) is
regular. We will use the following result from [2], which is a type of Sard’s
theorem for continuous maps.

Proposition 14. [2, Proposition 7.6] Let A be a compact metrizable space,
and let B be a locally compact Hausdorff space. If Φ: A → B is continuous,
then the set of regular values of Φ is residual.

Note that Proposition 14 implies that for such a continuous map Φ, either
the image of Φ is meager or Φ has regular points.

Lemma 15. Fix z ∈ M , and suppose that Ki · z has nonempty interior in
M , for some i ∈ Z+. Then there exists ϕ0 ∈ Ki such that for every Cr

neighborhood V of ϕ0 in Ki, we have

ϕ0(z) ∈ int (V · z) .

Proof. We consider the evaluation map Φ: Ki →M defined by

Φ(ϕ) = ϕ(z).

It is a continuous map from a compact metric space to a compact Haus-
dorff space. Proposition 14 implies that the set of regular values of Φ is
residual. Let y0 ∈ Ki be a regular value, and let ϕ0 ∈ Φ−1(y0) be a regu-
lar point. Then by the definition of regular point, ϕ0 satisfies the desired
property. �

Now we show (2) in Proposition 12. Fix z ∈M , and let N0 ∈ Z+ is given
by Lemma 13, then by Lemma 15, we can pick ϕ0 ∈ KN0 and y0 := ϕ0(z)
satisfying Lemma 15. Given ε > 0, let V be a neighborhood of ϕ0 in KN0

such that
dCr(V−1V, id) < ε.

Note that since ϕ0 satisfies the conclusions of Lemma 15, we have that V · z
contains a neighborhood Wy0 of y0.
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Given y ∈ M , choose ϕ ∈ KN0 such that ϕ(y0) = y. Then ϕ(V · z)
contains a neighborhood Wy = ϕ(Wy0) of y. We thus obtain an open cover
{Wy : y ∈M} of M ; let δ > 0 be the Lebesgue number of this cover.

Now given x, x′ ∈ M , if d(x, x′) < δ, there exists a Wy such that x, x′ ∈
Wy. This means that there exist ϕ,ϕ′ ∈ V such that ϕϕ0(z) = x and
ϕ′ϕ0(z) = x′. In other words, x′ = (ϕ′)−1ϕ(x). Since (ϕ′)−1ϕ ∈ V−1V, we
have that dCr((ϕ

′)−1ϕ, id) < ε. This completes the proof of (2).
Now we show (3) in Proposition 12. Given ε > 0, let δ > 0 be given by

(2). If d(x, x′) < δ, then there exists ϕ ∈ KN0 with dCr(ϕ
±1, id) < ε such

that ϕ(x) = x′.
Then for any n ∈ Z,

d(gn(x), gn(x′)) = d(gn(x), ϕ ◦ gn ◦ ϕ−1(x′))

< ε,

since both ϕ−1 and ϕ are Cr-close to the identity in a neighborhood of x′ and
x, respectively. The Arzelà-Ascoli theorem then implies that {gn : n ∈ Z}
is precompact in C0(M). Let G be the C0 closure of the iterates of g:

G := {gn : n ∈ Z}C
0

⊂ Homeo(M).

By definition of G it clearly commutes with any element of Zr(g), therefore
G commutes with K. Since K acts transitively on M and commutes with
G, if g′ ∈ G fixes a point x ∈ M , then g′ fixes all points and is the identity.
Therefore the G action is free. This complets the proof of (3).

To show part (4) of Proposition 12, first we consider its C0 version. As-
sume that g is minimal. Using the C0 precompactness of {gn : n ∈ Z} from
(3), we construct an abelian topological group structure on M . As before,

let G := {gn : n ∈ Z}C
0

.
Minimality of g implies that G acts transitively on M : given x, y ∈ M ,

since g is minimal, there exists nj → ∞ such that gnj (x) → y; using com-
pactness of G and passing to a subsequence we obtain in the limit a map
ḡ = limk g

njk ∈ G satisfying ḡ(x) = y.
Fix z ∈M . Since the G-action is transitive and free, the evaluation map

Φ: G → M defined by Φ(ϕ) = ϕ(z) is a homeomorphism. It defines a
continuous abelian group structure on M via the operation ϕ1(z)+ϕ2(z) :=
ϕ1(ϕ2(z)) = ϕ2(ϕ1(z)). Thus M is topologically a torus, and ϕ ∈ G is
topologically conjugate via Φ to a minimal translation x 7→ x + ρ for some
ρ ∈ Td.

Proposition 11 implies that the elements of G are Cr. Then [8, Theorem
5] implies that the action by G is in fact a Cr Lie group action, and M is
Cr conjugate to the standard torus.

�

4.3. Proof of Theorem 1.
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Proof of Theorem 1. (1) First we assume Zr(f) acts transitively on M .
Proposition 11 implies that f is Cr. Let K be the group of all bi-Lipschitz
homeomorphisms of M that commute with f , and note that K is a nice sub-
group of Homeo(M) (since any C0 limit point of a sequence of bi-Lipchitz
homeomorphisms with Lipchitz constant bounded by L and commuting with
f , is bi-Lipchitz and with the same Lipchitz constant and commutes with
f). Then by Proposition 12, {fn, n ∈ Z} is precompact in Homeo(M), and

P = {fn, n ∈ Z} is a compact topological group acting on M . Since each
p ∈ P commutes with Zr(f) which acts transitively on M , Proposition 11
implies that p is Cr. Then P is a compact topological group acting contin-
uously on M by Cr diffeomorphisms, and so [8, Theorem 5] implies that P
is a Lie group and its action is a Cr compact Lie group action on M .

Since P is the C0-closure of {fn, n ∈ Z}, it follows that P is a compact
abelian subgroup of Homeo(M), containing a dense subset {fn, n ∈ Z}.
Therefore P is a direct product of some Z/dZ with Tk.

Since P is compact Lie group, its action is proper. By part (3) of Proposi-
tion 12, the P action is free. Then we apply the classical fact that a proper
and free Lie group action induces a Cr principal bundle structure on M .
This implies the “only if” part of Theorem 1.

(2) Now we assume that M is a Cr principal Tk × Z/dZ bundle and f
is a constant minimal translation on the bundle and identity on the base.

Let G→ M
π−→ M be the f -invariant principal fiber bundle structure, with

G = Tk×Z/dZ. Since M is connected, to show that Zr(f) acts transitively
on M , it suffices to show for any x ∈ M and any y close to x, there exists
g ∈ Zr(f) such that g(x) = y. To show this we take a small neighborhood
Ū of π(x) such that π−1(Ū) is Cr diffeomorphic to Ū × E. Then for any
y ∈ π−1(Ū), it is not hard to construct a Cr diffeomorphism g of M such
that

(1) g is supported on π−1(Ū).
(2) g preserves the principal bundle structure in π−1(Ū), i.e. g is trans-

lation of G along each fiber.
(3) g(x) = y (such a g is constructed as a translation skew product of a

map ḡ : M →M supported on Ū ′ such that Ū ′ ⊂ Ū).

Since f is fiber fixing and a constant translation along every fiber, it follows
that fg = gf . �

4.4. A byproduct of the proof of Theorem 1. For later use we consider
the following corollary of Propositions 11 and 12. For a set K ⊂ Homeo(M),
and k ∈ N, we define

Zk(K) := {g ∈ Diffk(M), gg′ = g′g, ∀g′ ∈ K}.

Theorem 4. Let M be a connected closed manifold and let K be a nice
subgroup of Homeo(M) such that K ⊂ Diffr(M), for some r ≥ 1. If K acts
transitively on M , then M is a Cr principal fiber bundle (possibly a trivial
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one). Moreover Z0(K) = Zr(K) consists of the set of constant translations
along the fibers (that is, the right action of the structure group).

Proof. Using the same method as in the proof of (3) of Proposition 12, we use
the Arzelà-Ascoli theorem to conclude that Z0(K) is a compact group (in the
C0 topology). Transitivity of the action of K implies that Z0(K) = Zr(K).
This implies that Z0(K) is a Lie group[22]. Then [8, Theorem 5] implies
that the Z(K) action is a Cr action of a Lie group on M .

For any g ∈ Z0(K), if g has a fixed point x, by transitivity of K action
we can easily show that any point x′ of M is also a fixed point of g, which
means that g is the identity. Thus the action of Z0(K) is a free and proper
hence induces a Cr principal Z0(K)-bundle structure on M . �

5. Applications to fibered partially hyperbolic systems:
the center fixing centralizer and the proof of Theorem 3

5.1. The center fixing centralizer. In the following theorem, the integer
parameter s0 ≥ 1 controls the spectral behavior of Df |Es,u , and r measures
in part the nonconformality of Df |Ec (the larger the r, the more conformal).
So in general r can be arbitrarily large, i.e. close to or equal∞, for example,
when f is a perturbation of an isometric extension. In particular, r could be
much larger than s0, and in that case the following theorem demonstrates a
certain bootstrapping effect on regularity.

Theorem 5. Let f ∈ Diff∞(M) be a fibered partially hyperbolic diffeo-
morphism that is accessible and r-bunched, for some r ∈ Z+. We further
assume that the cocycles Df |Es , Df−1|Eu either satisfy the the pointwise
1/2-pinching condition or have narrow spectrum. Then there exists s0 ≥ 1
such that for any s ∈ {s0, . . . , r}, CZs(f) is a compact k-dimensional Lie
subgroup of Diffs(M), for some k ≤ dimEcf0

, such that

(1) The action by CZs(f) is a Cr Lie group action that is uniformly C∞

along the stable and unstable foliations of f .
(2) M admits an f -invariant, holonomy-invariant Cr-principal bundle

structure that is subordinate to Wc
f .

(3) Moreover, if dim CZs(f) = dimWc
f , then CZs(f) = CZ∞(f) and f

is a C∞ compact Lie group extension of an Anosov diffeomorphism.

Remark 16. From the proof we will see our result also holds for f ∈ Diffk(M)
for some k <∞ sufficiently large; for simplicity we only state the C∞ case.
We have the following corollary of the proof of Theorem 5.

Corollary 17. Let f ∈ Diff∞(M) be an accessible fibered partially hyper-
bolic diffeomorphism with 1-dimensional center. We further assume that the
cocycles Df |Es , Df−1|Eu either satisfy the the pointwise 1/2-pinching con-
dition or have narrow spectrum. Then CZ∞(f) is either finite or T1. In
the latter case M admits an f -invariant, holonomy-invariant C∞ principal
bundle structure along Wc.
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We will prove Theorem 5 and Corollary 17 in the following subsection;
we first establish some preliminaries.

Lemma 18. Let r ∈ Z+ and f be Cr a fibered partially hyperbolic diffeo-
morphism that is accessible and r-bunched. Then for any fixed center leaf
Wc
f (x0), the set of all su-holonomies from Wc(x0) to Wc(x0) is a nice sub-

group of Diffk(Wc(x0)) for k = 0, . . . , r.

Proof of Lemma 18. If f is Cr and r-bunched, then the stable and unstable
holonomies between center leaves are Cr and vary continuously in Cr the
topology as a function of the paths inducing them. Therefore the set of su-
holonomies from a fixed center leaf Wc(x0) to itself admit a nice filtration

by an increasing sequence of compact sets Kn ⊂ Diffk(Wc(x0)), where Kn

is the subset of Diffr(Wc(x0)) induced by su-paths with ≤ n legs each of
length ≤ n. �

It is easy to see that the holonomy maps of a fibered partially hyperbolic
diffeomorphism f ∈ Diff1(M) commute with the elements of CZ1(f). This
is not necessarily the case for elements of CZ0(f), as homeomorphisms com-

muting with f might not preserve the leaves of Ws/u
f . This motivates the

following definition.

Definition 7. For a fibered partially hyperbolic diffeomorphism f ∈ Diff1(M),
we denote by

(1) CZ∗(f) the group of homeomorphisms of M that commute with f ,

fixing each Wc
f leaf and preserving the Ws/u

f -foliations; and

(2) CrZ∗(f) ⊂ CZ∗ the subgroup of CZ∗(f) consisting of the elements
that are uniformly Cr on Wc

f leaves.

Clearly we have CZr(f) ⊂ CrZ∗(f) ⊂ CZ∗(f).

We have the following proposition, which is an application of Theorem 4.

Proposition 19. Let f ∈ Diff∞(M) be a fibered partially hyperbolic diffeo-
morphism. If f is accessible and r-bunched, for some r ∈ Z+, then

(1) CrZ∗(f) = CZ∗(f), i.e., every element in CZ∗(f) is uniformly Cr

along Wc
f .

(2) The action of CZ∗(f) on M is a free compact Lie group action.

Proof of Proposition 19. For any fixed center leafWc
f (x0), consider the group

K(x0) formed by su-holonomies fromWc
f (x0) toWc

f (x0). Lemma 18 implies

that K(x0) ⊂ Diffr(Wc
f (x0)) is a nice subgroup of Homeo(Wc

f (x0)). Theo-

rem 4 then implies that any element in CZ∗(f) is Cr along Wc
f (x0).

Claim (1) of Proposition 19 is implied by the following uniformity lemma.

Lemma 20. Let f be Cr fibered partially hyperbolic diffeomorphism that is
r-bunched, for some r ∈ Z+. Suppose that g ∈ CZ∗(f) is Cr along a center
leaf Wc

f (x0). Then g is uniformly Cr along all leaves of Wc
f . Moreover,
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y 7→ g|Wc
f (y) induces a continuous map from M into the space of r-jets along

leaves of Wc
f .

Proof of Lemma 20. For x, y ∈ M , let γ be an su-path from x to y. The
induced holonomy Hγ : Wc

f (x) → Wc
f (y) is Cr (since f is assumed to be

r-bunched), and it varies continuously in Cr topology with the path γ. For
g ∈ CZ∗(f), we have that Hγ ◦ g|Wc

f (x) ◦H−1
γ = g|Wc

f (y).

Let d = dimM − dimEc. Due to the fibered structure of Wc
f , for any

x ∈M , there is a continuous family of 2-legged su-paths {γξ | ξ ∈ [−ε, ε]d}
starting at x such that the map Wc

f (x)× [−ε, ε]d → M defined by (ξ, z) 7→
Hγξ(z) is a homeomorphism onto a neighborhood of Wc(x). This defines a

continuous map from [−ε, ε]d into the space of Cr embeddings ofWc
f (x) into

M via ξ 7→ Hγξ .
If g|Wc

f (x) is Cr, then y 7→ g|Wc
f (y) is continuous in the Cr topology in this

neighborhood of g|Wc
f (x), via the parametrization ξ 7→ Hγξ ◦ g|Wc

f (x) ◦H−1
γξ

.

Since M is connected, if g|Wc
f (x0) is Cr for some x0, then y 7→ g|Wc

f (y) is

continuous in the Cr topology on all of M . �

Now we prove part (2) of Proposition 19. We first show that the action
of CZ∗ on M is free. To this end, suppose that g ∈ CZ∗ fixes a point
x. Then for every point y ∈ M , there is an su path γ from x to y, and
g(y) = Hγ ◦ g ◦H−1

γ (y) = y. Thus g is the identity, and the action is free.
The proof of Lemma 20, shows that for any x0 ∈M , the group represen-

tation ι : CZ∗ → Homeo(Wc
f (x0)) defined by restriction toWc

f (x0) is a topo-

logical group embedding. Lemma 18 implies that K(x0) is a nice subgroup
of Homeo(Wc

f (x0)), which centralizes ι(CZ∗). Accessibility of f implies that

K(x0) acts transitively on Wc
f (x0). Theorem 4 then implies that ι(CZ∗) is

contained in the compact Lie group Z(K(x0)) := {g ∈ Homeo(Wc
f (x0)) :

gh = hg, ∀h ∈ K(x0)}.
Since ι is faithful, to show the action by CZ∗ is a compact Lie group action,

we need only show that ι(CZ∗) is closed in Homeo(Wc
f (x0)). If not, there

exists a sequence gn ∈ CZ∗ such that gn has no limit point in Homeo(M) but
the restriction gn|Wc

f (x0) converges uniformly. But the proof of Lemma 20

shows that uniform convergence of gn|Wc
f (x0) implies uniform convergence of

gn on M , a contradiction. This establishes part (2) of of Proposition 19,
completing its proof. �

5.2. Proof of Theorem 5. Assume that f satisfies the hypotheses of Theo-
rem 5. We denote CZs(f) by CZs, and let CZ∗ = CZ∗(f) and CZr∗ = CZr∗(f)
be defined as in the previous subsection. Since Df |Es and Df−1|Eu satisfy
either the 1

2 -pinching or narrow spectrum condition, part (4) of Lemma 9
implies that there exists s0 > 0, such that if s ≥ s0, then any g ∈ CZs is C∞

along the leaves of Ws/u (and is polynomial after a uniformly C∞ change of
coordinates along leaves).
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Moreover, Remark 10 (see [17] for more details), implies that by increasing
s0(f0) if necessary, we can take s0(f0) = s0(f) to work for all f such that
dC1(f0, f) < ε, for some small ε. We fix such an s0. Proposition 19 gives
that CZs ⊂ CZ∗ = CrZ∗ for s0 ≤ s ≤ r, and in particular, every element of
CZs is Cr along the leaves of Wc

f . Since, in addition, the elements of CZs

are C∞ along theWs/u
f leaves, Journé’s lemma [16] implies that CZs = CZr.

Thus any element of CZs is C∞ along the leaves of Ws/u
f .

To show the action by CZs is a Cr compact Lie group action, we recall
from Proposition 19 that the action by CZ∗ is a free compact Lie group
action. It then suffices to show the following.

Claim: The group CZs is a C0 closed subgroup of CZ∗.

The claim implies that CZs is a compact Lie subgroup of CZ∗ ⊂ Homeo(M),
and each element acts on M by Cr diffeomorphisms; it follows from [8, The-
orem 5] that CZs acts by a Cr Lie group action.

Proof of claim. Consider an arbitrary sequence gn ∈ CZs converging uni-
formly to g0 ∈ CZ∗. Proposition 19 implies that g0 ∈ CZr∗ , and so g0 is
uniformly Cr along Wc

f -leaves.

Part (4) of Lemma 9 implies that, up to a uniformly C∞ coordinate change

along Ws/u, each gn is a polynomial map along Ws/u with bounded degree
and bounded coefficients; a C0 limit of polynomial maps with bounded de-
gree and bounded coefficients is polynomial, and so therefore, under a uni-
form C∞ coordinate change, the map g0 is also a polynomial map along
Ws/u. Thus g0 is uniformly C∞ along Ws/u. Then by Journé’s lemma [16],
g0 is a Cr diffeomorphism, and so g0 ∈ CZs. �

As in the proof of Theorem 4, we obtain from the action of CZs a principal
bundle structure on M . It is f -invariant, holonomy invariant and subfoliates
Wc
f ; this gives (2) of Theorem 5. Clearly dim CZs is well-defined and not

greater than dimW c
f (a Lie group cannot act freely on a manifold with lower

dimension).
To complete the proof of Theorem 5, we consider the case that dim CZs =

dimWc
f . Denote by ccid(·) the connected component of the identity in a

given topological group. Since the action by CZ∗ is free, so is the CZs action.
Therefore the action of CZs is a free Cr compact Lie group action. By
compactness and connectedness of Wc

f and ccid(CZs), the group ccid(CZs)
acts freely and transitively on each Wc

f leaf, and by freeness of the action of

CZs, we have CZs = ccid(CZs). In this caseWc
f is subfoliated by a principal

CZs-bundle, where CZs has the same dimension as Wc
f .

Consider the bi-invariant metric on ccid(CZs): it induces an f -invariant
metric onWc

f . Then f is∞-bunched. But this implies that CZs = CZ∞, and
Wc
f leaves are the orbits of the C∞, free compact Lie group action by CZs.
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To summarize, in the case that dim CZs = dimWc
f , the connected compact

Lie group CZs acts on M smoothly, freely and properly with orbit foliation
Wc
f . Thus the projection π : M →M/Wc

f gives a C∞ principal bundle with
structure group CZs. In any group the centralizer of all left translations is
the group of right translations. Since f commutes with CZs, it follows that
f is a C∞ compact Lie group extension of an Anosov diffeomorphism. This
completes the proof of Theorem 5. �

Using almost the same method, we can prove Corollary 17. For complete-
ness we give a sketch of the proof. Proposition 19 and Corollary 17 imply
that C1Z∗(f) is either finite or T1. If it finite, then CZ∞(f) is obviously
finite. If C1Z∗(f) is T1, then f is ∞-bunched. Then by almost the same
proof as of Theorem 5, using Journé’s lemma and normal form theory we
obtain that C1Z∗(f) = C∞Z∗(f) = CZ∞(f) is T1. The rest of Corollary 17
is a consequence of part (3) of Theorem 5.

5.3. Proof of Theorem 3. Let f0 be∞−bunched, and assume thatDf0|Es ,
Df−1

0 |Eu have 1/2-pinched or narrow spectrum. Lemma 9 gives an s0(f0) ≥
1, such that for any s ≥ s0, the maps f0 and any g ∈ Zs(f0) preserve C∞

normal forms alongWs/u
f0

, and the same holds for any f sufficiently C1 close

to f0. Fix s ≥ s0. If f is sufficiently C1-close to f0, then f is r−bunched
for some r > s, is fibered (by [15]) and accessible (by Lemma 5). Therefore
such an f satisfies all the assumptions of Theorem 5.

Theorem 5 implies that CZs(f) is a C0-closed Lie subgroup of Diffs(M)
with dimension k ≤ dimEcf0

. Thus to show that Zs(f) is also a C0-closed

Lie subgroup of Diffs(M), it suffices to show that Zs(f) is just countably
many discrete copies of CZs(f) in Homeo(M).

Proposition 8 implies that any element in Zs(f) preserves the fiber bundle
structure, and so CZs(f) is a normal subgroup of Zs(f), and the quotient
group Zs(f)/CZs(f) has a continuous (with respect to the quotient metric)
identification with a subgroup of Z0(f̄), through the map ι : g · CZs(f) 7→ ḡ.

The first paragraph of the proof of Proposition 8 gives that f̄ is Hölder
conjugate to an Anosov automorphism on a nilmanifold M . Any transitive
Anosov diffeomorphism (in particular an affine Anosov map on a compact
nilmanifold) has countable discrete C0 centralizer. Hence the coset partition
Zs(f) =

⊔
g CZs(f) is actually formed by countably many discrete copies

of CZs(f). Then Zs(f) is a closed Lie group in Homeo(M) and we have
dimZs(f) = dim CZs(f). The rest of results in Theorem 3 are direct conse-
quences of the corresponding results in Theorem 5 (for the spectral property
of the base dynamics in (2), we use the fact that ifDf |Es has (χ, ε)-spectrum,
and Wc

f is smooth then Df̄ |Es
f̄

has (χ, ε)-spectrum as well, and similarly for

the 1/2-pinched case). This completes the proof of Theorem 3. �
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6. Proof of Theorem 2

In this section we prove Theorem 2. Let f be a partially hyperbolic dif-
feomorphism on a 3-dimensional non-toral nilmanifold M . Then f satisfies
the following properties:

(1) By [13, Theorem 1.6], f is a fibered partially hyperbolic system over
an Anosov homeomorphism f̄ : N/Wc

f → N/Wc
f , which is topologi-

cally conjugate to a hyperbolic automorphism of T2.
(2) By [13, Proposition 6.4], f is accessible.

(3) Since Es/u are 1-dimensional, the restrictions Df |Es/u satisfy the
pointwise 1/2-pinching condition.

Corollary 17 then implies that CZ∞(f) is either finite or virtually T1. In
the latter case, f preserves a C∞ principal T1 bundle structure.

To complete the proof of Theorem 2, it suffices to show that Z∞(f)
is virtually {fn ◦ CZ∞(f), n ∈ Z}. Notice that Z∞(f)/CZ∞(f) can be
naturally embedded into Z0(f̄). Since f̄ is topologically conjugate to a toral
hyperbolic automorphism, [1] and [18, Proposition 3.7] imply that Z0(f̄) is
virtually trivial, which forces Z∞(f) to be virtually {fn◦CZ∞(f), n ∈ Z} ∼=
Z× T.
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[16] J.-L. Journé. A regularity lemma for functions of several variables. Rev. Mat.

Iberoamericana, 4(2):187-193, 1988.
[17] B. Kalinin, Non-stationary normal forms for contracting extensions. To appear in

volume “A Vision for Dynamics in the 21st Century.”
[18] A. Katok, S. Katok and K. Schmidt, Rigidity of measurable structure for Zd

-actions by automorphisms of a torus. Commentarii Mathematici Helvetici, 77
(2002) 718–745.

[19] N. Kopell, Commuting diffeomorphisms. In Global Analysis, Proc. Sympos. Pure
Math., Vol. XIV, AMS (1970), 165–184.
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