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Introduction

Let M be a closed, connected Riemannian manifold with volume form ω. A C2, volume-
preserving diffeomorphism f : M → M is stably ergodic if there is a neighborhood U
of f in Diff2

ω(M), the space of C2, volume-preserving diffeomorphisms of M , such that
every g ∈ U is ergodic. Grayson, Pugh and Shub showed that if ϕt : T1S → T1S is
the geodesic flow on the unit tangent bundle of a closed surface S of constant negative
curvature, then the time-one map ϕ1 is stably ergodic ([5]). This is the first known
example of a stably ergodic diffeomorphism that is not structurally stable. In this
paper, we extend this result to variable negative curvature. More precisely, our Main
Theorem states:

Main Theorem: If S is a closed, connected negatively-curved Riemannian surface,
and if ϕt : T1S → T1S is the geodesic flow, then the time-one map ϕ1 is stably ergodic.

This paper is meant to serve as a model for proving stable ergodicity for diffeo-
morphisms of a nonalgebraic origin. These diffeomorphisms have local behavior that is
uniformly controlled and qualitatively looks the same at every point, but their quanti-
tative local behavior varies from point to point (subject to the qualitative constraints).

For a closed manifold M , let Diffk(M) denote the space of Ck diffeomorphisms of
M in the Ck topology. If M is equipped with a smooth volume form ω, then denote by
Diffkω(M) the subspace of Diffk(M) consisting of those diffeomorphisms that preserve
ω. How the ergodic diffeomorphisms “sit inside” the space Diffkω(M) is a fundamental
question, without a complete answer at this date.1 When M is a circle, ergodicity is
determined by rotation number, and it is not hard to see that ergodic diffeomorphisms
form a residual set in Diffkω(M), (for any k) whereas non-ergodic diffeomorphisms are
dense. On the other hand, when M is a surface, and k is sufficiently large, KAM theory
guarantees that there are open sets of nonergodic diffeomorphisms, the nonergodicity

1The question for k = 0, i.e. for the space of homeomorphisms Homeoµ(M), is settled by a classical
result of Oxtoby and Ulam, which states that ergodic diffeomorphisms are residual.
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manifested in a quite complicated dynamical picture. If M is a torus (for example)
there are also the Anosov diffeomorphisms.

Volume-preserving Anosov diffeomorphisms are stable in at least two senses of the
word. Being uniformly hyperbolic, they are structurally stable. Since all C2 volume-
preserving Anosov diffeomorphisms are ergodic ([1]) and the Anosov property is open
in the Ck topology, Anosov diffeomorphisms are stably ergodic. On any manifold M
supporting an Anosov diffeomorphism2 there is then an open family in Diff2

ω(M) of
ergodic diffeomorphisms, namely the Anosov diffeomorphisms.

Until recently, Anosov diffeomorphisms were the only class of diffeomorphisms known
to be stably ergodic.

Question: Which manifolds support stably ergodic diffeomorphisms?

In [4], Brin and Pesin investigated the dynamical properties of diffeomorphisms
like the time-one map of an Anosov flow, which they termed “partially hyperbolic.”
They showed that such maps have certain transitivity properties that are preserved
under perturbations. Extending some of the techniques in [4], Grayson, Pugh and
Shub showed in [5] that if S is a closed surface of constant negative curvature and ϕ is
its geodesic flow, then the time-t map ϕt is is stably ergodic. This provided the first
example of a stably ergodic diffeomorphism that is not an Anosov diffeomorphism, and
hence the first example of a stably ergodic map that is not also structurally stable.

The results of [5] readily generalize to other algebraic examples of partially hy-
perbolic diffeomorphisms on three-manifolds 3 They do not readily generalize to non-
algebraic examples. In this paper, we indicate how some of these obstacles can be
overcome, focusing on the specific example of the geodesic flow for a surface of variable
negative curvature.

We review some preliminary results and definitions in Section 1. In Section 2,
we show that for a compact, negatively-curved surface S, the geodesic flow has the
“stable/unstable accessibility” property described in [5]. We use the geometry of horo-
spheres in the natural compactification of the universal cover S̃ to prove this.

In Section 3, we prove a regularity result about the strong stable and unstable
foliations of the map ϕ1. We show that these foliations are Hölder-continuous, with
Hölder exponent arbitrarily close to 1. Further, we show that the Hölder constant of
the foliation holonomy map is uniformly bounded in terms of the first two derivatives of
ϕ1. We use this to show that the Hölder continuity of the stable and unstable foliations
is uniformly controlled under smooth perturbations of ϕ1. The results in Section 3 are
of independent interest and extend some of the results of Hirsch, Pugh and Shub in [9].

In Section 4, we use the results of the previous sections to prove the Main Theorem.
2All known examples are nilmanifolds or are finitely covered by nilmanifolds.
3See the footnote in Section 1.3.
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1 Preliminaries

1.1 Geodesic Flows

A Riemannian structure on a manifold S naturally gives rise to a flow on the tangent
bundle TS. This flow is called the geodesic flow because its trajectories project to
geodesics in S under the tangent bundle projection π : TS → S. We will consider the
induced flow on the compact submanifold T1S, the unit tangent bundle. While this
flow is defined on the unit tangent bundle of S, for the sake of brevity we will at times
call it the geodesic flow for S. For a construction of the geodesic flow see, for example,
[13].

The geodesic flow ϕ : T1S × R → R has several important properties. For any
v ∈ T1S, the unit-speed curve π ◦ ϕt(v) : R → S is a locally length-minimizing curve
in S. The tangent bundle TS has a natural Riemannian metric (the “Sasake metric”),
given by first decomposing the tangent space TvTS at a point v ∈ TS into its horizontal
and vertical components Hv and Vv. In this metric, the vertical subspace Vv, which is
the kernel of Tvπ, inherits the inner product from TπvS via translation along v, and the
horizontal space Hv, which is determined by the Riemannian connection, inherits the
inner product from TπvS via pullback under Tvπ. The metric on TS is then given by
the direct sum of these two forms on T (TS) = V ⊕H. The geodesic flow preserves the
Riemannian volume form ω given by this metric. Further, the flow preserves the trace
of this metric on the submanifold T1S. The measure m on T1S induced by this metric
is the Liouville measure. Locally, m is the product of the Riemannian measure on S
with normalized Lebesgue measure on the fibers of TS.

The geodesic flow for a closed surface (or n-manifold) of negative sectional curvatures
is ergodic with respect to m, and in fact Bernoulli. Ergodicity was proved first by
Hedlund and Hopf in the constant curvature case (see [6] and [10]). In the same paper,
Hopf also showed ergodicity of ϕ for a surface of finite area whose negative curvature and
derivative of curvature are bounded, for instance, a closed negatively-curved surface.
Anosov proved ergodicity in the general case case in [1], and Ornstein and Weiss proved
in [15] that the flow is Bernoulli, meaning for every t the time - t diffeomorphism ϕt is
conjugate to a Bernoulli shift. In particular, ϕt is ergodic. An alternate proof of this
fact follows from the proof of Theorem 4.1.

1.2 Anosov Flows and Diffeomorphisms

A good reference for this section is [18]. A flow ψt : M →M is an Anosov flow if there
are constants C > 0, λ < 1 and a splitting of the tangent bundle into Tf -invariant
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subbundles, called an Anosov splitting:

TM = Hu ⊕Hc ⊕Hs,

where Hc is spanned by the generating vector field ψ̇ and:

‖Tψt(v)‖ ≤ Cλt‖v‖ for all t ≥ 0, v ∈ Hs

‖Tψ−t(v)‖ ≤ Cλt‖v‖ for all t ≥ 0, v ∈ Hu

The geodesic flow for a closed, negatively-curved manifold is an Anosov flow.

Theorem 1.1 Let S be a complete Riemannian n-manifold of bounded negative sec-
tional curvatures −b2 < K < −a2 < 0, with a, b > 0. Let ϕt : T1S → T1S be the
geodesic flow. Then there is an Anosov splitting

T (T1S) = Hu ⊕Hc ⊕Hs

with dim(Hu) = dim(Hs) = n− 1 and

‖Tϕt(v)‖ ≤ b
a
e−at‖v‖ for all t ≥ 0, v ∈ Hs

‖Tϕ−t(v)‖ ≤ b
a
e−at‖v‖ for all t ≥ 0, v ∈ Hu,

with respect to the canonical Riemannian metric on T1S (see Section 1.1).

A proof of Theorem 1.1 can be found in [8], [13], Chapter 3 or [2], Appendix 21.
For any Anosov flow, the distributions Hs, Hu, Hc, Hu ⊕Hc, Hs ⊕Hc are uniquely

integrable and integrate to give foliationsWu,Ws,Wc,Wcu,Wcs respectively ([9]). The
foliation Wc is the center foliation, whose leaves consist of orbits of ϕ. The foliations
Wu and Ws are called the strong unstable and strong stable foliations, respectively, and
the foliations Wcu and Wcs are called the center unstable and center stable foliations.
The latter are also called the weak unstable and weak stable foliations, respectively.
The leaves of these foliations are injectively immersed, Cr submanifolds of M (if f is
Cr). For geodesic flows, the strong stable and unstable foliations are also called the
horocyclic foliations. We will denote them by Hu and Hs. Some of their regularity
properties are discussed in [8]. We discuss their geometric interpretation in Chapter 2.

For a closed, negatively-curved surface, the unit tangent bundle is three-dimensional,
and it follows from, e.g. [18], Theorem 5.18, that the stable and unstable foliations
are C1. Hopf used this smoothness in a crucial way to prove ergodicity for these
flows. Anosov showed in [1] that, while these foliations may fail to be smooth in higher
dimensions, they do have the property of being absolutely continuous. He used this
weaker property to prove ergodicity of the geodesic flow for any closed, negatively-
curved manifold. This property will be used in our proof of the Main Theorem as well,
so we review it here.

Let D0 and D1 be smooth, n − s-dimensional embedded disks transverse to the
s-dimensional foliation F = {F (p)}p∈M . Let points p ∈ D0 and p′ ∈ D1 and a path
γ : [0, 1] → F (p) with γ(0) = p, γ(1) = p′ be given. Then there is a subdisk D′0 ⊂ D0
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such that the holonomy hγ : D′0 → D1 is a homeomorphism onto its image. The foliation
F is absolutely continuous if for every such pair of transversals and every such (leafwise)
path γ, the holonomy hγ is absolutely continuous; i.e. it takes sets of measure zero in
D′0 to sets of measure zero in D1. (The measure in question is the Riemann-Lebesgue
measure of dimension n− s). Anosov proved in [1] that if ψ is a C2, volume-preserving
Anosov flow then the foliations Wu and Ws are absolutely continuous. Further, he
showed that for every holonomy hγ : D′0 → D1, there exists a continuous Jacobian
J : D′0 → R such that for every measurable subset A ⊂ D′0,∫

A
J dm = m(hγ(A)),

where m denotes Riemannian measure on D′0 or D1. (A proof of this fact can be found
in [16]).

Because ϕt restricted to a leaf of Wu is an expanding diffeomorphism, it follows
from [17] that the leaves of Wu are diffeomorphic to Rn−1 (as are the leaves of Ws).
This implies that the holonomy hγ is determined by γ(0) and γ(1).

1.3 Normal Hyperbolicity

Ignoring for a moment that ϕ1 comes from a flow, we could alternately describe it as a
diffeomorphism f with a Tf -invariant splitting TM = Hu⊕Hc⊕Hs such that Hu and
Hs are expanded and contracted exponentially under Tf and ‖Tf |Hc‖ = 1. For much
of the proof of Theorem 4.1 this is all we need to know about f . What restricts the
generality of our result is that this description of ϕ1 is not sufficient for the entire proof.
The reason is that we cannot conclude from this information alone that the center
distribution Hc is integrable. There is a center manifold theory for diffeomorphisms
of this nature, and so we are assured the existence of local invariant center manifolds
([18], Theorem III.8). These manifolds are tangent to the center distribution at a single
point, and are not in general unique. The assumption that ‖Tf |Hc‖ is close to 1 (which
would be the case if f were a perturbation of ϕ1), does not imply the existence of a
smooth center manifold everywhere tangent to Hc.4

Since we will use center manifolds to carry out the proof of our Main Theorem,
we need to use more information about ϕt. What we would like to say is that ϕt is
hyperbolic “modulo” the foliation Hc. The theory of normal hyperbolicity developed
in [9] provides us with the tools.

Definition: (see [9], p. 116.) Let F be a continuous foliation whose leaves are C1. A
Cr diffeomorphism f : M → M is r-normally hyperbolic to F if f permutes the leaves

4That is, there is a diffeomorphism f of a closed manifold M with (smooth) Tf -invariant splitting
TM = Eu ⊕Ec ⊕Es, and a ρ > 1 such that for all p ∈M ,

m(Tpf |Eu) > ρ > ‖Tpf |Ec‖ > m(Tpf |Ec) >
1
ρ
> ‖Tpf |Es‖

but the distribution Ec is not integrable (an example can be found by inspecting Smale’s construction
of an Anosov diffeomorphism on a six-dimensional nilmanifold in [19]).
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of F and there is a Tf -invariant splitting:

TM = Nu ⊕ TF ⊕Ns

such that:

inf m(Tpf |Nu) > 1, sup ‖Tpf |Ns‖ < 1
inf m(Tpf |Nu)‖Tpf |F‖−r > 1, sup ‖Tpf |Ns‖m(Tpf |F)−r < 1,

where m(A) := ‖A−1‖−1 denotes the conorm of the operator A. An Anosov diffeo-
morphism is normally-hyperbolic to the foliation by points F = {p}p∈M . If φ is an
Anosov flow, then φ1 is normally hyperbolic to its orbit foliation. Incidentally, the
converse does not hold: there are diffeomorphisms normally hyperbolic with respect to
a smooth, 1-dimensional foliation that are not conjugate to the time-one map of any
Anosov flow. 5

Recall that an ε-pseudo orbit for a diffeomorphism f is a bi-infinite sequence {pn}n∈Z

of points in M such that d(f(pn), pn+1) ≤ ε, for all n ∈ Z. Suppose that the foliation
F is given by a family of plaques P (see Chapter 3 for a definition). If f : M → M
preserves the foliation F , then the pseudo-orbit {pn} respects P if f(pn) and pn+1 lie
in a common plaque of P. We now generalize the notion of expansiveness to normally-
hyperbolic diffeomorphisms.

Definition: ([9], p. 116) f : M → M is plaque expansive if there exists an ε > 0 with
the following property. If {pn} and {qn} are ε-pseudo orbits which respect P and if
d(pn, qn) ≤ ε for all n, then for each n, pn and qn lie in a common plaque.

Remark: If f is normally hyperbolic at F and F is a smooth foliation, then f is plaque
expansive (see [9], p. 117). Hence if ψt is an Anosov flow, then ψ1 is plaque-expansive
at its orbit foliation.

Theorem 1.2 (see [9], Theorem 7.1, p. 117) Let F0 be a continuous foliation of the
closed manifold M whose leaves are Cr injectively immersed. Let f0 be r-normally
hyperbolic to F0. If f0 is plaque expansive, then the pair (f0,F0) is structurally stable.
That is, there is a neighborhood U of f0 in Diffr(M) such that, for every f ∈ U , there
is a foliation F and a homeomorphism h of M such that

1. h carries each leaf of F0 to a leaf of F .

2. hf0(L) = fh(L), for every L ∈ F0.

3. f is r-normally hyperbolic and plaque expansive at F .
5For an example, one can take an automorphism of a compact quotient of the three-dimensional

Heisenberg group with eigenvalues 1, λ > 1 and λ−1. As a side note, these Heisenberg examples are in
fact stably ergodic. We leave the proof of this fact as a lengthy exercise; the proof is almost identical
to the proof in [5].
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Theorem 1.2 implies structural stability for Anosov flows. Since the time-1 map of
an Anosov flow is also normally hyperbolic and plaque-expansive with respect to the
flow’s orbit foliation, we also obtain the following.

Corollary 1.3 (Center manifolds persist under perturbations.) Let φ be a C1

Anosov flow on the closed manifold M . Then there is a neighborhood U of φ1 in
Diff1(M) such that for every f ∈ U , there is a unique Tf -invariant splitting TM =
Eu ⊕Ec ⊕ Es which approximates the Anosov splitting for ϕ. Tangent to this splitting
are unique f -invariant foliations Wc(f), Wu(f), and Ws(f). The foliation Wc(f) is
homeomorphic to the orbit foliation for φ.

Strictly speaking, the existence of the foliations Wu(f) and Ws(f) is not a direct
corollary to Theorem 1.2 but follows from the existence of an invariant splitting such
that Eu is exponentially expanded, etc., plus the strong stable manifold theorem for
invariant sets (see, e.g. [18], p. 79 ff.).

Since φ1 is normally hyperbolic (in fact, normally expanding) and plaque expansive
at the weak-stable foliation (and φ−1

1 is normally hyperbolic and plaque expansive at
Wcu) we also obtain:

Corollary 1.4 (Weak unstable manifolds persist under perturbations.) With φ
as in Corollary 1.3, there is a neighborhood U ′ of φ1 in Diff1(M) such that for every
f ∈ U ′, there are unique f -invariant foliations Wcs(f) and Wcu(f) tangent to Eu⊕Ec

and Es ⊕ Ec, respectively.

In Section 3 we show that if f is C1-close to ϕ1, then theWu(f)-holonomy maps be-
tween localWcs(f)-leaves are uniformly Hölder continuous (and similarly for theWs(f)-
holonomy between local Wcu(f)-leaves). In Section 4, we show that these holonomies
are uniformly absolutely continuous, and C1 and uniformly nearly isometric when re-
stricted to Wc(f)-leaves.

2 Accessibility

2.1 A Three-Legged Lemma

Let S be a negatively-curved surface, with geodesic flow ϕ : T1S×R→ T1S. As in the
previous section, denote by Hu,Hs the strong unstable and stable foliations for ϕt and
by Hu and Hs the corresponding line-fields. Since ϕt is a geodesic flow, the plane field
Hu ⊕Hs it is contact: there is a smooth one form τ such that Hu ⊕Hs = ker (τ) and
τ ∧ dτ is nonvanishing.6 Hence the plane field Hu ⊕Hs is totally non-integrable: the
set of paths originating at a point p and everwhere tangent to Hu⊕Hs will fill a whole
neighborhood of p. In this section we examine a coarse version of this infinitessimal
property. We show that the set of all paths everywhere tangent either to Hu or to Hs

fill up T1S, uniformly, and in a way that persists under perturbations of ϕ1.
6τ is the canonical contact one-form pdq. See [11], p. 230.
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Define a Hu,s-path to be a path ψ : [0, 1] → T1S consisting of a finite number of
consecutive arcs, or legs, each arc everywhere tangent to either Hu or Hs; that is, lying
wholly in a leaf of Hu or Hs. Fix the convention that the first leg of a Hu,s-path lies
in Hs. Similarly, for f close to ϕ1 in the C1 sense, define a Wu,s-path to consist of
consecutive Wu(f), Ws(f) legs, where Wu(f), Ws(f) are defined in Corollary 1.3. If
such a path has n legs, then call it an n-legged path.

Lemma 2.1 There is a neighborhood V of ϕ1 in Diff2(T1S) and a constant N > 0
such that for every f ∈ V and any two points v0, v1 ∈ T1S, there is a three-legged
Wu,s(f)-path from v0 to v1 of length ≤ N .

Recently, Katok and Kononenko [12] have provided an alternate proof of a similar
result, which they use to prove cocycle stability results for certain partially hyperbolic
systems. They show that for a contact Anosov flow the stable and unstable foliations
have this accessibility property and that this property is stable under smooth pertur-
bations of the time-one map. Their proof has a different flavor and for completeness we
describe it here.

The type of map studied in [12] is an Anosov flow ϕ that preserves a contact 1-form
τ .7 This class includes all geodesic flows for negatively-curved manifolds. The definition
of an Hu,s - path for a general Anosov flow with Anosov splitting TM = Hu⊕Hc⊕Hs

is the same as in the specific case of a geodesic flow: it is a path consisting of finitely
many smooth legs, each wholly tangent to either Hu or Hs. Since the time-one map ϕ1

is normally hyperbolic to the orbit foliation, it is normally structurally stable, and any
sufficiently C1-close diffeomorphism f will have stable, unstable and center manifolds,
by Theorem 1.2, and we define an n-legged Wu,s - path for such a perturbation in the
obvious way.

Proposition 2.2 ([12], ) Let ϕ : M → M be a contact Anosov flow on a closed
manifold. Then there is a neighborhood V of ϕ1 in Diff2(M) and an integer j > 0 such
that for every ε > 0 and every f ∈ V there exists a δ > 0 such that for every p, q ∈ M
with d(p, q) < δ, there exists a j-legged Wu,s - path from p to q of length less than ε.

Roughly, the proof of Proposition [12] is as follows. Because Hu ⊕Hs is a contact
distribution, any two points p, q ∈ M can be connected by a smooth path everywhere
tangent toHu⊕Hs. First take p and q lying in the same center leaf. Using the transverse
local product structure of Hcu and Hcs, one can approximate this smooth path by an
m-legged path, for some m, connecting p to a point q′, with d(q, q′) << d(p, q). Then
the codimension 1 manifold

C(q′) := {x ∈ Hu
loc(y) | y ∈ Hs

loc(q
′)}

intersects the center manifold Hc(p) in a point p′ distinct from p. This gives an m+ 2-
legged path from p to p′. From here it is straightforward to construct a 1-parameter

7This means that τ(ϕ̇) = 1, dτ(ϕ̇, ·) = 0, and τ ∧ (dτ)n−1 is nondegenerate.
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family of m + 2-legged paths connecting p to a neighborhood of p in Hc(p). Thus
any point q in a neighborhood of p can be connected to p by an m + 4-legged path:
first connect q to y ∈ Hc(p) ∩ C(q) by a 2-legged path and then connect y to p by a
m+ 2-legged path. This proves accessibility for the unperturbed map ϕ1.

For f C2-close to ϕ1, the foliations Wa(f) (a ∈ {u, s, c, cs, cu}) locally uniformly
approximate the corresponding foliations for ϕ1, and so for p and q on the same center
leaf, there is an m+ 4-legged path connecting p to a point q′, with d(q, q′) << d(p, q).
Following the argument above, we can conclude there is a uniform neighborhood of p
covered by m+ 8-legged Wu,s-paths.2

2.2 Hadamard Manifolds, Horospheres, and Horoballs

The proof of Lemma 2.1 uses several properties of connected, simply-connected complete
Riemannian manifolds of nonpositive sectional curvature (called Hadamard manifolds)
which we recall here (see [3]). Many of the properties of the standard hyperbolic plane
(i.e. the Poincaré disk model) carry over to Hadamard manifolds. Most notably, just
as the Poincaré disk has a compactification as a ball in R2, with boundary a circle
(1-sphere), so does any Hadamard manifold X have a sphere at infinity. Say that
two unit speed geodesics γi : R → X are asymptotic if there is a constant c such
that d(γ1(t), γ2(t)) ≤ c, for all t ≥ 0. The sphere at infinity, X(∞) is the set of
equivalence classes of geodesics under this relation. The compactification X = X ∪
X(∞) is topologized as follows: first, given x ∈ X, z1, z2 ∈ X, let

6 x(z1, z2) = 6 (γ̇1(0), γ̇2(0)),

where γi is a geodesic from x to zi. For x ∈ X, z ∈ X(∞), ε > 0, let

Cx(z, ε) = {y ∈ X | y 6= x and 6 x(z, y) < ε}.

The “cone topology” on X is generated by the topology on X and the cones {Cx(z, ε)}.
In the cone topology X(∞) is homeomorphic to a codimension-1 sphere.

In the hyperbolic plane H (of constant curvature −1) there are distinguished curves
of constant geodesic curvature 1 called horospheres. In the Poincaré disk model, horo-
spheres are represented by circles tangent to the boundary of the disk. For every point
on the sphere at infinity there is a unique family of horospheres tangent to that point
and every geodesic asymptotic to that point crosses every horosphere tangent to that
point orthogonally.

If ϕ̃ : R × T1H → T1H is the geodesic flow for H then for v ∈ T1H the leaves
H̃s(v), H̃u(v) of the strong stable and unstable foliations for ϕ̃ project to horospheres in
H through the basepoint of v, one tangent to the forward asymptote of v, and the other
to the negative asymptote (see Figure 1). An analogous picture holds for any Hadamard
manifold. For those manifolds with bounded negative curvature, horospheres are the
traces in S̃ of the strong stable and unstable manifolds for the (lifted) geodesic flow.
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Figure 1: Strong stable and unstable leaves project to horospheres.

We proceed to definte horospheres for a Hadamard manifold X. Let γ : R→ X be
a unit-speed geodesic with γ(0) = x. Define a function ht,γ : X → R as follows:

ht,γ(y) = d(y, γ(t))− t.

A function g on a Riemannian manifold X is (strictly) convex if for every geodesic
γ : R→ X, the function g ◦ γ is (strictly) convex.

Lemma 2.3 The function ht,γ converges to a finite limit hγ as t→ +∞, and this limit
is a C1, convex function.

For a proof of Lemma 2.3 see ([2], Appendix 21), or ([3], Lemma 3.4). The limit-
ing function hγ is called a Busemann function or a horofunction. In fact, Busemann
functions for nonpositively curved manifolds are C2 (for a proof, see [7], Prop. 3.1). A
horosphere is a level set of the Busemann function hγ .

Note that if γ(0) = x, then x ∈ h−1
γ (0). Each horosphere h−1

γ (c) bounds a convex
region called a horoball, h−1

γ (−∞, c]. Each horosphere(/function/ball) has a unique
center z ∈ X(∞) such that every geodesic that crosses the horosphere orthogonally
is asymptotic to its center, and vice versa. When the curvature of X is strictly nega-
tive and bounded away from 0 and ∞, the unit-speed geodesics orthogonal to a given
horosphere converge to each other uniformly exponentially in forward time and diverge
exponentially in backward time. It follows that the strong stable and unstable folia-
tions of the geodesic flow on the unit tangent bundle T1X, project to foliations of X
by horospheres. More precisely, a unit tangent vector v ∈ T1X is tangent to a unique
directed unit-speed geodesic, ϕ̃t(v). The horospheres corresponding to the geodesics
ϕ̃t(v) and ϕ̃−t(v) are called, respectively, the positive and negative horospheres through
v, and denoted H+(v) and H−(v). The set of unit vectors orthogonal to H+(v) and
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pointing toward the center (resp. pointing away from the center of H−(v)) forms the
leaf through v of the strong stable (resp. unstable) foliation for the geodesic flow on
T1X

When the curvature of X is bounded away from zero, the horospheres in X have
the following additional properties:

1. For every two different points z0, z1 ∈ X(∞) on the sphere at infinity, there is a
unique geodesic γ : R −→ X with γ(−∞) = z0 and γ(∞) = z1.

2. Two horoballs with different centers intersect in a bounded region in X.

3. Given a horoball B and a horofunction h with a different center than B, there
exists an a ∈ R such that h−1(−∞, a] ∩B = ∅.

4. Busemann functions (and hence, horoballs) are strictly convex. If a geodesic
intersects a horosphere, it does so either tangentially, orthogonally, or transversely,
in exactly two points.

Properties 1−3 are equivalent for Hadamard manifolds (for a proof, see, [3]). Prop-
erty 4 is stronger. It follows, e.g., from Lemma 4.3 in [7].

Properties 1− 4 imply that horospheres behave nicely with respect to each other.

Lemma 2.4 Let X be a two-dimensional Hadamard space of bounded negative curva-
ture −b2 < K < −a2. If H1 is a horosphere and B2 is a horoball in X, then

1. H1 ∩B2 is path-connected.

2. H1 ∩ int(B2) is path-connected.

Corollary 2.5 With X as above, two distinct, nondisjoint horospheres in X intersect
tangentially in a single point or transversely in exactly two points.

Remarks:

1. Lemma 2.4 does not follow from strict convexity alone, as two strictly convex
planar curves can intersect in arbitrarily many points.

2. In general, although it is not proved here, two horospheres in an n-dimensional
Hadamard manifold of strictly negative sectional curvatures intersect in a point
or in a topological n− 2-sphere.

Denote by B1 the horoball bounded by H1 and by H2 the horosphere bounding B2.
The lemma holds trivially if H1 and H2 have the same center, so assume that their
centers are distinct.

IfH1 andH2 meet tangentially, then the interiors ofB1 andB2 must be disjoint, since
an outward normal direction uniquely determines a horosphere. From the convexity of
B1 ∩B2, we must have card(H1 ∩H2) = 1. In this case (1) and (2) follow immediately.

11
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Figure 2: H1 leaves and then re-enters B2.

This leaves the case whereH1 and H2 do not meet tangentially but cross transversely.
Since B1 ∩ B2 is bounded and convex, H1 ∩ H2 must consist of a finite, even number
of points and (1) and (2) are equivalent. If H1 ∩ B2 is not path-connected then, as a
parametrized simple curve, H1 must leave and then re-enter B2. We may assume that
H1 leaves B2 at p and re-enters B2 for the first time, to the right of p at q, as shown in
Figure 2. We have not yet specified whether int(B2) lies to the left or right of H1. If
int(B1) lay to the left of H1, then p and q could not be connected by a path in B1∩B2,
violating the convexity of B1 ∩B2.

This leaves the possibility that int(B1) lies to the right of H1, as shown in Figure
3. Let h be the Busemann function that determines H1, so that B1 = h−1(−∞, 0]. By
property 3 above, there exists an a < 0 such that h−1(−∞, a]∩B2 = ∅. This, together
with the smoothness of h implies that there is a b < 0 and a point r lying on the arc of
H2 between p and q such that h−1(b) is tangent to H2 at r and h−1(−∞, b] ∩ B2 6= ∅.
Since H1 and H2 have different centers, this gives a contradiction. 2

2.3 Proof of Lemma 2.1

Let S̃ be the universal cover of S equipped with the pulled-back Riemannian metric of
S under the canonical projection p : S̃ → S. The Hadamard manifold S̃ has strictly
negative curvature bounded, by compactness of S, between two constants: −b2 < K <
−a2.

Choose ṽ0, ṽ1, lifts of v0, v1 under Tp : T1S̃ → T1S so that the directed geodesics in
S̃ tangent to ṽ0, ṽ1 are not forward - asymptotic. This is possible because S is compact
and so the limit set of the fundamental group of S acting on S̃ is the entire sphere at

12
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Figure 3: int(B1) lies to the right of H1.

infinity (see [13], Lemma 3.9.7, p. 370). Let

hvi(x) = lim
t→∞

d(x, π(ϕ̃t(ṽi)))− t

be the Busemann function associated with the vector ṽi. By a similar argument, we
may assume that the horospheres Hi := h−1

ṽi (0) (i = 0, 1) are disjoint (although this is
not necessary for the argument, it simplifies the pictures). Let c = d(H0, H1) and let
zi ∈ S̃(∞) be the center of the horosphere Hi.

For each x ∈ H0, there is a unique unit-speed geodesic γx such that γx(0) = x
and γx(−∞) = z0. The horosphere h−1

γx (0) is tangent to the horosphere H0, since the
geodesic γx crosses H0 orthogonally.

Define ∆, a continuous real-valued function on the horosphere H0 as follows:

∆(x) = inf
y∈H1

hγx(y).

Because hγx is a strictly convex function and H1 bounds a strictly convex set, for a
given x the infimum above is attained by a unique y ∈ H1.

The function ∆ measures the (signed) distance between the horospheres Hx :=
h−1
γx (0) and H1. The distance between two horospheres is achieved along the geodesic

connecting their centers (which intersects both horospheres orthogonally). If the in-
teriors of the horoballs corresponding to Hx := h−1

γx (0) and H1 are disjoint, then ∆ is
nonnegative. Otherwise, ∆ is negative.

We are interested in ∆ for the following reason: if ∆(x) = 0, then, by Lemma 2.4
there exists a unique y ∈ H1 such that hγx(y) = 0, or in other words, the horosphere
h−1
γx (0) is tangent to both H0 and H1. This tangent sphere provides a bridge between
H0 and H1 from which we can construct an Hu,s path in T1S̃ from ṽ0 to ṽ1.

13
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Figure 4: ∆(x0) ≤ 0.

The horosphere H0 is a one-dimensional subspace of S̃, homeomorphic to R, so
to show that ∆ has a zero, it suffices to find x0, x1 ∈ H0 such that ∆(x0) ≤ 0 and
∆(x1) ≥ 0.

Let γ0 be the unique unit-speed geodesic in S̃ such that γ0(∞) = z0 and γ0(−∞) =
z1. Let x0 and y0 be the (unique) intersections of the image of γ0 with H0 and H1,
respectively. Then, for all x sufficiently close to x0, the horoballs corresponding to H1

and Hx intersect, and ∆(x) ≤ 0. (In fact, ∆(x0) = −∞). (See Figure 4).
To find x1, we first find a geodesic γ1 with γ1(−∞) = z1 that intersects H0 in

2 points. Up to parametrization, γ0 is the unique geodesic from z1 that intersects
H0 orthogonally. Pick y1 ∈ H1 near y0 and let γ1 be the unit-speed geodesic with
γ1(−∞) = z1 and γ1(0) = y1. Since horospheres and geodesics are smooth, if we pick y1

sufficiently close to y0, the intersection of γ1 and H0 will remain transverse, although no
longer orthogonal. By property (4) above, this means that γ1 intersects H1 in exactly
2 points. Let z2 = γ1(∞). Let γ2 be a geodesic with γ2(−∞) = z2 and γ2(∞) = z0

(See Figure 5). Let x1 be the intersection of the image of γ2 with H0. We claim that
∆(x1) ≥ 0.

Since Hx1 is tangent to H0, the interiors of their associated horoballs are disjoint.
The geodesic γ1 crosses the horosphere Hx1 exactly once. Hence γ1 crosses Hx1 after
crossing H0. This means that ∆(x1) ≥ d(H0, H1) = c > 0.

Hence there exists a horosphere H2 tangent to both H0 and H1. Note that the stable
leaves Hs(ṽ0),Hs(ṽ1) in T1S̃ project under π to H0, H1 respectively. Let x = H0 ∩H2

and let y = H1 ∩H2. Because the intersections are tangential, they lift to intersections
in T1S̃: if Hu is the leaf of Hu in M̃ that projects to H2, then π(Hu ∩ Hs(ṽ0)) = x
and π(Hu ∩Hs(ṽ1)) = y. Thus there is an Hu,s path ψ̃ in S̃ defined by traversing first
Hs(ṽ0), then Hu, and finally Hs(ṽ1). (See Figure 6).
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Figure 5: ∆(x1) ≥ 0.

Figure 6: A three-legged Hu,s path in T1S̃.
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The path ψ̃ projects to a three-legged Hu,s-path in T1S. Hence any two points in
T1S can be connected by some three-legged Hu,s-path.

The foliations Hs and Hu are at least C1. Let ξs and ξu be unit stable and unstable
vector fields tangent to the bundles Hu and Hs for the flow ϕt. These vector fields
integrate to give C1 flows ψ+ and ψ− on T1S. The trajectories of ψ+ and ψ− lie along the
leaves of the strong stable and unstable foliationsHs andHu, and are called the positive
and negative horocyclic flows, respectively. (For a discussion of these flows and their
ergodic properties, see [14]). We have shown that there exist t1, t2, t3 ∈ R, with t1 > 0
such that ṽ1 = ψ̃+

t3 ◦ψ̃−t2 ◦ψ̃+
t1(ṽ0), where ψ̃± are the lifted positive and negative horocyclic

flows on T1S̃. These flows are smooth and hence their composition varies continuously
in the parameter (t1, t2, t3). We show now that the map Γ̃(s1, s2, s3) = ψ̃+

s3
◦ ψ̃−s2 ◦ ψ̃+

s1
(ṽ0)

is injective in a neighborhood of (t1, t2, t3) in the positive half-space t1 > 0 in R3. It
follows from invariance of domain that Γ̃ is a local homeomorphism.

Let x, y, ṽ0, ṽ1 be as above, with x lying to the left of ṽ0 and y lying to the right of
ṽ1 and x, y belonging to the same horosphere H. Suppose that there exist x′, y′ near
x, y in H0, H1 and belonging to the horosphere H ′. Assume that H and H ′ meet H0, H1

tangentially at these points.
Since the horocyclic foliations are orientable, the only possible configuration of

x, y, x′, y′ (up to orientation) is shown in Figure 7. In theis configuration, x′ lies to
the left of x on H0 and y′ lies to the left of y in H1 (this also follows from the fact that
the horocyclic flows are orientation-preserving). Let B and B′ be the horoballs corre-
sponding to the horospheres H and H ′. The points x and y must lie outside of the the
horoball B′ since H ′ intersects H0 and H1 each in exactly one point. Similarly x′ and
y′ lie outside of B. It follows that the infinite segment of H to the right of x intersects
the arc of H ′ between x′ to y′ in a point w1. Likewise, the segment of H ′ to the left of
y′ intersects the segment of H between x and y in a point w2. Finally, there is a third
point of intersection w3, where the H segment from x to y meets the H ′ segment from
x′ to y′. The three points w1, w2, w3 are distinct, since H and H ′ are simple curves.
This contradicts Corollary 2.5. This implies that Γ̃ is a local homeomorphism.

In Section 3 we show that under C2 small perturbations of ϕ1, the strong stable
and unstable foliations persist and are transversally Hölder-continuous. The leaves of
these foliations are unique integral curves of new vector fields, ξ′1 and ξ′2, which are C0

perturbations of ξ1 ξ2. The perturbed vector fields ξ′1 and ξ′2 generate flows ψ+′ and ψ−′

that C0-approximate the flows ψ+ and ψ− uniformly on compact time intervals.
Fix v ∈ T1S. Let Γv : R3 → T1S be defined by:

Γv(t1, t2, t3) := ψ+
t3
◦ ψ−t2 ◦ ψ

+
t1

(v).

Since the flows ψ± lift to the flows ψ̃±, the above arguments imply that, restricted to the
half-space D = {(t1, t2, t3) ∈ R3 | t1 > 0}, Γv is surjective and a local homeomorphism.
Thus for every w ∈ T1S, there exist constants r, ρ > 0 and a point s = (s1, s2, s3) ∈ D
such that Γv(s1, s2, s3) = w and

index (Γv|∂B3
r (s)) = ±1,
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Figure 7: A possible configuration of x, y, x′, y′.

with respect to every w′ ∈ Bρ(w). The balls {Bρ(w)}w∈T1S cover T1S. Pass to a finite
subcover {Bρ1(w1), Bρ2(w2), . . . , Bρk(wk)} and let ri and si ∈ D be such that

index (Γv|∂B3
ri

(si)) = ±1,

with respect to every w′ ∈ Bρ(wi). Note that there exists an R > 0 such that for every
i ≤ k, |si| ≤ R.

Since the property of having index ±1 is robust and Γv is continuous as a function
of v, there is a neighborhood Bρ′(v) of v such that for every v′ ∈ Bρ′(v),

index (Γv′ |∂B3
ri

(si)) = ±1,

with respect to every w′ ∈ Bρ(wi). For every v ∈ T1S there is such an open neighbor-
hood Bρ′(v), where of course ρ′ depends on v.

The collection of open sets {Bρ′(v)}v∈T1S covers T1S. Again, pass to a finite subcover
by balls {Bρ′1

(v1), Bρ′2
(v2), . . . , Bρ′m(vm)}. Re-indexing, we now have constants N, r, ρ >

0 and sets {v1, . . . , vm}, {wi,1, . . . wi,ki}i=1,k such that for every 1 ≤ i ≤ m and every
1 ≤ j ≤ ki, there is a point si,j ∈ D, with |si,j| ≤ N such that Γi(si,j) := Γvi(s

i,j) = wi,j
and

index (Γi|∂B3
r (si,j)) = ±1,

with respect to every w′ ∈ Bρ(wi,j).
For 1 ≤ i ≤ m, and for f sufficiently close to ϕ1, there is a map Γ′i : R3 → T1S

defined by:
Γ′i(t1, t2, t3) := ψ+′

t3
◦ ψ−′t2 ◦ ψ

+′
t1

(vi),
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where ψ±′ are the positive and negative Wu,s(f)- horocyclic flows. Then Γ′i uniformly
approximates Γi on the set [−N,N ]3 ⊂ R3. It follows that for f sufficiently close to ϕ1,

index (Γ′i|∂B3
r (si,j)) = ±1,

with respect to every w′ ∈ Bρ(wi,j). The result follows.2

Remark: The proof of Lemma 2.1 generalizes to noncompact manifolds of bounded
negative curvature, provided that M has at least two closed geodesics (equivalently,
π1(M) does not have a global fixed point at infinity).

If π1(M) has a global fixed point at infinity, then Lemma 2.1 does not hold. In
particular, if two points in T1H lie in the same leaf of the weak-stable foliation, then
there is no three-legged Hu,s in T1H path connecting them.

3 Uniform Hölder-Continuity

If f is C1 close to ϕ1, then the estimates in Theorem 1.1 will hold; that is, we will
have that ‖Tf |Eu‖ and ‖Tf |Es‖ are bounded above and below by a function involving
the bounds on the curvature −b2 < −a2. This information, combined with standard
invariant manifold techniques (in, for example, [18]) implies that the splitting Eu ⊕
Ec ⊕Es is α-Hölder continuous, with α determined by the ratio a

b
. This is not enough

for our purposes, unless the curvature is pinched close to one (i.e. a/b is close to 1). We
would like to exploit the volume-preserving aspect of ϕ and use the fact that pointwise
the expansion and contraction rates of Tf |Eu and Tf |Es are nearly reciprocal to each
other.

In this section, we prove some regularity results about the strong stable and unstable
foliations and the invariant splitting of a C2 perturbation of the time-one map ϕ1.
Recall that a function s : X → Y between compact metric spaces is said to be Hölder-
continuous if there exist constants 0 < α ≤ 1 and H > 0 such that:

dY (s(x), s(x′)) ≤ H · dX(x, x′)α,

for all x, x′ ∈ X. In the expression above, α is called the Hölder exponent and H the
Hölder constant.

3.1 Hölder-Continuity of the Strong Unstable Foliation.

Definition: Let M be a closed manifold. A Cr pre-lamination of M is a continuous
choice of Cr-embedded disk W (p) through each p ∈M . The choice of W (p) is given by
a covering of M by plaque charts (Uj , σj), such that:

• σj : Uj → Embr(Dk,M) is a continuous section of the bundle of Cr embeddings
of the k-disk Dk = (−1, 1)k into M .
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• For p ∈ Uj , σj(p)(0) = p and σj(p)(Dk) = W (p).

Let F := {F (p)}p∈M be a foliation of M and let T = {T (p)}p∈M be a pre-lamination
of M by C1 disks transverse to F and of complementary dimension. Recall that if
γ : [0, 1] → F (p) is a leafwise path with γ(0) = p and γ(1) = q, then on a sufficiently
small subdisk T (p)′ ⊂ T (p) there is a well-defined holonomy map

hγ : T (p)′ → T (q),

such that hγ(r) = F (r) ∩ T (q), which is a homeomorphism onto its image. Let dT (·)
denote the induced Riemannian path-metric on the plaque T (·).

Definition: With notation as above, the foliation F is θ-Hölder continuous with
respect to T if for every R > 0, there is a constant H(R) > 0 and an ε > 0 such that
for every p, q ∈M and for every leafwise path γ from p to q of length l(γ) ≤ R,

dT (q)(hγ(r), hγ(r′)) ≤ H(R) · dT (p)(r, r′)θ,

for all r, r′ ∈ Bε(p) ∩ T (p). The function R 7→ H(R) for R ≥ 0 is called a θ-Hölder
constant assignment of F (relative to T ).

Remark: Changing the Riemannian metric on M has the effect of changing the
constant assignment H in the above definition; that is, the property of a foliation being
θ-Hölder continuous with respect to a transverse family is independent of metric. In the
following proposition, the actual values of the constants H0 andH(R) are not important;
the content of the statement is that they can be chosen uniformly over perturbations
of ϕ1.

Proposition 3.1 Let S be a closed, negatively-curved surface and let ϕ1 : T1S → T1S
be the time-one map of the geodesic flow ϕt on the unit tangent bundle T1S of S. Then
for every θ < 1 there exists an H0 > 0, a function H : R+ → R+, and a neighborhood
U of ϕ1 in Diff2(T1S), such that for every f ∈ U ,

1. The Tf -invariant splitting TM = Eu ⊕ Ec ⊕ Es obtained in Corollary 1.3 is
θ-Hölder continuous, with Hölder constant H0.

2. The strong unstable foliationWu(f) is θ-Hölder continuous with respect toWcs
loc(f),

with θ-Hölder constant assignment R 7→ H(R).

3. The strong stable foliation Ws(f) is θ-Hölder continuous with respect to Wcu
loc(f)

with θ- Hölder constant assignment R 7→ H(R).

Remark: At first glance, it might appear that the Hölder-continuity ofWu(f) follows
from the fact that the leaves ofWu(f) are tangent to a Hölder-continuous line-field Eu,
just as a Lipschitz vector field generates a Lipschitz flow. In the Appendix, we show
that condition 2 does not follow from condition 1. In other words, a Hölder-continuous
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vector field, even if it is uniquely integrable, does not necessarily integrate to a Hölder-
continuous flow.

This section is organized as follows. In Section 3.2, we prove a general theorem
about the Hölder-continuity of an invariant section of a fiber-bundle map. Theorem
3.3 may be used wherever the Hölder Section Theorem in ([18]: Theorem 5.18(c)) can
be applied. In this section, we use Theorem 3.3 to prove Proposition 3.1. Because the
proof of Proposition 3.1 is lengthy, we postpone the verification of one of the hypotheses
of Theorem 3.3 to the later Section 3.3.
Proof of Proposition 3.1: Let M := T1S and let TM = Hu⊕Hc⊕Hs be the Anosov
splitting for ϕt. The arguments below are for unstable bundles and foliations; the same
results follow for stable bundles and foliations by considering the inverse ϕ−1.

Let η be the (unit) vector field generating ϕt and choose vector fields ξ1, ξ2 spanning
Hu and Hs, respectively, so that {η, ξ1, ξ2} is a unit volume frame for M . The bundles
Hu and Hs are C1 by [8]. The original metric is C∞ and so consequently, the vector
fields ξ1 and ξ2 can be chosen to be C1. Since ϕt preserves the volume form and
Tpϕt(η(p)) = η(ϕt(p)), it follows that there is a function λ : M → (1,∞) such that

Tpϕ1(ξ1(p)) = λ(p) · ξ1(ϕ1(p)),

and
Tpϕ1(ξ2(p)) = λ(p)−1 · ξ2(ϕ1(p)),

for all p ∈M . These vector fields define a new C1 Riemannian structure on M in which
{η, ξ1, ξ2} form an orthonormal frame. With respect to this metric,

‖Tpϕ1|Hu‖ = λ(p), ‖Tpϕ1|Hs‖ = λ(p)−1, ‖Tpϕ1|Hc‖ = 1.

All calculations that follow are done with respect to the new Riemannian structure on
M .

These vector fields uniquely trivialize the bundles Hu, Hc,Hs, Hcs and Hcu. Let
α : M × R → Hu be a C∞ trivializing map for Hu such that for p ∈ M , αp :=
α(p, ·) : R → Hu(p) is the linear isometry with αp(1) = ξ1(p). Similarly, let β be the
trivializing map for Hcs such that βp := β(p, ·) : R2 → Hcs(p) is orthonormal, with
βp((1, 0)) = ξ2(p) and βp((0, 1)) = η(p).

Now suppose f ∈ Diff2(M). With respect to the splitting TM = Hu ⊕Hcs, write:

Tpf =
(
Ap Bp

Cp Kp

)
,

where Ap, Bp, Cp, Kp are linear maps. If the approximation of f to ϕ1 is close in the C1

sense, then

‖Bp‖, ‖Cp‖ .= 0,
m(Ap) = ‖Ap‖ .= ‖Tpϕ1|Hu‖, ‖Kp‖ .= ‖Tpϕ1|Hc‖
and m(Kp)

.= ‖Tpϕ1|Hs‖,
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uniformly in p ∈ M . (Note that Ap is a 1 × 1 matrix, so its norm and conorm are
automatically equal).

The proof of 1. follows from standard graph-transform techniques and the Pointwise
Hölder Section Theorem (Theorem 3.3). We prove Hölder-continuity of the splitting
Eu ⊕ Ec ⊕ Es in two steps. First we first show directly that the bundles Eu and Es

are Hölder-continuous. Then, to show that Ec is Hölder-continuous, we show that the
weak stable and unstable bundles Ecu and Ecs are Hölder-continuous and then intersect
them to obtain Ec.

Consider the bundle L →M with fiber L(Hu(p), Hcs(p)) over p, where L(Hu(p), Hcs(p))
is the space of linear maps from Hu(p) to Hcs(p), with the operator norm. Note that
this bundle is trivial, since Hu and Hcs are trivial; the trivialization is given by

κ : M × L(R,R2)→ L

κ(p, P ) = βp ◦ P ◦ α−1
p .

In fact L is metrically trivial: κ(p, ·) is an isometry with respect to the operator norms
on L(R,R2) and L(Hu(p), Hcs(p)). Let L(1) be the compact subbundle of L whose
fibers are the linear maps of operator norm ≤ 1. κ induces a trivialization of L(1), as
well.

We then define a bundle map ΓTf : L(1) → L(1) covering f , which on each fiber
{P ∈ L(Hu(p), Hcs(p)) | ‖P‖ ≤ 1} is the linear graph transform:

ΓTf (p, P ) := (f(p), (Cp +Kp ◦ P ) ◦ (Ap +Bp ◦ P )−1).

If f is sufficiently C1-close to ϕ1, then ΓTf will satisfy the hypotheses of Theorem
3.3. That is, in the notation of Section 3.2, there is an L > 0 such that if f .= ϕ1,
and δ > 0 is sufficiently small, then ΓTf is Lipschitz with Lip(ΓTf) ≤ L, and ΓTf has
pointwise fiber constant kp (depending on f) and base constant µp (depending on f and
δ) given by:

kp
.=
‖Kp‖
‖Ap‖

.=
1

‖Tpϕ1|Hu‖ (since f .= ϕ1)

and

µp = Lip(f−1|f(Bδ(p)))
−1

.= m(Tpf) (since δ .= 0)

.= ‖Tpϕ1|Hs‖ (since f .= ϕ1)

(where Bδ(p) denotes the ball in M centered at p of radius δ). But for each θ < 1,
‖Tpϕ1|Hu‖ · ‖Tpϕ1|Hs‖θ > 1. Thus, if we initially fix δ > 0 small enough, then there is
a neighborhood U0 of ϕ1 in Diff1(M), such that for f ∈ U0,

kp · µ−θp < 1.

Then by Theorem 3.3 there is is an H0 > 0 such that, for f ∈ U0, the unique ΓTf -
invariant section s : M → L of the bundle L is θ-Hölder continuous, with constant H0.
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This invariant section gives the unstable bundle Eu for f by: Eu(p) = {(x, s(p, x)) |
x ∈ Hu(p)}, and so Eu is uniformly θ-Hölder continuous.

Similarly, we can find Ecu as the graph of an invariant section of a bundle over M ,
this time with fiber L(Hcu(p), Hs(p)). In this case we also have kp

.= ‖Tpϕ1|Hu‖−1 and
µp

.= ‖Tpϕ1|Hs‖, so it follows that for f sufficiently C1-close to ϕ1, the bundle Ecu is θ-
Hölder continuous, with constant H0, and the same is true for Ecs. Since the transverse
intersection of θ-Hölder bundles is θ-Hölder, it follows that Ec is θ-Hölder and the proof
of 1. is complete.

To prove 2., we will construct a nonlinear version of the bundle L. For ν > 0, denote
by Bk

ν (x) the closed ball of radius ν, with respect to the box-norm, centered at x in Rk.
Define the map

ω : M ×R3 →M

by:
ωp(t1, t2, t3) := expp((αp(t1) + βp(t2, t3)),

where exp is the C∞ exponential map with respect to the C∞ canonical (Sasake) metric
on M . Note that T0ωp is orthonormal with respect to the standard metric on R3 and
the adapted C1 metric on M defined above. For ν0 sufficiently small, ω is a (C1)
diffeomorphism from B3

ν0
(0) onto its image in M . In fact more is true: fixing a value

of p, the functions ωp(x) and ∂ωp(x)/∂p are C∞ in x. A function with this property is
said to be of class C1×∞.

There is a well-defined bundle map

F : M ×B3
ν0

(0)→M ×R3,

covering f : M →M . It is given by:

F (p, x) = (f(p), Fp(x)),

where
Fp(x) := ω−1

f(p) ◦ f ◦ ωp(x),

for p ∈M , x ∈ B3
ν0

(0).
Then

D0Fp = Tf(p)ω
−1
f(p) ◦ Tpf ◦ T0ωp.

Since T0ωp maps the standard basis of R3 to the orthonormal basis {ξ1(p), ξ2(p), η(p)}
of TpM , we identify D0Fp with Tpf so that by a slight abuse of notation:

D0Fp =
(
Ap Bp

Cp Kp

)
,

Then Fp takes the form:

Fp(x, y) = (Apx+Bpy, Cpx+Kpy) + rp(x, y), (1)
for p ∈M, x ∈ B1

ν0
(0), y ∈ B2

ν0
(0)
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where the remainder r : M × B3
ν0

(0) → M ×R3 is a C1×∞ function. Since D0rp = 0,
for all p ∈ M , we may choose ν0 > 0 small enough so that Lip(r(p, ·)) .= 0, uniformly
in p ∈M .

For ν > 0 and g : B1
ν(0) → R2 a continuous function with g(0) = 0, define the

special norm:

‖g‖∗ := sup
x∈B1

ν(0)

|g(x)|
|x| .

(Naturally, this and all similar suprema are taken over x 6= 0). With the norm ‖ ‖∗, the
space

G∗ν := {g : B1
ν(0)→ R2 | g(0) = 0, ‖g‖∗ <∞}

is a Banach space ([18], p. 62).
Now consider the subset Gν ⊂ G∗ν consisting of Lipschitz functions of Lipschitz norm

≤ 1:
Gν := {g : B1

ν(0)→ R2 | g(0) = 0,Lip(g) ≤ 1}.
With respect to the metric given by ‖ ‖∗, Gν is a closed subset of the unit ball in G∗ν .
We will view the graph of an element of G∗ν as a candidate for a local stable manifold.
A choice of such a function gp ∈ Gν at each point p ∈M is a section of the fiber bundle
M × Gν .

For ν1 < ν0 sufficiently small and or f sufficiently C1-close to ϕ1, the restriction of
Fp to B1

ν1
(0) satisfies the hypotheses of the pseudo-hyperbolic stable manifold theorem

in [18]. (An outline of some the discussion that follows, on the level of the fibers G∗ν is in
[18], pages 61ff). Thus F induces a graph-transform bundle map F] : M×Gν1 →M×Gν1 ,
given by

F](p, g) := (f(p), F]p(g)),

where:

• For (p, g) ∈M × Gν1, graph(F]p(g)) = Fp(graph(g)) ∩B3
ν1

(0).

• Lip(F]p(·))
.= ‖Kp‖ ·m(Ap)

−1 (since ν1
.= 0) .= ‖Tpϕ1|Hu‖−1 (since f .= ϕ1).

Proposition 3.4 shows that there is an L > 0 and a neighborhood U1 of ϕ1 in Diff2(M)
such that for f ∈ U1, F] is Lipschitz, with Lipschitz norm L; that is, for g ∈ Gν1 and
q, q′ ∈M ,

‖F]q(g)− F]q′(g)‖∗ ≤ L · d(q, q′).

We now show that F] satisfies the hypotheses of the Pointwise Hölder Section The-
orem (Theorem 3.3). First, F] is a Lipschitz bundle map, covering a overflowing bilips-
chitz homeomorphism f . For p ∈M , F] has Lipschitz fiber constant kp < 1 (depending
on f and ν1) and base constant µp > 0 (depending on f and δ) defined as follows. As
in the linear case, we have:

µp = Lip(f−1|f(Bδ(p)))−1 .= m(Tpf) .= ‖Tpϕ1|Hs‖,
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and by Lemma III.6 in [18],

kp = Lip(F]p(·))
.=

1
‖Tpϕ1|Hu‖ < 1.

It follows that if δ and ν1 are chosen initially to be sufficiently small, then there is a
neighborhood of ϕ1 in Diff1(M) where the relation

sup
p∈M

kp · µ−θp < 1 (∗)

will hold for F].
Given θ < 1, and δ, ν1 > 0 small enough, let U ⊂ U0 ∩ U1 be a neighborhood of ϕ1

in Diff2(M) such that relation (∗) is satisfied, for every f ∈ U . By Theorem 3.3, for
f ∈ U there is a unique continuous function sf : M → Gν1 such that:

F](p, sf(p)) = (f(p), sf(f(p))).

Further, there is an H1 > 0 such that for all f ∈ U and for every p, q,∈M ,

‖sf(p)− sf (q)‖∗ ≤ H1 · d(p, q)θ.

Fix f ∈ U and write “s” for “sf”. The graph of s(p) : B1
ν1

(0) → R2 in B3
ν1

(0)
maps, under ωp, to the local strong unstable manifold for f at p. For p ∈ M , let
σp : B1

ν1
(0)→M be given by:

σp(t) := ωp(t, s(p)(t)).

Then σp(B1
ν1

(0)) = W u
loc(p).

We show now that the Hölder-continuity of s implies the Hölder-continuity of the
foliation Wu with respect to plaque family Wcs

loc. For ν2 < ν1 sufficiently small, the
Riemannian path - metric on ωp(B3

ν2
(0)) is uniformly close to the Euclidean metric on

B3
ν2

(0). In local ωp-coordinates, let Tp(q) be the plane through q ∈ ωp(B3
ν2

(0)) given by:

Tp(q) := {ωp(ω−1
p (q), t1, t2) | (t1, t2) ∈ B2

ν2
(0)}.

First consider the plaque family of transversals T = {T (p)}p∈M given by:

T (p) := Tp(p) = {ωp(0, t1, t2) | (t1, t2) ∈ B2
ν2

(0)}.

The change of coordinates

Ωp,q : Bν2(p) ∩Bν2(q)→ Bν2(q)

given by Ωp,q(x) = ωq ◦ ω−1
p (x) is uniformly C1×1×∞ in the variables (p, q, x) and as

d(p, q)→ 0, Ωp,q
→→ Id. It follows that as d(p, q)→ 0,

T (p) →→ T (q)
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p

q

T(p)

X(p)

T(q)
  uh  (q)

X(q)

  uh  (p) = p'

T  (p')  p

q'

T(p')

Figure 8: The Wu-holonomy between T (p) and T (p′).

and that the angle between Tp(q) and T (q) is bounded by c0 · d(p, q), where c0 is a
uniform constant. In what follows we write T (p)(ε) := T (p) ∩ Bε(p). Similarly define
the “x-axis” for the ωp-coordinate system by:

X(q) := {ωq(t, 0, 0) | t ∈ B1
ν1

(0)}.

Fix p for now and suppose p′ ∈W u
ν2

(p). Then p′ = σp(x), for some x ∈ B1
ν2

(0). Consider
the Wu-holonomy between the transversals T (p) and T (p′):

hu : T (p)(ν2)→ T (p′).

T (p′) is nearly parallel to Tp(p′) (the angle between them is ≤ c0 · d(p, p′)) and so there
exists a uniform constant c1 > 0 such that:

dT (p′)(hu(p), hu(q)) = dT (p′)(p′, hu(q)) ≤ c1 · dTp(p′)(p′, q′),

where q′ = W u
ν2

(q) ∩ Tp(p′) (See Figure 8).
The x-axes X(p) and X(q) are nearly (in a Lipschitz sense) parallel, so there exists

a uniform constant c2 > 0 such that

dTp(p′)(p′, q′) ≤ c2 · d(σp(x), σq(x)).

Finally, since T (p) and T (q) are nearly parallel, there exists c3 > 0 such that

d(σp(x), σq(x)) ≤ c3 · [dT (p)(p, q) + |sp(x)− sq(x)|]
≤ c3 · [dT (p)(p, q) + |x| · ‖sp − sq‖∗]
≤ c3 · [dT (p)(p, q) + |x| ·H1 · d(p, q)θ],
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p

    uW       (q)    loc

q

q   p

    csW       (p)    loc
T(p)

(Lip < e)        -- 

(Lip < 1)        --

< e d(p,q  )--            p  

q   1

Figure 9: d(p, q) ≤ c5 · d(p, qp).

and so there exists a c4 > 0 such that:

dT (p′)(hu(p), hu(q)) ≤ c4 · dT (p)(p, q)θ.

Now consider the center-stable plaque family Wcs
ν2

(f) = {W cs
ν2

(p)}. This family is
invariant under f and coherent: the plaques patch together to give a foliation of M .
This property will be used in what follows. As f → ϕ1 in the C1 sense,

Wcs
ν2

(f) →→ Hcs
ν2
,

whereHcs
ν2

is there local center-stable plaque family for ϕ1. The plaqueHcs
ν2

(p) is tangent
to T (p). Locally, W cs(p) is the graph of a smooth function:

gcs(p) : T (p)→ X(p).

(Where here we really mean thatW cs(p) = expp(graph(gcs′(p))), where gcs′(p) : Hcs(p)→
Hu(p)). Further, there exists a small constant e < 1 such that if f .= ϕ1 in the C1 sense,
then Lip(gcs(p)) ≤ e, for all p ∈M . For q ∈ T (p), let qp = W cs

ν2
(p) ∩W u

ν2
(q).

Claim: Let c5 = (1 + e) · (1− e)−1. Then:

c−1
5 · d(p, qp) ≤ d(p, q) ≤ c5 · d(p, qp).

Proof of Claim: See Figures 9 and 10. Let q1 denote the intersection of X(q) with
T (p). We use the facts that Lip(s(q)) ≤ 1 and Lip(gcs′(p)) ≤ e.
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p

    uW       (q)    loc

q

q   p

    csW       (p)    loc
T(p)

     2< e  d(p,q)--             

(Lip < e)        -- 

(Lip < 1)        --

< e d(p,q)--            

Figure 10: d(p, qp) ≤ c5 · d(p, q).

On the one hand,

d(p, q) ≤ d(p, q1) + d(q1, q)
≤ d(p, q1) + e · d(p, q1)
≤ (1 + e) · d(p, qp)
≤ c5 · d(p, qp),

since d(p, q1) ≤ d(p, qp) and d(q, q1) < e · d(p, q1).
On the other hand, by inspecting Figure 10, we see that

d(p, qp) ≤ (1 + 2(e+ e2 + e3 + · · ·)) · d(p, q)

= (1 +
2e

1− e) · d(p, q)

= c5 · d(p, q),

and the claim is proved.
To complete the proof of Proposition 3.1, let p ∈ M , q ∈ W cs

ν2
(p), and p′ ∈ W u

ν2
(p)

and q′ ∈ W cs
ν2

(p′) ∩W u
ν2

(q). Then

dW cs(p′)(p′, q′) ≤ c5 · dT (p′)(p′, q′p′)

≤ c5 · c4 · dT (p)(p, qp)θ

≤ c5 · c4 · cθ5 · dW cs(p)(p, q)θ.
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Thus for c = c5 · c4 · cθ5, the Wu-holonomy between Wcs
loc-transversals of distance ≤ ν2

apart is θ-Hölder continuous, with constant c.
Fix R ≥ 0 and suppose p′ ∈W u(p) and γ : [0, 1]→M , is a leafwise path from p to p′

of length l(γ) ≤ R. SinceWu(f)-leaves contract uniformly exponentially under iterates
of f−1, there exists a uniform (over U) k ∈ Z+ such that d(f−k(p), f−k(p′)) < ν2. There
also exists an ε > 0 such that if d(p, q) < ε, then for all f ∈ U , d(f−k(p), f−k(q)) < ν2.
Further, there is a D > 0 such that:

D−1 · d(p, q) ≤ d(f−k(p), f−k(q)) ≤ D · d(p, q),

for all f ∈ U . Consider the holonomy

hγ : W cs
ε (p)→ W cs(p′).

From the above considerations plus the invariance of Wcs(f) under f , we have

dW cs(p′)(hγ(q1), hγ(q2)) ≤ D · dW cs(f−k(p′))(hf−k◦γ(f−kq1), hf−k◦γ(f−k(q2)))

≤ D · c · dW cs(f−k(p))(f
−k(q1), f−k(q2))θ

≤ D ·Dθ · c · dW cs(p)(q1, q2)θ.

Setting H(R) = D ·Dθ · c, the proposition is proved.2

3.2 The Pointwise Hölder Section Theorem

Let (X, d) be a complete metric space and let Y ⊂ E be a closed bounded subset of
diameter D in the Banach space E. We shall be concerned with sections of the trivial
bundle X × Y over X. A section of such a bundle can naturally be regarded as a map
s : X → Y. Given constants 0 < δ, θ < 1, and H > 0, we define the section spaces:

Γδ,θ,H := {s : X → Y | d(x, x′) ≤ δ ⇒ |s(x)− s(x′)| ≤ Hd(x, x′)θ}
Γθ,H := {s : X → Y | |s(x)− s(x′)| ≤ Hd(x, x′)θ}.

Endow both spaces with the uniform topology. The second space Γθ,H is the space of
all θ-Hölder-continuous maps from X to Y with Hölder constant ≤ H.

Lemma 3.2 Given θ, δ as above. If H > D · δ−θ then Γδ,θ,H = Γθ,H.

Proof of Lemma 3.2: Evidently Γθ,H ⊂ Γδ,θ,H. Suppose that s ∈ Γδ,θ,H. We want to
show that:

|s(x)− s(x′)|
d(x, x′)θ

≤ H.

This is true for d(x, x′) ≤ δ because s belongs to Γδ,θ,H. For d(x, x′) ≥ δ,

|s(x)− s(x′)|
d(x, x′)θ

≤ diam(Y )
δθ

=
D

δθ
< H.
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2

Now suppose that F : X × Y → X × Y is a homeomorphism that preserves the set
of fibers {{x} × Y }. Then F takes the form:

F (x, y) = (h(x), v(x, y)).

We assume the following hypotheses on F :

1. The map h : X → X is an overflowing bilipschitz homeomorphism, and there
exists a δ > 0 such that for all x ∈ X

inf
x′ 6=x
{(h(x), h(x′))

d(x, x′)
s.t. d(x, x′) < δ} = µx > 0,

and µ := inf µx > 0.

2. There exists a constant L ≥ 1 such that for all x, x′ ∈ X and all y ∈ Y ,

|v(x, y)− v(x′, y)| ≤ Ld(x, x′)θ.

3. For each x ∈ X,

inf
|v(x, y)− v(x, y′)|

|y − y′| = kx < 1,

and supx∈X kx = k < 1.

The map F induces a map F̃ on sections of the bundle X × Y → X by:

F̃ s(h(x)) = v(x, s(x)).

Then F̃ carries continuous sections into continuous sections and contracts fibers of
X × Y by a definite amount k < 1. Since the space sections is complete there exists a
unique invariant section s̃ : X → Y satisfying: s̃(x) = F̃ s̃(x) = v(h−1(x), s̃(h−1(x))).
This section is continuous. The following theorem gives sufficient conditions for the
invariant section to be Hölder (compare with [18], Theorem 5.18).

Theorem 3.3 (Pointwise Hölder Section Theorem) Given F as above. Suppose
that

sup
x∈X

kxµ
−θ
x = η < 1

Then the unique F̃ -invariant section s̃ is θ-Hölder continuous. The θ-Hölder constant
H may be chosen to be no smaller than

LD

µδθ(1− η)
.
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Proof of Theorem 3.3: Let H = LD/(µδθ(1 − η)). We show that Γθ,H is mapped
into itself by F̃ . The uniqueness of s̃ in the space of continuous sections then implies
the result.

Because H is not less than Dδ−θ, we only need to show that Γδ,θ,H is carried into
itself by F̃ (Lemma 3.2). So pick an arbitrary s ∈ Γδ,θ,H. Then F̃ s(h(x)) = v(x, s(x)).
We want to show that F̃ s ∈ Γδ,θ,H; in other words, that

d(h(x), h(x′)) ≤ δ ⇒ |v(x, s(x))− v(x′, s(x′))| ≤ Hd(h(x), h(x′))θ.

So suppose that d(h(x), h(x′)) ≤ δ.
Case 1: d(x, x′) ≥ δ. Then

|v(x, s(x))− v(x′, s(x′))|
d(h(x), h(x′))θ

≤ Diam(Y )
(µd(x, x′))θ

≤ D

(µδ)θ
≤ H.

Case 2: d(x, x′) < δ. Then

|v(x, s(x))− v(x′, s(x′))| ≤ |v(x, s(x))− v(x, s(x′))|+ |v(x, s(x′))− v(x′, s(x′))|
≤ kx|s(x)− s(x′)|+ Ld(x, x′)θ

≤ kxHd(x, x′)θ + Ld(x, x′)θ

(Since d(x, x′) ≤ δ ⇒ |s(x)− s(x′)| ≤ Hd(x, x′)θ).

= (kxH + L)d(x, x′)θ

≤ (kxH + L)(
1
µx
d(h(x), h(x′)))θ

(Since d(x, x′) ≤ δ ⇒ d(h(x), h(x′)) ≥ µxd(x, x′)).

≤ (H
kx
µθx

+
L

µx
)d(h(x), h(x′))θ

≤ (Hη +
L

µ
)d(h(x), h(x′)))θ

≤ Hd(h(x), h(x′)))θ,

since H ≥ L/µ(1− η).2

3.3 The Bundle Map F] is Lipschitz

Let F] be the bundle map defined in the proof of Proposition 3.1. By Lemma III.6 in
[18], it is Lipschitz when restricted to fibers. In this section, we show that F] is globally
Lipschitz. In particular, we have:
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Proposition 3.4 (F] is uniformly Lipschitz on constant sections) There exists an
L > 0 and a neighborhood U1 of ϕ1 in Diff2(M) such that for all f ∈ U1,

‖F]q(g)− F]q′(g)‖∗ ≤ L · d(q, q′),

for all q, q′ ∈M , and g ∈ Gν1.

Proposition 3.4 in turn follows from Lemma 3.5:

Lemma 3.5 There exists C > 0 and a neighborhood U1 of ϕ1 in Diff2(M) such that
for all f ∈ U1,

|Fq(x)− Fq′(x)| ≤ C · d(q, q′) · |x|,
for all q, q′ ∈M , and x ∈ B3

ν1
(0).

Proof of Lemma 3.5: Recall that Fp = ω−1
f(p) ◦ f ◦ ωp. The map ω is C1×∞, and f is

C2, so Fp(x) is C1×∞ in (p, x). In particular, if f is sufficiently close to ϕ1 in the C2

sense, for a fixed p ∈M , the Lipschitz norm of ∂Fp
∂p

(x) as a function of x is bounded by
a uniform constant C1. Note also that for every p ∈M , Fp fixes the origin of R3, so in
local coordinates,

∂Fp
∂p

(0) = 0.

Since ∂Fp
∂p

(x) is C∞ as a function of x, with Lipschitz norm bounded by C1, we have for
x ∈ B3

ν1
(0),

∂Fp
∂p

(x)|p=q ≤ C1|x|,

for all q ∈M . But F is C1 as a function of p, so by the Mean Value Theorem, in local
linear coordinates we have:

|F (q, x)− F (q′, x)| = |
∫ 1

0

∂Fp
∂p

(x)|p=tq+(1−t)q′dt| · |q − q′| ≤ C1 · |x| · |q − q′|,

and the result follows. 2

Proof of Proposition 3.4: Let U1 be the neighborhood specified in Lemma 3.5
and let f ∈ U1. For x1 ∈ B1

ν1
(0), x2 ∈ B2

ν1
(0), and q ∈ M , write Fq(x1, x2) =

(F1,q(x1, x2), F2,q(x1, x2)). Then, by definition of the graph-transform, for g ∈ Gν1 we
have ,

F]q(g)(F1,q(x, g(x))) = F2,q(x, g(x)),

or in other words,
F]q(g)(x) = (F2,q ◦G) ◦ (F1,q ◦G)−1(x),
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where G := (id, g) : B1
ν1

(0)→ R3. Now, for q, q′ ∈M , g ∈ Gν1 and x ∈ B1
ν1

(0), we have:

|F]q(g)(x)− F]q′(g)(x)| = |F2,q ◦G ◦ (F1,q ◦G)−1(x)− F2,q′ ◦G ◦ (F1,q′ ◦G)−1(x)|
≤ |F2,q ◦G ◦ (F1,q ◦G)−1(x)− F2,q ◦G ◦ (F1,q′ ◦G)−1(x)|+
|F2,q ◦G ◦ (F1,q′ ◦G)−1(x)− F2,q′ ◦G ◦ (F1,q′ ◦G)−1(x)|

≤ Lip(F2,q ◦G)|(F1,q ◦G)−1(x)− (F1,q′ ◦G)−1(x)| +
C · d(q, q′)|G ◦ (F1,q′ ◦G)−1(x)|

≤ C2 · |(F1,q ◦G)−1 ◦ (F1,q′ ◦G) ◦ (F1,q′ ◦G)−1(x)−
(F1,q ◦G)−1 ◦ (F1,q ◦G) ◦ (F1,q′ ◦G)−1(x)|+ C3 · d(q, q′)|x|

≤ C2 · Lip((F1,q ◦G)−1)|(F1,q′ ◦G) ◦ (F1,q′ ◦G)−1(x)−
(F1,q ◦G) ◦ (F1,q′ ◦G)−1(x)|+ C3 · d(q, q′)|x|

≤ C4 · C · d(q, q′)|(F1,q′ ◦G)−1(x)|+ C3 · d(q, q′)|x|
≤ C5 · d(q, q′)|x|+ C3 · d(q, q′)|x|
= L · d(q, q′)|x|,

and so

‖F]q(g)− F]q′(g)‖∗ = sup
x∈B1

γ(0)

|F]q(g)(x)− F]q′(g)(x)|
|x|

≤ L · d(q, q′).

2

4 Stable Ergodicity

In this section, we develop the remaining tools necessary to prove the Main Theorem
and then carry out the proof. We restate it here for convenience:

Theorem 4.1 (Main Theorem) If S is a closed, connected negatively-curved Rie-
mannian surface, and if ϕt : T1S → T1S is the geodesic flow, then the time-one map ϕ1

is stably ergodic.

Here is an outline of the proof. The strategy from this point on is similar in spirit to
that in [5], but the estimates there need refinement to work in a setting where the local
structure varies from point to point. Let M = T1S and suppose that f ∈ Diff2

ω(M).
If f is sufficiently C1 close to ϕ1, then Corollary 1.3 and 1.4 apply, and there is a
Tf -invariant splitting:

TM = Eu ⊕ Ec ⊕Es

and invariant foliations Wu, Wc, Ws, Wcu, and Wcs tangent to Eu, Ec, Es, Eu ⊕ Ec,
and Es⊕Ec. The foliationsWu andWs are dynamically-defined; that is, for q ∈W s(p),

d(fk(p), fk(q))→ 0,
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as k → ∞, and similarly for Wu. Consequently, if g : M → R is a continuous
measurement on M , then

lim
k→∞
|g(fk(p))− g(fk(q))| = 0, ∀q ∈W s(p),

and
lim
k→∞
|g(f−k(p))− g(f−k(q′))| = 0, ∀q′ ∈W u(p).

Also, the foliations Wu and Ws are absolutely continuous, by [16]. If a foliation
W is absolutely continuous, it makes sense to speak, at least locally, of “almost every
leaf of W.” A measurable set A is essentially W-saturated if it essentially consists of
essentially whole W-leaves.

If f is not ergodic, then a standard argument, originally due to Hopf (cf. [5], p.
297), shows that there is a measurable set A, with m(A) > 0 and m(M \ A) > 0, such
that A is essentially Wu-saturated and essentially Ws-saturated. In what follows, we
show how this gives a contradiction.

For such an f , let a be a density point of A, and let b be a density point of M \A.
In appropriately-chosen rectilinear coordinates, a small cube of side-length w centered
at a intersects A in a set of very high density in the cube. Similarly for a small cube
around b. The next step is the crucial one in [5]. Divide each cube into long, thin
prisms of cross-sectional width w and height w2/3. At least one of these prisms, say
P , will have a high concentration of A. Similarly, there is prism P ′ near b with a high
concentration of M \ A. In Section 4, we show that, for f sufficiently C2-close to ϕ1,
nested inside the prisms P and P ′ are dynamical-prisms called juliennes J and J ′, in
which A and M \A are also highly concentrated.

Now by Lemma 2.1, if f is sufficiently close to ϕ1 in the C1 sense, then there is a
Wu,s-path τ consisting of three arcs of bounded length that joins the centers of J and
J ′. Again, if f is C2-close to ϕ1, then the Wu and Ws holonomy maps are uniformly
α-Hölder-continuous, with α close to 1, and it follows that the holonomy maps don’t
distort juliennes too much. In Subsection 4.6, we show that if an essentially Wu-
(Ws -) saturated set is highly concentrated in J then its image under the Wu- (Ws

-) holonomy is highly concentrated in another julienne. Applying this argument to A
along successive legs of the path τ , we arrive at the conclusion A is highly concentrated
in J ′, a contradiction.

In Section 4.8 we prove Theorem 4.1.

4.1 Holonomy Revisited

Let V be the neighborhood of ϕ1 given in Lemma 2.1 and for f ∈ V, let N be a
generous bound on the lengths of the three-leggedWu,s(f) paths given by that lemma.
For p ∈ M and R ≤ N let γ : [0, 1] → W u(p) be a leafwise geodesic with γ(0) = p of
length l(γ) = R. Let huR denote the holonomy

huR := huγ : Hcs
loc(p)→Hcs

loc(γ(1)).
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Similarly, for f close to ϕ1 in the C2 sense, let πuR denote theWu(f)- holonomy between
Wcs

loc(f)-transversals of leafwise distance R apart. (Incidentally, the discussion that
follows holds equally for the Ws-holonomy, πsR). In Chapter 3 we showed that for R
bounded, πuR, while not necessarily smooth, is uniformly α-Hölder with α near 1. In
this section, we investigate further the properties of πuR.

4.2 Absolute Continuity

Pre-perturbation, the unstable holonomy huR is smooth because the foliation Hu is C1.
This implies that the Jacobian of huR is uniformly bounded above and below. In this
subsection we show that for f .= ϕ1 in the C2 sense, and for R bounded, the Jacobian
Jac(πuR) exists, is continuous and uniformly bounded above and below (away from 0).

Lemma 4.2 (Unstable holonomy Jacobians converge uniformly) As f → ϕ1

in the C2 sense, πuR converges uniformly to huR and Jac(πuR) converges uniformly to
Jac(huR).

Proof of Lemma 4.2: As f → ϕ1 in the C2-sense, the local disk families Wcs
loc(f)

converge uniformly to Hcs
loc (see the proof of Proposition 3.1), hence we have

πuR
→→ huR.

To show Jac(πuR) →→ Jac(huR), we first show that Jac(πuR) is uniformly bounded
in a neighborhood of ϕ1 in Diff2(M). The convergence then follows from the Lebesgue
dominated convergence theorem (compare [5], Lemma 2.2).

The continuity of Jac(πuR) is proved in [16]. Inspecting the proof of Theorem 2.1 in
[16], we see that the value of Jacp(πuR) is given by the limit:

unif lim
det(f−n|TyDp)
det(f−n|TyDq)

,

which in turn is bounded by:

unif lim
det(Tf−n|TyDp)
det(Tf−n|TyDq)

,

which, by the chain rule, is bounded by a function of:

∞∑
k=0

| det(T csf−k(p)f
−1)− det(T csf−k(q)f

−1)|.

Finally, this expression is bounded by

∞∑
k=0

(λ−θ)k · d(p, q),
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where λ = infxm(Txf |Eu) and θ is the Hölder exponent of the distribution Eu. Since
these quantities vary uniformly in a neighborhood U of ϕ1 in Diff1(M), it follows that
the Jacobian Jac(πuR) is uniformly bounded in U .2

When S has constant curvature, the horocyclic flow preserves the volume form, and
consequently Jac(huR) is identically equal to 1, regardless of the distance R between
transversals. Due to metric rigidity, this is probably never the case when the curvature
of S is variable. Nonetheless, its Jacobian is continuous, and thus uniformly bounded if
R is bounded; Lemma 4.2 then implies that the value of Jac(πuR) is uniformly bounded,
and we have:

Lemma 4.3 (Uniform bounds for unstable holonomy Jacobians) Given N , there
is a neighborhood N1 of ϕ1 in Diff2(M) and a constant j > 1 such that for all f ∈ N1,
if R ≤ N , then

j−1 < Jac(πuR) ≤ j.

4.3 Behavior Along Wc Leaves

Restricted to flow linesHc, the holonomy huR is an isometry. This is just a restatement of
the fact that the Anosov splitting is invariant under Tϕt and the flow ϕt is an isometry
along center leaves. Post-perturbation, nearly the same is true. We have:

Lemma 4.4 (cf. [5], Lemma 2.3) The Wu(f)-holonomy map πuR preserves the center
foliation Wc. If p′ = πuR(p), then πuR sends W c

loc(p) to W c
loc(p

′), is C1 and is uniformly
nearly isometric when restricted to W c

loc(p).

Proof of Lemma 4.4: The proof carries through exactly as in [5].2

4.4 Juliennes and Rectangles

In this section we recall some of the material in [5], sections 4-5. Much of the material
in these sections carries over mutatis mutandis to our setting. Here f is a C2 volume-
preserving perturbation of the time-one map ϕ1 of the geodesic flow on M = T1S, where
S is a closed, negatively-curved surface.

4.5 Definitions

Let TM = Eu⊕Ec⊕Es be the Tf -invariant splitting of TM into unstable, center and
stable directions. This splitting is Hölder continuous. For each p ∈ M , choose smooth
(C∞) local coordinates (x, y, z)p on M so that

p = (0, 0, 0)p, span (
∂

∂x
)p = Eu

p , span (
∂

∂y
)p = Es

p, span (
∂

∂z
)p = Ec

p.

Let Zp be the plane z = 0.
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A rectangle centered at p0 = (x0, y0, 0)p of width 2w and height 2h is a rectilinear
prism in p-coordinates:

R(p, p0, w, h) = [x0 − w, x0 + w]× [y0 − w, y0 + w]× [−h, h].

A square S(p, p0, w) = [x0 −w, x0 +w]× [y0 −w, y0 +w] is the Zp- slice of a rectangle.
Rectangles have minimal dynamical significance, but they can be used to compose
rectilinear cubes and hence are useful in the context of the Lebesgue Density Theorem.

By contrast, juliennes are dynamically-constructed approximations to rectangles.
As we shall see, juliennes behave well under holonomy maps. They are constructed as
follows. We first alter the coordinate axes in the Zp plane. The laminations Wcu,Wcs

give transverse laminations of Zp:

Lu =Wcu ∩ Zp, Ls =Wcs ∩ Zp.

The leaves Lu, Ls of these laminations form Hölder coordinates for Zp.
Let Lu(p0) and Ls(p0) be, respectively, the intersections of Luloc(p0) and Lsloc(p0)

with the square S(p, p0, w). For w small enough, Lu(p0) and Ls(p0) are smooth curves
transverse to each other which define coordinate axes for the square

Σ(p, p0, w) =
⋃
Luloc(r) ∩ Luloc(s),

where r and s range over Lu(p0) and Ls(p0) respectively.
The nonlinear square Σ(p, p0, w) forms the base of a julienne

J(p, p0, w, h) = ∪r∈Σ(p,p0,w)W
c
h(r),

where W c
h(r) is the arc of W c

loc(r) lying between the planes z = ±h.
The center foliation arcs comprising the vertical direction of a julienne are integral

curves of a Hölder-continuous vector field and so we have some control over how vertical
strips deviate horizontally. The square Σ(p, p0, w), on the other hand, is nearly tangent
to the very non-integrable distribution Eu ⊕ Es (pre-perturbation, this distribution is
totally non-integrable), so we can’t hope to control the vertical deviation of a horizontal
strip if w is too large relative to h. It turns out that if w is sufficiently small relative
to h, then juliennes will approximate rectangles.

More precisely, under appropriate conditions, a julienne will contain a scaled copy
of a rectangle and vice versa. By a scaled julienne we mean: fix a real number c ∈ (0, 1)
and let

cR = R(p, p0, cw, ch), and cJ = J(p, p0, cw, ch).

The next lemma shows that if w and h are related by: w = k ·h3/2, where k > 0 is a
constant bounded above and below from zero, then the associated families of rectangles
and juliennes are comparable at small w-scales. Assume that p0 ∈ M lies in the
coordinate systems at both p1 and p2. There are four different objects to compare:

R1 = R(p1, p0, w, h) J1 = J(p1, p0, w, h)

R2 = R(p2, p0, w, h) J2 = J(p2, p0, w, h).
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Lemma 4.5 (Julienne Nesting Lemma) (cf. [5], Lemma 3.1) Fix constants c ∈
(0, 1) and k2 > k1 > 0. As f → ϕ1 in the C2 sense and w = kh3/2 → 0 with k ∈ [k1, k2]
and while h−1 · d(p0, p1) and h−1 · d(p0, p2) stay bounded, then:

cR1 ⊂ J2 ⊂ c−1R1 and cR2 ⊂ J1 ⊂ c−1R2.

Proof of Lemma 4.5: We can choose a neighborhood N0 of f in Diff2M such that
the center line field Ec for f is uniformly (in the sense of Proposition 3.1) α-Hölder
continuous with α > 1

2 . Since the adapted local coordinates at p are C∞, the proof
carries through as in [5].2

4.6 Density Estimates

Let A be an essentially Wu-saturated and denote by Au the unstable saturate of A. It
consists entirely of whole Wu-leaves – those that meet A in a set of full leaf measure.
Then A and Au differ by a zero-set, so m(A ∩R) = m(Au ∩R) for any measurable set
R. Define the conditional measure of a set A relative to R (with 0 < m(R) < ∞) in
the standard way:

m(A : R) =
m(A ∩R)
m(R)

.

Because we will be swapping between rectangles and juliennes, we need an estimate
of how density decays in the process. Lemma 4.5 allows us to swap the two at small
scales with little sacrifice in measure. Since we will slide juliennes along Wu leaves,
preserving the Wcs lamination, it is convenient to concentrate on the density of a set A
inside a Wcs-leaf. The strategy in [5] is to study first the density of A in a rectilinear
approximation of theWcs-leaf, and then, using Lemma 4.5, to make a similar statement
about actual Wcs-leaves. In this way, the non-absolute continuity of the Wcs can be
compensated for by approximating by a smooth foliation at small scales.

The non-linear center stable slice of a julienne J = J(p, p0, w, h) is defined:

Jcsx = W cs
loc(x) ∩ J,

for x in the Lu-leaf Luw(p0). The center stable midslice is the the leaf Jcs = Jcsp0
.

Lemma 4.6 (cf. [5], Lemma 3.3) Fix ρ′ ≤ 1 and k2 > k1 > 0. Let d ∈ (0, 1) and
.1 ≤ ρ ≤ ρ′ be given. If k ∈ [k1, k2], and w = kh3/2 is small enough and if f C2-
approximates ϕ1 well enough then for any essentially Wu-saturated set A,

m(A : J) ≥ ρ ⇒ m(Au : Jcs) ≥ dρ,

m(Au : Jcs) ≥ ρ ⇒ m(A : J) ≥ dρ.

Proof of Lemma 4.6: See [5]. There is a slight error in the proof there: they say
that the mutual densities of Rcs and Jcs are nearly 1. This is clearly not true, but the
Lemma follows easily from the fact that Jac(πuR) →→ 1 as R→ 0.2

The next lemma is essential for proving the estimates in Section 4.1.
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Lemma 4.7 (cf. [5], Lemma 3.4) Fix k2 > k1 > 0. As w = kh3/2 → 0 with k ∈ [k1, k2]
and f → ϕ1 in the C2 sense,

m(Jcs)
4wh

→→ 1,

where J = J(p, p, w, h) and m denotes the area on the leaf W cs
loc(p). Also, if Jcs+ denotes

the part of Jcs lying to the right of W c
h(p), then

m(Jcs+ )
2wh

→→ 1.

Proof of Lemma 4.7: The proof is the same as in [5]; in our case, Jac(πu) .= 1 because
Jac(πuR) →→ 1 as R→ 0.2

4.7 Holonomy and Juliennes

Again let Jcs(p, q, w, h) denote the center-stable midslice of the julienne J(p, q, w, h).

Lemma 4.8 (Julienne Holonomy Lemma) Fix constants R ≥ 0, k2 > k1 > 0 and
c ∈ (0, 1). Fix p ∈ M , and let jp = Jacp(huR) and q = πuR(p). As f → ϕ1 in the C2

sense and w = kh3/2 → 0, with k ∈ [k1, k2],

cJcs(q, q, jp · w, h) ⊂ πuR(Jcs(p, p, w, h)) ⊂ c−1Jcs(q, q, jp · w, h).

Proof of Lemma 4.8:(compare [5], Lemma 4.1) To simplify notation, let J denote
the julienne J(p, p, w, h) and let J ′ denote J(q, q, jp · w, h). Similarly define Jcs, J ′cs,
Jcs+ , and J ′cs+ . By Lemma 4.4, the image of Jcs under πuR is a union of center manifolds
W c
loc(q), each with length approximately equal to 1. This alone does not ensure that

the image of Jcs does not look very ragged along the top. For example, with this
information alone, the image of Jcs could resemble the image in Figure 11. Nearly half
of the density of julienne in that figure has disintegrated.

Fortunately, we have the additional information from Proposition 3.1 that for f .= ϕ1

the holonomy πuR is uniformly α-Hölder continuous, with α > 2
3 , as is its inverse. This

implies that the picture in Figure 11 cannot occur, for if the width of the top edge of
Jcs is w, then the width of its image is ≤ H · wα, and

Hwα << (wk−1)
2
3 = h

at small w-scales (since k is bounded). Set e =
√
c. For w small enough the image of

the top boundary of Jcs lies between the planes z = eh and z = e−1h in the (x, y, z)p′-
coordinate system. Similarly, the image of the bottom boundary of Jcs lies between the
planes z = −eh and z = −e−1h. See Figure 12. Now πuR is absolutely continuous by
Lemma 4.2 and its Radon-Nikodym derivative Jac(πuR) is nearly constant and equal to
jp. Let b =

√
e. For w small enough, it follows that we have:

b · jp ≤ Jacq(πuR) ≤ b−1 · jp,
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too big!

Figure 11: Center lines are preserved, but the top and bottom are ragged.

z = e h

           -1z = - e     h

x=0 x=j   w / c      p

         -1z = e     h

z = -  e h

x=c  j   w          p

   u     cs     ( J     )          +

    csJ '    +

Figure 12: The image of Jcs in the p′-coordinate system.
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for all q ∈ Jcs. Also, πuR is orientation-preserving, so the right half-julienne Jcs+ is
mapped to the right half of W cs

loc(p
′).

By Lemma 4.4, πuR carries the rightmost edge of Jcs+ to another center manifold
W c
loc(r), that lies either wholly to the left or wholly to the right of the rightmost edge

W c
loc(q′) of J ′cs. Suppose that r lay to the left of the point cq′, so that πuR(Jcs+ ) lay

entirely in the positive region bounded by W c
loc(cq

′) and the planes z = ±e−1h. By
Lemma 4.7, the area of this region is well-approximated by :

c · (jpw) · (2e−1h) = 2ewhjp.

But this region contains πu(Jcs+ ), which has area well-approximated by:

2wh · (jp · b),

which gives a contradiction, since b > e.
Suppose instead that r lies to the right of the point c−1q′, so that πuR(Jcs) wholly

contained the the positive region bounded by W c
loc and the planes z = ±eh. The area

of this region is well-approximated by

c−1 · (jpw) · (2eh) = 2e−1whjp.

But the area of πu(Jcs+ ) is well-approximated by:

2wh · (jp · b−1),

again giving a contradiction. The same argument applied to the left side of the julienne
implies the result.2

Lemma 4.9 (Julienne Holonomy Density Lemma) Fix ρ′ < 1. Let c, ρ ∈ (0, 1)
be constants such that .1 ≤ cρ < ρ ≤ ρ′ and let f , ϕ1, R,k1,k2, jp, p, q, w and h have
the same meanings as in Lemma 4.8. If k ∈ [k1, k2] and w = kh3/2, is small enough, if
f C2 approximates ϕ1 well enough, and if A is an essentially Wu-saturated set which
has density ≥ ρ in J(p, p, w, h), then A has density ≥ cρ in J(q, q, jp · w, h).

Proof of Lemma 4.9:(compare [5], Lemma 4.2) Let c, ρ > .1 be given and pick d so
that 1 > d > c1/4 and 1 + 10(1− d−1) >

√
c. Note that since ρ ≥ .1, this implies that

1 − d−1(1 − dρ) >
√
cρ. Let J , J ′ etc. be as in the proof of Lemma 4.8. Since A is

essentiallyWu-saturated, Lemma 4.6 implies that if f is close to ϕ1 in the C2 sense and
w is small enough, then we will have:

m(Au : Jcs) ≥ dρ,

or, in other words:
m(Au ∩ Jcs) ≥ dρ ·m(Jcs).
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Denote by Au′ the complement M \ Au and note that Au′ is the unstable saturate of
M \A. We have that:

m(Au′ ∩ Jcs) ≤ (1− dρ)m(Jcs).

Since Au′ isWu-saturated, πuR sends Au′∩Jcs to Au′∩πuR(Jcs). By Lemma 4.2, Jac(πuR)
is nearly constant and equal to jp, and so:

d1/2jp ≤ Jacq(πuR) ≤ d−1/2jp,

for all q ∈ Jcs. This in turn implies that:

m(Au′ ∩ πuR(Jcs)) ≤ d−1/2jp(1− dρ)m(Jcs),

or, in other words:

m(Au′ : πuR(Jcs)) ≤ jp(1− dρ)m(Jcs)√
dm(πuR(Jcs))

.

Again, since Jac(πuR) is nearly constant, we have

jp ·m(Jcs)
m(πuR(Jcs))

≤ d−1/2,

and so it follows that:

m(Au : πuR(Jcs)) ≥ 1− d−1(1− dρ) ≥
√
cρ.

By Lemma 4.9, πuR(Jcs) and J ′cs are highly concentrated in each other, and so

m(Au : J ′cs) ≥ d
√
cρ.

Finally, Lemma 4.6 implies that:

m(Au : J ′cs) ≥ d2√cρ = cρ.

Implicitly we are using here the fact that jp is uniformly bounded above and below,
so that these constants can be chosen uniformly at the same time for J and J ′. The
lemma is proved.2

The lemmas of this section hold equally for the πsR-holonomy maps.

4.8 Proof of Main Theorem

In this section we put together the results of the previous sections to prove the Main
Theorem. The proof follows the lines of the proof of the main theorem in [5].

Suppose f is not ergodic. Then, as discussed in the beginning of this chapter, there
is an essentially Wu,s(f)-saturated set A such that m(A) > 0 and m(M \ A) > 0. Let
a be a density point of A and let b be a density point of M \A.
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Lemma 2.1 implies that if f is in a neighborhood V of ϕ1 in Diff2(M), then there is
a three-legged Wu,s-path of length ≤ N connecting any two points of T1S. Lemma 4.3
implies that there exists a constant e ∈ (0, 1) such that for f ∈ V, if τ is any three-legged
Wu,s(f)-path of length ≤ N , and if k represents the Jacobian of the concatenated πu/πs

holonomy maps along τ , then
e ≤ k ≤ e−1.

Pick constants ρ1, d, ρ2 ∈ (0, 1), depending on e, as follows. First pick ρ1 >
max{.1, 1− e2}. Now pick d < 1 so that

d >
1− e2

ρ1
.

Now pick ρ2 < 1 such that

ρ2 > max{1− e2dρ1, e
−2(1− dρ1)}.

Choose h small enough so that the density of A in a rectilinear cube Ca about a of
side-length 2h is ≥ √ρ1. Also choose h so that the density of M \ A in a rectilinear
cube Cb about b of side-length 2h is ≥ √ρ2. Divide the cube Ca centered at a into
rectilinear boxes of width 2w and height 2h, where w = h3/2. Similarly, divide the
cube Cb centered at b into rectangles of width 2w and height 2h. The density of A in
one of these boxes, say R(a, a0, w, h) is ≥ √ρ1, and the density of M \ A in some box
R(b, b0, w, h) is ≥ √ρ2. Lemma 4.5 then implies that A is highly concentrated in the
julienne Ja0 := J(a0, a0, w, h) and M \A is highly concentrated in Jb0 := J(b0, b0, w, h).
We may assume, then, that we initially chose h small enough, so that m(A : Ja0) ≥ ρ1

and m(A : Jb0) ≥ ρ2.
Let c = (d)

1
3 , where d was chosen above, and assume we have chosen h small

enough so that Lemma 4.9 holds for this value of c, with e < k < e−1, ρ′ =
√
ρ1,

and with R = N . By Lemma 2.1, there is a three-legged Wu,s-path connecting a0

to b0 of length ≤ N . Let a0 = q0 → q1 → q2 → q3 = b0 be the Wu,s-path from a0

to b0 and let jq0, jq1, jq2 be the Jacobians of the corresponding holonomy maps, with
concatenated Jacobian k0 := jq0jq1jq2 . Lemma 4.9 then implies that the density of A in
J(q1, q1, jq0w, h) is at least cρ1. Continuing along the Wu,s-path, applying Lemma 4.9
two more times, we arrive at the conclusion that the density of A in J(b0, b0, k0w, h)
is at least c3 · ρ1 = dρ1. We show now that this gives a contradiction. There are two
cases to consider. Suppose first that k0 < 1, so that the julienne J(b0, b0, k0w, h) is
contained in the julienne J(b0, b0, w, h) (see Figure 13). Lemma 4.5 then implies that
the density of A in J(b0, b0, w, h) is well-approximated by (k0)2 · dρ1, which in turn is
well-approximated (below), by e2dρ1. Since the density of M \A in J(b0, b0, w, h) is at
least ρ2, and ρ2 > 1−e2dρ1, this gives a contradiction. Suppose on the other hand that
k0 > 1, so that the julienne J(b0, b0, w, h) is contained in the julienne J(b0, b0, k0w, h)
(see Figure 14). The density of M \A in J(b0, b0, k0w, h) is bounded above by 1− dρ1,
which, again by Lemma 4.5 implies that the density of M \ A in J(b0, b0, w, h) is less
than e−2(1− dρ1). This gives a contradiction, since ρ2 > e−2(1− dρ1). The theorem is
proved. 2
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A J(b   , b   , k   w, h)     0      0     0

J(b   , b   , w, h)     0      0   

Figure 13: k0 < 1: The density of A in J(b0, b0, w, h) is not too small.

A J(b   , b   , k   w, h)     0      0     0

J(b   , b   , w, h)     0      0   = M \ A

J(b   , b   , w, h)     0      0   

Figure 14: k0 > 1: The density of M \A in J(b0, b0, w, h) is not too large.
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x=bx=0 x=2b

y=0

y=a

y = b + a2

y = 2b  + 2a

y = 2b  + a

2

2

Figure 15: The graph y = fc(x).

5 Appendix

In this section we construct a uniquely integrable Hölder continuous vector field whose
integral foliation is not Hölder continuous.

Given real parameters c = (a, b), with 1 > b > a > 0, define fc : R→ R by:

fc(x) =


a if x < 0
x2 + a if 0 ≤ x < b
2b2 + a− (x− 2b)2 if b ≤ x < 2b
2b2 + a if x ≥ 2b.

The graph of fc is shown in Figure 15. We use fc to construct a unit-length vector
field Xc, defined in the strip Sc = 0 ≤ y ≤ 2b2 + 2a in R2. Ultimately, we will stack
these strips vertically, varying the parameter c, to obtain a vector field on R2. The
slope of the vector field Xc is the vertical linear interpolation between 0 on the lines
x = 0 and x = 2b2 + 2a, and the unit tangent vector field to the graph of fc. In other
words,

Xc(x, y) =
1√

1 + sc(x, y)2
· ( ∂
∂x

+ sc(x, y) · ∂
∂y

),

where:

sc(x, y) =
{
f ′c(x)y/fc(x) if y ≤ fc(x)
(2b2 + 2a− yf ′c(x)/(2b2 + 2a− fc(x))) if fc(x) < y ≤ 2b2 + 2a.
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x=0 x=b x=2b

y = 0

y = a

y = a  + b
2

y = 2a  + b2

y = 2a  + 2b2

Figure 16: The vector field Xc.

Figure 16 shows Xc. Note that Xc is C1 and hence uniquely integrable in Sc.

Lemma 5.1 Given c = (a, b) as above, the function sc(x, y) is Hölder continuous in
the strip Sc, with exponent 1

2 and constant M , where M is independant of c.

Proof of Lemma 5.1: The strip Sc is naturally divided into four regions I-IV, as
shown in in Figure 17. We first show that sc is Hölder in a given (closed) region. By
symmetry, it suffices to prove the claim for regions I and II.

Suppose (x, y) and (x, y′) are contained in the same region, either I or II (that is,
0 ≤ y, y′ ≤ fc(x)). Note that |f ′c(x)| ≤ 2|fc(x)| 12 . It follows that

|sc(x, y)− sc(x, y′)| = |(y − y′)f
′
c(x)
fc(x)

|

≤ |y − y′| · 2(fc(x))−
1
2

≤ 2|y − y′| 12

Now suppose that (x, y) and (x′, y) are both contained in region I of Sc. An appli-
cation of the Mean Value Theorem shows that

|sc(x, y)− sc(x′, y)| ≤ 2|x− x′|

Similarly, for (x, y) and (x′, y) in region II,

|sc(x, y)− sc(x′, y)| ≤ 6|x− x′|.
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Figure 17: Regions I-IV in the strip Sc.

Hence sc is 1/2 - Hölder continuous with constant 2 along vertical lines in a given
region, and Lipschitz with constant 6 along horizontals. For sufficiently small values of
a, b , the 1/2 - Hölder constant of sc along horizontals is also 6. Finally, suppose that
(x, y) and (x, y′) are in different regions. Then

|sc(x, y)− sc(x, y′)| ≤ |sc(x, y)− sc(x, fc(x))|+ |sc(x, fc(x))− sc(x, y′)|
≤ 6(|y − fc(x)| 12 + |fc(x)− y′| 12 )

≤ 6
√

2|y − y′| 12

Similarly, if (x, y), (x′, y) lie in different regions of Sc, then

|sc(x, y)− sc(x′, y)| ≤ 6
√

2|x− x′| 12 .

Finally, for arbitrary (x, y), (x′, y′) in Sc, we have

|sc(x, y)− sc(x′, y′)| ≤ |sc(x, y)− sc(x, y′)|+ |sc(x, y′)− sc(x′, y′)|
≤ 6

√
2(|y − y′| 12 + |x− x′| 12 )

≤ 6 · (2)
3
4d((x, y), (x′, y′))

1
2

Set M = 6 · (2)
3
4 and the proof is complete. 2

Hence the vector field Xc is Hölder-continuous, with Hölder constant M . Note that
by modifying our construction of Xc, we could have replaced the Hölder exponent 1

2 by
any fixed real number between 0 and 1.

We now proceed to the construction of the example.
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Proposition 5.2 There is a vector field X on R2 that is 1/2-Hölder continuous, uniquely
integrable, whose integral foliation fails to be α-Hölder continuous, for any α > 0.

Proof of Proposition 5.2:
For n ≥ 1, let c(n) = (2−n, 2−

√
n

2 ). Let

hn =
∞∑

k=n+1
2(2−k + 2−

√
k),

h =
∞∑
k=1

2(2−k + 2−
√
k),

To simplify notation, letXn(x, y) = Xc(n)(x, y), sn = sc(n), fn = fc(n), and let Sn = Sc(n).
Define X as follows:

X(x, y) =
{
Xn(x, y − hn) if hn ≤ y < hn+1, for some n ≥ 1
∂
∂x

otherwise.

Note that the vertical width of the strip Sn is 2(2−n + 2−
√
n) so this defines a

continuous vector field on R2. Clearly X is uniquely integrable outside the closed region
0 ≤ y ≤ h. It is uniquely integrable in the region 0 < y ≤ h because it is uniquely
integrable in every strip Sn + (0, hn). Since the lines y = hn are unique integral curves
of X, the line y = 0 is also a unique integral curve. So X is uniquely integrable. Let F
be the foliation of R2 tangent to X.

By Lemma 5.1, X is 1/2-Hölder-continuous in every strip Sn, with Hölder constant
M (which is independent of n). To check that X is Hölder-continuous on all of R2, it
remains to estimate, for (x, y) ∈ Sn and (x′, y′) ∈ Sn′ with n′ > n, the quantity:

|sn(x, y)− sn′(x′, y′)|.

Assume without loss of generality that sn(x, y) ≥ sn′(x′, y′). Then, since sn ≥ 0, it
follows that:

|sn(x, y)− sn′(x′, y′)| ≤ |sn(x, y)|
= |sn(x, y)− sn(x′, hn)|
≤ M · d((x, y), (x′, hn))

1
2

≤ M · d((x, y), (x′, y′))
1
2 .

(A similar argument works when sn(x, y) < sn′(x′, y′)).
To see that F fails to be Hölder-continuous at the point (0, 0), first observe that the

curves {(x, hn + fn(x)) | x ∈ R} are integral curves of X, as are the lines y = hn. For
δ > 0, there exists an N such that for n ≥ N ,

sup
x∈[−δ,δ]

|(hn + fn(x))− hn| = sup
x∈R

fn(x)

= 2 · 2−
√
n + 2−n,
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which is O(2−
√
n). On the other hand, for all δ > 0 and n > 0,

inf
x∈[−δ,δ]

|(hn + fn(x))− hn| = inf
x∈R

fn(x)

= 2−n,

which is O(2−n). This implies that for every neighborhood U of the origin (0, 0) there
exists N > 0 such that for every n ≥ N , there exist vertical transversals τ1 and τ2 and
points z, z′, w, w′ ∈ U such that z, z′ ∈ τ1, w = τ2 ∩ F(z), w′ = τ2 ∩ F(z′), and

d(w,w′) ≥ d(z, z′)
1√
n .

Clearly no F -holonomy map originating at the origin is α-Hölder-continuous, for any
α > 0. 2
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