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Introduction

In this paper we construct new examples of diffeomorphisms with robust
statistical properties. Our interest in these examples arose from the insight
they might give into a collection of natural, optimistic and still unresolved
problems in the global theory of dynamical systems.

For a compact C∞ manifold M with volume element µ, let Diffr(M) be
the space of Cr diffeomorphisms of M and let Diffrµ(M) be the elements of
Diffr(M) that preserve µ. Endow these spaces with the Cr topology, r ≥ 1.

Theorem I: Let µ be Lebesgue measure on the torus T3 = R3/Z3. There
is a C1-open set U ⊂ Diff2

µ(T3) such that for each g ∈ U ,

1. g is Bernoulli;

2. g has Lyapunov exponents nonzero µ-a.e.;

3. g is not homotopic to an Anosov diffeomorphism.

Previously the only open sets of diffeomorphisms known to satisfy either
property 1 or property 2 were the Anosov diffeomorphisms. Recall that a
∗Supported by an NSF grant.
†Supported in part by the IHES.
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diffeomorphism g : M → M is Anosov if there exists a continuous, Tg-
invariant splitting of the tangent bundle to M ,

TM = Eu ⊕ Es,

and constants C > 0 and λ > 0 such that, for all n ≥ 0,

v ∈ Eu ⇒ ‖Tg−n(v)‖ ≤ Ce−λn‖v‖, and
v ∈ Es ⇒ ‖Tgn(v)‖ ≤ Ce−λn‖v‖.

Anosov diffeomorphisms are examples of uniformly hyperbolic dynamical sys-
tems; other examples include Axiom A diffeomorphisms and attractors. The
ergodic theory of such systems has been studied extensively, beginning with
the pioneering work of Anosov, Sinai and Bowen-Ruelle in the 1960’s and
’70’s (see, e.g., [KH]). All Anosov diffeomorphisms of T3 are of the spe-
cial form g = ρ ◦ h ◦ ρ−1, where ρ is a homeomorphism and h is a linear
automorphism of T3, none of whose eigenvalues has modulus 1 [Mann].

A real number λ is a Lyapunov exponent of the diffeomorphism g : M →
M if there exists a nonzero vector v ∈ TM such that

lim
n→∞

1
n

log ‖Tgn(v)‖ = λ. (1)

By Osceledets’ Theorem [Os], there is a set L ⊆ M , which has full measure
with respect to any g-invariant measure, such that the limit in (1) exists for
all v ∈ TxM with x ∈ L. For a given x ∈ L, there are finitely many different
exponents, and for some vectors, this limit may be zero. It is immediate from
the definition that the Lyapunov exponents of an Anosov diffeomorphism are
all nonzero. At the other extreme, an automorphism of T3 with 1 as an eigen-
value has an exponent 0 (everywhere). To prove Theorem I, we start with
such an automorphism and perturb so that the 0 exponent becomes positive,
almost everywhere. A volume-preserving diffeomorphism whose exponents
are nonzero almost everywhere is called nonuniformly hyperbolic. This term
was introduced by Pesin, who was able to establish many ergodic properties
for nonuniformly hyperbolic systems, previously known to hold for uniformly
hyperbolic ones.

The diffeomorphisms in Theorem I have some other remarkable properties
which we describe below. Before turning to them and to Theorem II, we set
our result in context.

2



One of the achievements of the theory of uniformly hyperbolic dynamical
systems were the theorems of Sinai, Ruelle and Bowen on invariant measures
on the attractors of a system. These attractors and measures are now called
Sinai-Ruelle-Bowen measures and SRB measures (or SRB attractors), for
short. They may also be called ergodic attractors.1

Given f ∈ Diffr(M) (not necessarily preserving µ), a closed, f -invariant
set A ⊂M and an f -invariant ergodic measure ν on A, we define B(A), the
basin of A, to be the set of points x ∈M such that fn(x)→ A and for every
continuous function φ : M → R

lim
n→∞

1
n

(φ(x) + · · ·+ φ(fn(x)))→
∫
A
φ(x) dµ.

Definition: ν is an SRB measure and A is an SRB (or ergodic) attractor if
the Lebesgue measure of B(A) is positive.

It follows from the definition that a diffeomorphism has at most countably
many SRB measures. Sinai, Ruelle and Bowen proved that for r ≥ 2 and
f an Axiom A, no-cycle diffeomorphism (see [Si], [Ru], [Bo]), almost every
point in M with respect to Lebesgue measure µ is in the basin of an SRB
measure, and there are only finitely many SRB measures. The first natural
question is if the first part of this conclusion is a generic property in Diffr(M)
for r ≥ 2. (By generic we mean: containing a countable intersection of open-
dense sets).

Question 1: For r ≥ 2, is it true for generic f in Diffr(M) that the union
of the basins of the SRB attractors of f has full Lebesgue measure in M?

In the volume-preserving case Pesin [Pe] proved that for f a C2, nonuni-
formly hyperbolic diffeomorphism, M may be written as the disjoint union of
at most countably many invariant sets of positive measure on which f is er-
godic. Thus for nonuniformly hyperbolic volume preserving diffeomorphisms
the answer to Question 1 is “yes.” The supports of the ergodic measures are
the SRB attractors. Pesin asked if nonuniform hyperbolicity was generic in
Diff2

µ(M).

1We take some of the conclusions of the theorems of Sinai, Ruelle, and Bowen as a
definition and warn the reader that the use of SRB measure or attractor is not uniform in
the literature. For a survey of SRB measures (using a different definition) see [You2].
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Pesin’s question is answered in the negative by Cheng and Sun [CS], and
Herman. In [He] (see also [Yoc]), Herman showed that on any manifold M of
dimension at least 2, and for sufficiently large r, there are open sets of volume
preserving Cr diffeomorphisms of M all of which posess positive measure sets
of codimension one invariant tori, and on each torus the diffeomorphism is
C1 conjugate to a diophantine translation. In this case all of the exponents
are 0 on these tori.

Our proof gives some hope that a variant of Pesin’s original question
might hold for volume-preserving diffeomorphisms: either all exponents are
zero (µ-a.e.), or, as with our examples, the system may be perturbed to
become stably nonuniformly hyperbolic.

Question 2a): For r ≥ 1, is it true for generic f in Diffrµ(M) that for
almost every ergodic component of f , either all of the Lyapunov exponents
of f are 0 or none are 0 (µ-a.e.)?

A special case of 2a) is 2b).

Question 2b): For r ≥ 1 does the generic ergodic diffeomorphism in Diffrµ(M)
have either no exponent equal to 0 or all exponents equal to 0 (µ-a.e.)?

Question 2a) has an affirmative answer for 2-dimensional M in the case
r = 1; Mañé has shown that the generic diffeomorphism in Diff1

µ(M) either
has all of its Lyapunov exponents zero or is an Anosov diffeomorphism. The-
orem I shows that C1 - open sets of C2, volume-preserving diffeomorphisms
with nonzero exponents need not be Anosov in general.

An analogue of Question 2 for Diffr(M) is the following.

Question 3: For r ≥ 1, is it true for the generic f in Diffr(M) and any
weak limit ν of the push forwards fn∗ µ that almost every ergodic component
of ν has some exponents not equal to 0 (ν-a.e.)? All exponents not equal to
0?

Question 2b) is closest in spirit to Theorem I, which in turn gives some
credence to the possibility that 2b) is true. Question 3) might be a way to
approach Question 1) along the lines of [Pe], [PS1], [PS4]. There might even
be only finitely many SRB attractors, for almost every f in the generic k-
parameter family in Diffr(M), as suggested in [PS2], or densely in Diffr(M)
as suggested in [Pa].
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We now turn to another novel aspect of the diffeomorphisms we construct.
This property concerns one of the invariant expanding Lyapunov directions;
by construction, this line field is tangent to a foliation of T3.

Theorem II: Let U be the set of diffeomorphisms in Theorem I. For every
g ∈ U , there is a foliation Wc

g of T3 by C2 circles which is preserved by g.
This foliation has the following properties:

1. There is an equivariant fibration π : T3 → T2 such that πg = hπ
where h is the linear endomorphism of T2 given by a hyperbolic matrix
A ∈ Sl(2,Z). The leaves of the foliation Wc

g are the fibers of the map
π. In particular, the set of periodic leaves is dense in T3.

2. There exists λ > 0 such that, for µ-almost every w ∈ T3, if v ∈ TwT3

is tangent to the leaf of Wc
g containing w, then

lim
n→∞

1
n

log ‖Twgnv‖ = λ.

3. Consequently, there exists a set S ⊆ T3 of full µ-measure that meets
every leaf of Wc

g in a set of leaf-measure 0.

Property 3 stands in contrast to the measure-theoretic properties of other
dynamically-invariant foliations, specifically the unstable foliations of a hy-
perbolic (or even nonuniformly hyperbolic) diffeomorphism. Unstable folia-
tions have the property of absolute continuity: any set of full measure meets
almost every leaf in a set of leafwise full measure. Absolutely continuous
foliations satisfy a Fubini-type theorem; this enabled Anosov to prove er-
godicity for volume-preserving hyperbolic systems. Foliations exhibiting the
behavior in 3 have been referred to as “Fubini’s Nightmare,” (also “Fubini
Foiled”); Katok had previously constructed an example of a dynamically-
invariant foliation with this property, which is presented in [Mi]. Katok’s
example made us aware that diffeomorphisms such as those we construct are
indeed possible.

Lai-Sang Young has previously constructed open sets of C1 cocycles that
are not uniformly hyperbolic and which have exponents nonzero [You1].
These cocycles, however, are not the natural cocycle associated to the deriva-
tive of a map.
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We remark here that our construction can be slightly modified to ob-
tain diffeomorphisms of Tn, for any n ≥ 3, that satisfy the conclusions of
Theorems I and II. In this modification, the automorphism of T2 in the
next section is replaced by an automorphism of Tn−1 with one-dimensional
expanding eigenspace.

We thank Michael Herman for many conversations which clarified ques-
tions 1-3 for us. Some of this material was presented and discussed in his
seminar during March 1998. The question of whether perturbing a normally-
hyperbolic, non-Anosov diffeomorphism could produce nonzero exponents
was initially raised by Lai-Sang Young during a conversation about these
questions. We thank her for reminding us that examples such as the ones
we construct might exist. Numerical experiments conducted by Chai Wah
Wu and later by Niels Sondergaard convinced us of their existence and we
are indebted to them. We also thank Charles Pugh and Clark Robinson for
useful conversations.

1 The construction

The ingredients in our construction are: a linear Anosov diffeomorphism h :
T2 → T2, circle-valued C3 functions ϕ : T2 → T and ψ : T→ T, and vectors
v0 ∈ R2, w0 ∈ Z2. We specify in this section how to select these ingredients;
an example of a suitable choice is h(x, y) = (2x+y, x+y), ϕ(x, y) = sin(2πy),
ψ(z) = sin(2πz), v0 = ((1 +

√
5)/2, 1), and w0 = (1, 1). These define a 2-

parameter family fa,b of diffeomorphisms of T3 by the formula:

fa,b = ga ◦ hb, (2)

where
hb(x, y, z) = (h(x, y), z + w0 · (x, y) + bϕ(x, y)),

and
ga(x, y, z) = ((x, y) + aψ(z)v0, z).

The set U in Theorem I will be a neighborhood of fa,b, for a suitable choice
of parameters.

Let h : T2 → T2 be a linear Anosov diffeomorphism, i.e. a map of the
form h(p) = Ap, for some hyperbolic matrix A ∈ Sl(2,Z). The expanding
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and contracting eigenspaces for A are both one-dimensional. Choose v0 ∈ R2

to be an expanding eigenvector for A.
The diffeomorphisms hb in (2) are circle extensions of h. We describe this

construction. If θ : T2 → T is any circle-valued function, we may construct
the circle extension (or skew product) of h by θ, denoted hθ : T3 → T3, by
the formula

hθ(p, z) = (h(p), z + θ(p)),

for p ∈ T2, and z ∈ T. It is easy to see that hθ preserves µ. We will work
with skew products that are stably ergodic; we shall see that they are exactly
characterized by the following condition.

Definition: Let k = det(A− I). Say that θ satisfies the cocycle condition
if there are no solutions to the equation

kθ(p) = Φ(h(p))− Φ(p) + c, (3)

with Φ ∈ C0(T2,T) and c ∈ T.

The cocycle condition has a simpler formulation when θ is homotopic to a
constant map. Indeed, it follows from the proof of Proposition 11.1 in [BW]
that for such a θ, equation (3) in the definition may equivalently be replaced
by

θ(p) = Φ(h(p))− Φ(p) + c, (4)

where Φ ranges over maps homotopic to a constant. The following proposi-
tion is a special case of Corollary B3 in [BW].

Proposition 1.1 If θ is C2 and satisfies the cocycle condition, then hθ is
stably ergodic (in fact, stably a K-system). That is, there is a C1-open neigh-
borhood E of hθ in Diff2

µ(T3) such that all g ∈ E are ergodic (K-systems).
Conversely, if hθ is stably ergodic, then θ satisfies the cocycle condition.

The cocycle condition is easily seen to hold for an open and dense set
of θ ∈ Cr(T2,T), for any r ≥ 2. An example of a function satisfying this
condition (for any linear Anosov h) is θ(x, y) = sin(2πx), which, in addition,
is homotopic to a constant map.
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Choose the function ϕ to be C3, homotopic to a constant map and satis-
fying the cocycle condition. Choose w0 ∈ Z2 to be any nonzero vector, and
for b ∈ R, let

ϕb(x, y) = w0 · (x, y) + bϕ(x, y).

Observe that hb = hϕb .

Lemma 1.2 If ϕ is homotopic to a constant map and satisfies the cocycle
condition, then ϕb satisfies the cocycle condition, for all b 6= 0. For these b,
hb is stably ergodic and stably K.

Proof: Suppose that ϕb does not satisfy the cocycle condition, for some b 6=
0. Then there exist Φ ∈ C0(T2,T) and c ∈ T such that for all (x, y) ∈ T2,

kϕb(x, y) = kw0 · (x, y) + kbϕ(x, y) = Φ ◦ h(x, y)−Φ(x, y) + c, (5)

where k is the determinant of A− I.
Since kw0 ∈ (A− I)(Z2), there exist integers r and s such that

kw0 · (x, y) = Ψ ◦ h(x, y)−Ψ(x, y), (6)

with Ψ(x, y) = rx+ sy. Combining (6) with (5), we obtain

Ψ ◦ h−Ψ + kbϕ = Φ ◦ h− Φ + c.

Setting Φ = Φ−Ψ, gives:

kbϕ = Φ ◦ h− Φ + c.

Thus bϕ fails to satisfy the cocycle condition. But bϕ is homotopic to a con-
stant map. By the remarks following the definition of the cocycle condition,
there exist Φ̂ ∈ C0(T2,T), homotopic to a constant map, and c′ ∈ T such
that

bϕ = Φ̂ ◦ h− Φ̂ + c′.

But then
ϕ = b−1Φ̂ ◦ h− b−1Φ̂ + b−1c′,

and so ϕ fails to satisfy the cocycle condition. This contradicts the hypothesis
of the lemma.
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Thus for all b 6= 0, hϕb satisfies the cocycle condition, and by Proposi-
tion 1.1, the skew product hb = hϕb is stably ergodic and stably K.2

Finally, choose ψ : T → T to be any C3, nonconstant function that is
homotopic to a constant map. We will also use ψ to denote the function on
T3:

ψ(x, y, z) = ψ(z)

and use ψ′ for the function

ψ′(x, y, z) = ψ′(z).

To summarize, we choose h to be linear Anosov, ϕ to be C3, homotopic to
a constant and satisfying the cocycle condition, ψ to be C3 and homotopic
to a constant, v0 to be an expanding eigenvector for h, and w0 to be any
nonzero vector in Z2. Let fa,b : T3 → T3 be defined by (2). Observe that
fa,b is volume-preserving, since det Tfa,b = 1 everywhere.

Theorems I and II follow from

Proposition 1.3 For all b > 0 sufficiently small, there exists a positive
number a(b) such that, for |a| ∈ (0, a(b)), there is a neighborhood U of fa,b
in Diff2

µ(T3) in which the conclusions of Theorems I and II hold.

2 Proofs

In this section we prove Proposition 1.3. We first need to establish a few
facts about partially hyperbolic diffeomorphisms.

2.1 Partial Hyperbolicity

A diffeomorphism g : M → M is partially hyperbolic if there exists a Tg-
invariant continuous splitting of the tangent bundle to M into three subbun-
dles

TM = Eu
g ⊕Ec

g ⊕ Es
g ,

with at least one of Eu
g or Es

g nontrivial, and constants λsg < λcg < µcg < µug ,
with λsg < 1 < µug such that, for all p ∈M :

v ∈ Eu
g (p) ⇒ ‖Dg(p)v‖ ≥ µug‖v‖,
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v ∈ Ec
g(p) ⇒ µcg‖v‖ ≥ ‖Dg(p)v‖ ≥ λcg‖v‖, and

v ∈ Es
g(p) ⇒ λsg‖v‖ ≥ ‖Dg(p)v‖,

with respect to some Riemannian metric on M . The bundles Eu
g , Ec

g, and Es
g

are called the unstable, center, and stable bundles of g, respectively. Anosov
diffeomorphisms are partially hyperbolic diffeomorphisms for which Ec is
trivial. The property of partial hyperbolicity is open in the C1 topology on
Cr diffeomorphisms of M (see [BP] or [HPS] for a discussion of partially
hyperbolic diffeomorphisms).

The unstable and stable bundles of a Cr partially hyperbolic diffeomor-
phism are always integrable and tangent to foliations Wu

g and Ws
g , whose

leaves are Cr [HPS]. A partially-hyperbolic diffeomorphism is dynamically
coherent if, in addition, the bundles Ec

g ⊕ Eu
g and Ec

g ⊕ Es
g , and Ec

g are inte-
grable and tangent to foliationsWuc

g ,Wsc
g , andWc

g , whose leaves are at least
C1. If, in addition, Ec

g is C1, then g is contained in an open set of dynami-
cally coherent diffeomorphisms in Diff1(M)([PS3], Theorem 2.3). Dynamical
coherence that is C1-stable we shall call stable dynamical coherence.

Partial hyperbolicity and dynamical coherence for compact group exten-
sions of Anosov diffeomorphisms is well-known and is proved in [BP], Theo-
rem 2.2. We summarize the conclusions of this theorem for circle extensions
in the next lemma. Let f = f0,b = hb = hϕb , and let π0 : T3 → T2 be the
projection π0(x, y, z) = (x, y). Observe that f covers the linear automor-
phism h : T2 → T2, with h ◦ π0 = π0 ◦ f . The fibers of π0 are circles, which
foliate T3 trivially. The diffeomorphism f preserves this foliation, permuting
the leaves isometrically.

Lemma 2.1 For all b, the skew product f = hϕb is partially hyperbolic and
dynamically coherent. The center distribution Ec

f is tangent to the fibers of
π0. For i = u or s, each leaf of Wic

f is the product of a leaf of Wi
h with a

circle fiber. Each Wi
f leaf is the graph of a C2 function from a leaf of Wi

h

into the circle T. For any z0 ∈ T, the translation (p, z) 7→ (p, z+ z0) carries
Wi

f leaves to Wi
f leaves.

The Riemannian metric may be chosen so that:

λsf = m−1, λcf = µcf = 1, and µuf = m, (7)

where m is the expanding eigenvalue of h.
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The next proposition follows from Lemma 2.1 and the theory of normally-
hyperbolic diffeomorphisms in [HPS].

Proposition 2.2 For all b, for a sufficiently small, fa,b is partially hyperbolic
and stably dynamically coherent. The unstable, center, and stable bundles are
1-dimensional. The center-unstable bundle Eu

a,b⊕Ec
a,b of fa,b does not depend

on a or b; for w ∈ T3,

Eu
a,b ⊕ Ec

a,b(w) = Euc(w) = {(rv0, s) | r, s ∈ R}.

There is a C1-open neighborhood U0 of fa,b in Diff2(T3), such that, for
g ∈ U0, the center bundle Ec

g is tangent to a foliation Wc
g that satisfies

conclusion 1 of Theorem II.
If, in addition, b 6= 0, then for a sufficiently small, fa,b is stably ergodic

and stably K.

Proof: Since stable ergodicity and partial hyperbolicity are C1-open, it suf-
fices to establish these properties for the skew products f0,b. Fix b and let
f = f0,b. By Lemma 2.1, f is partially hyperbolic. By Lemma 1.2, f is stably
ergodic (and stably K) if b 6= 0.

It also follows from Lemma 2.1 that, for w ∈ T3,

Eu
f ⊕ Ec

f (w) = Euc = {(rv0, s) | r, s ∈ R},

and
Es
f ⊕ Ec

f(w) = {(rv′0, s) | r, s ∈ R},
where v′0 spans the contracting eigenspace for h.

Suppose now that a is small and nonzero. Then fa,b is partially hyperbolic
with splitting TT3 = Eu

a,b ⊕Ec
a,b ⊕Es

a,b. For a small, Eu
a,b ⊕Ec

a,b is very close
to Euc. A direct calculation shows that Tfa,b preserves Euc. Since Eu

a,b⊕Ec
a,b

is the fixed point of a contraction operator, it is unique. It follows that
Eu
a,b ⊕Ec

a,b = Euc.
The remaining conclusions of Proposition 2.2 follow from Corollary 8.3

in [HPS]. We recall the outline of the argument here and refer the reader to
[HPS], p. 116ff., for the details, including the definitions of normal hyper-
bolicity and plaque expansiveness.

We verify that for g ∈ Diff2(T3) sufficiently C1-close to f = f0,b, the
center foliation Wc

g has the properties listed in part 1 of Theorem II. Along
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the way, we will show that f is stably dynamically coherent. Dynamical
coherence of f and (7) imply that f is 2-normally hyperbolic at the C∞

foliations Wuc
f , Wsc

f , and Wc
f . Smoothness of these foliations implies that

they are plaque expansive. (Alternately, the fact that f covers a hyperbolic
diffeomorphism implies plaque expansiveness.) Normally hyperbolic, plaque
expansive diffeomorphisms are structurally stable, in the following sense.

Theorem 2.3 ([HPS], Theorem 7.1) If f : M → M is Cr, r-normally hy-
perbolic and plaque expansive at the foliation F , then for any Cr-diffeomorphism
g : M →M sufficiently C1-close to f , there exists a foliation F ′ of M and a
homeomorphism H : M →M satisfying

1. H sends leaves of F ′ to leaves of F ,

2. fH(L) = Hg(L), for every leaf L of F , and

3. g is r-normally-hyperbolic and plaque expansive at F ′

Applying Theorem 2.3 to f = f0,b, we obtain that for g ∈ Diff2(T3)
sufficiently C1-close to f , there exist foliations Wuc

g , Wsc
g , and Wc

g , with C2

leaves, homeomorphic to the foliationsWuc
f ,Wsc

f , andWc
f , respectively. They

are tangent to the distributions Ec
g⊕Eu

g , Ec
g⊕Es

g , and Ec
g, respectively. The

leaves of Wc
g are obtained by interesecting the leaves of Wuc

g and Wsc
g . Thus

f is stably dynamically coherent.
We also obtain a a homeomorphism H : T3 → T3 satisfying the conclu-

sions of Theorem 2.3, with F = Wc
f and F ′ = Wc

g . Define π : T3 → T2 by
π(w) = π0 ◦H(w). Then the fibers of π are the leaves of Wc

g , and

π ◦ g = π0 ◦H ◦ g = π0 ◦ f ◦H = h ◦ π0 ◦H = h ◦ π,

completing the proof.2

2.2 Smoothness of Eu
a,b inside the family fa,b

In order to determine the behavior of the Lyapunov exponents of fa,b, we will
need to differentiate the unstable line field Eu

a,b with respect to a. We will
use:
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Lemma 2.4 There exists a neighborhood A of (0, 0) in R2, such that, for
each w ∈ T3, the function

(a, b) 7→ Eu
a,b(w)

is C2 on A. The first two derivatives of this function depend uniformly on
w.

Remark: It is not in general true that in the space of partially-hyperbolic
diffeomorphisms, the map g 7→ Eu

g (w), for a fixed w, depends smoothly on g.
To see that the dependence is not smooth in general, let f : T4 → T4 be the
real-analytic Anosov diffeomorphism constructed by Anosov in [An] whose
unstable distribution Eu

f is not C1. For v ∈ T4, let τv be translation in T4

by v. Let fv = τv ◦ f ◦ τ−v. The unstable distribution for fv is Eu
fv = τv∗E

u
f ,

which is the unstable distribution for f translated by τv. Then fv is clearly a
Cω family of diffeomorphisms, but v 7→ Eu

fv(w) cannot be C1 for all w ∈ T4.
Nonetheless, there is a form of “smooth dependence” for the unstable bun-

dle Eu
g0

of a Cr Anosov diffeomorphism g0. Namely, if g is Cr and sufficiently
C1-close to g0, and hg = g ◦ hg ◦ g−1

0 is the homeomorphism conjugating
g to g0 (see, e.g., [KH] §18.2), then the map g 7→ Eu

g (hg(w)) is Cr−2 in a
neighborhood of g0, for fixed w. This is proved, for example, in [Ru2]. For
partially-hyperbolic diffeomorphisms that are not structurally stable, it is
less clear how to formulate an analogous statement.

In our situation, because the diffeomorphisms fa,b have a common center-
unstable foliation, which is C∞, one can show that the unstable line field
Eu
a,b varies in a C2 fashion along the leaves of this foliation. The difficulties

we have just outlined in the general case do not arise. In fact, the same
argument that gives smooth dependence of Eu

a,b along center-unstable leaves
also gives smooth dependence on the parameters a, b.

Proof of Lemma 2.4: It does not affect the smoothness of eu if we scale
the functions ϕ and ψ by a positive constant. Thus we may assume that

(‖ψ‖0‖v0‖+ ‖ϕ‖0 + 1)2 < m, (8)

where m > 1 is the unstable eigenvalue of h.
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By Proposition 2.2, there is a neighborhood A0 of ω0 = (0, 0) in R2 such
that for all ω ∈ A0, fω is partially hyperbolic, stably dynamically coherent,
and, for all w ∈ T3,

Eu
ω ⊕Ec

ω(w) = Euc(w) = {(rv0, s) | r, s ∈ R}.

The splitting Eu
ω0
⊕Ec

ω0
⊕Es

ω0
is obtained from the eigenspace decomposition

of the linear map fω0 . The center bundle Ec
ω0

is spanned by ∂/∂z. Assume
that A0 is chosen so that Eu

ω is transverse to Ec
ω0

.
Let Wuc be the C∞ foliation tangent to Euc. The leaves of Wuc are

smoothly permuted by fω. Let X be the disjoint union of the leaves of Wuc.
Because the foliation structure of Wuc is preserved by all of the fω, there is
a well-defined, C3 map F : A0 ×X → A0 ×X given by:

F(ω,w) = (ω, fω(w)).

On A0 ×X, put the metric:

d((ω1, w1), (ω2, w2)) = max{dA0(ω1, ω2), dX(w1, w2)},

where dX is the induced Riemannian metric on X and dA0((a1, b1), (a2, b2)) =
max{|a1− a2|, |b1− b2|}. With respect to this metric, there exists a constant
ρ such that

d(F(ω1, w1),F(ω2, w2)) ≥ ρd((ω1, w1), (ω2, w2)),

for all ω1, ω2 ∈ A0 and w1, w2 ∈ X. The constant ρ is the inverse of the
Lipschitz norm of F−1. A straightforward estimate shows that by shrinking
the size of the neighborhood A0, we may bring ρ arbitrarily close to:

(‖ψ‖0‖v0‖+ ‖ϕ‖0 + 1)−1.

Let B be the trivial bundle over A0 × X whose fiber Lw = L over w is
the set of all linear maps L : Eu

ω0
(w) → Ec

ω0
(w). Since Eu

ω0
and Ec

ω0
are

1-dimensional, so is L. We think of B as the product A0 ×X ×R.
With respect to the C∞ splitting TX = Euc = Eu

ω0
⊕ Ec

ω0
, the map

Tfω|Euc can be written:

Tfω =
(
Aω Bω

Cω Kω

)
,

14



where Aω : Eu
ω0
→ Eu

ω0
, Bω : Ec

ω0
→ Eu

ω0
, Cω : Eu

ω0
→ Ec

ω0
, and Kω : Ec

ω0
→

Ec
ω0

. These maps depend in a C2 fashion on ω and on the basepoint w ∈ T3.
When ω = ω0, we have B = C = 0, K = 1, and A = m.

Define a bundle map F] : B → B, covering F , by:

F](ω,w, L) = (ω, fω(w), (Cω(w) +Kω(w)L)(Aω(w) +Bω(w)L)−1).

Then F] is C2, contracts fibers of B at the weakest by a factor σ .= m−1,
and has strongest base contraction by the factor ρ .= (‖ψ‖0‖v0‖+‖ϕ‖+1)−1.
These estimates depend uniformly on the size of the neighborhood A0. Thus,
by inequality (8), there is a neighborhood A ⊆ A0 of ω0, in which

σρ−2 < 1.

By the Cr Section Theorem of [HPS], the unique F]-invariant section
s : A × X → L is C2. But the graph of s(ω,w) : Eu

ω0
(w) → Es

ω0
(w) is

precisely Eu
ω(w). We conclude that Eu

ω(w) is a C2 function of ω ∈ A and
of w ∈ X. Since Wuc is a C∞ foliation, these estimates are uniform over
w ∈ T3. 2

2.3 Some continuity properties of Lyapunov exponents

Let g ∈ Diff1
µ(M) be any partially-hyperbolic diffeomorphism of a 3-manifold

M whose unstable and stable bundles are 1-dimensional. Suppose that V u
g ,

V c
g and V s

g are continuous nonvanishing vector fields everywhere tangent to
the line fields Eu

g , Ec
g, and Es

g . Then V u
g (w), V c

g (w) and V s
g (w) are a basis

for TwM . With respect to this basis, the derivative of g at w is expressed

Tg(w) =

 rug (w) 0 0
0 rcg(w) 0
0 0 rsg(w)

 ,
where rug , rcg, and rsg are the continuous functions:

rug (w) = ‖Tg(w)V u
g (w)‖ · ‖V u

g (g(w))‖−1, (9)

rcg(w) = ‖Tg(w)V c
g (w)‖ · ‖V c

g (g(w))‖−1, (10)

rsg(w) = ‖Tg(w)V s
g (w)‖ · ‖V s

g (g(w))‖−1. (11)

15



Compactness implies that the functions log(rug ), log(rcg), and log(rsg) are inte-
grable on M , and so we may define real-valued functions eu, ec and es of the
diffeomorphism g by the formulas:

eu(g) =
∫
M

log rug (w) dµ(w) (12)

ec(g) =
∫
M

log rcg(w) dµ(w) (13)

es(g) =
∫
M

log rsg(w) dµ(w) (14)

Lemma 2.5 The functions eu, ec, and es do not depend on the choice of
vector fields V u, V c and V s and are continuous in a neighborhood of g in
Diff1

µ(M).
If g is ergodic with respect to µ, then the Lyapunov exponents of g are

eu(g), ec(g) and es(g), µ-almost everywhere.

Proof of Lemma 2.5: The exponents of g are the logarithms of the eigen-
values of the limit:

lim
n→∞

(
(Twgn)t Twgn

) 1
2n

= lim
n→∞


(
rug (w) · · · rug (gn(w))

) 1
n 0 0

0
(
rcg(w) · · · rcg(gn(w))

) 1
n 0

0 0
(
rsg(w) · · · rsg(gn(w))

) 1
n

 .
By the Ergodic Theorem, these limits converge almost everywhere. Thus the
largest Lyapunov exponent at w is

eu(g, w) = lim
n→∞

1
n

(log(rug (w)) + · · ·+ log(rug (gn(w))). (15)

The function eu(g, ·) is measurable, g-invariant, and
∫
M eu(g, w)dµ(w) =∫

M log(rug (w))dµ(w) = eu(g). Hence eu(g) is the average largest Lyapunov
exponent with respect to µ. Since the Lyapunov exponents of g with respect
to µ are µ-a.e. unique, the function eu(g) does not depend on V u

g . Since g is
partially-hyperbolic, the function g 7→ Eu

g is continuous. The vector field V u
g

can be chosen to depend continuously on g. Since eu(g) depends continuously
on V u

g , it follows that eu is continuous.
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Suppose that g is ergodic. Then eu(g, w) = eu(g), µ-a.e., and eu is the
largest Lyapunov exponent of g, µ-a.e.

The argument is the same for ec and es.2

2.4 Behavior of exponents inside the family fa,b

Let A be a neighborhood of the origin in R2 such that fω satisfies the con-
clusions of Proposition 2.2 and Lemma 2.4, for all ω ∈ A. In this subsection,
we choose vector fields V i(ω) = V i(fω) for i = u, c, s and define functions
ei(ω) = ei(fω) according to equations (12)-(14) in the previous subsection.
By Lemma 2.5, these functions depend continuously on the parameter ω and
give the Lyapunov exponents of ergodic fω. Because the functions ei(ω) are
independent of the choice of V i(ω), we may choose these vector fields so that
the computation of the ei is as simple as possible. Our goal is to find a
parameter value ω for which fω is ergodic and eu(ω), ec(ω), and es(ω) are all
nonzero.

The first observation, which will imply that es(ω) is the constant function
on A, is that the two-dimensional center-unstable Jacobian is preserved by
fω.

Lemma 2.6 Let m be the eigenvalue for v0. There exists a C∞ 2-form α
such that α is nondegenerate on Euc, and for all ω ∈ A,

f ∗ωα = mα+ βω,

where βω vanishes on Euc:

βω(v1, v2) = 0, ∀v1, v2 ∈ Euc.

Proof of Lemma 2.6: Write v0 = (q1, q2) and let α = v0 · (dx, dy) ∧ dz =
q1dx ∧ dz + q2dy ∧ dz. Clearly α is nondegenerate on Euc. Let (a, b) = ω.
One calculates that g∗a (dx ∧ dz) = dx ∧ dz and g∗a (dy ∧ dz) = dy ∧ dz, and
so g∗aα = α. Next, note that

h∗bα = mα + cω(x, y)dx ∧ dy,

where cω(x, y) = m det(v0 ∇ϕb(x, y)). The form βω = c(x, y)dx∧dy vanishes
on Euc, since dx ∧ dy does. Finally,

f ∗ωα = h∗bg
∗
aα = h∗bα = mα+ βω.

17



2

We now choose V u
ω , V c

ω , and V s
ω . For ω ∈ A, the line Eu

ω(w) sits inside the
plane Euc(w), transverse to the line spanned by (0, 0, 1). There is a unique
vector in Eu

ω(w) of the form (v0, r). Let V u
ω (w) be this vector; this also defines

a continuous function uω : T3 → R, by:

V u
ω (w) = (v0, uω(w)).

By Lemma 2.4, uω(w) is a C2 function of ω ∈ A. The first two derivatives
depend continuously on w ∈ T3.

Next, for w ∈ T3, pick V c
ω (w) tangent to Ec

ω(w) such that

α(V u
ω (w), V c

ω(w)) = 1.

Finally, pick V s
ω (w) tangent to Es

ω(w) such that

dx ∧ dy ∧ dz(V u
ω (w), V c

ω(w), V s
ω (w)) = 1.

Let eu(ω) = eu(fω), ec(ω) = ec(fω), and es(ω) = es(fω) be defined by
equations (12)-(14).

Lemma 2.7 The functions es and eu + ec are constant:

es(ω) = − log(m), eu(ω) + ec(ω) = log(m).

for ω ∈ A.

Proof of Lemma 2.7: For i = u, c, s, let riω = rifω , be the functions defined
by equations (9)-(11), using the vector fields V i

ω.
The lemma follows if we establish that the following equations hold for

all w ∈ T3:

ruω(w)rcω(w) = m, (16)
ruω(w)rcω(w)rsω(w) = 1. (17)

Using Lemma 2.6, we see that

α(Tfω(w)V u
ω (w), T fω(w)V c

ω(w)) = f ∗ωα(V u
ω (w), V c

ω(w))
= mα(V u

ω (w), V c
ω(w)) + βω(V u

ω (w), V c
ω(w))

= mα(V u
ω (w), V c

ω(w))
= m,
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while on the other hand,

α(Tfω(w)V u
ω (w), T fω(w)V c

ω(w)) = α(ruω(w)V u
ω (fω(w)), rcω(w)V c

ω(fω(w)))
= ruω(w)rcω(w)α(V u

ω (fω(w)), V c
ω(fω(w)))

= ruω(w)rcω(w),

which proves (16). Since fω preserves volume,

1 = dx ∧ dy ∧ dz(Tfω(w)V u
ω (w), T fω(w)V c

ω(w), T fω(w)V s
ω (w))

= ruω(w)rcω(w)rsω(w),

proving (17).2

Lemma 2.8 For ω = (a, b) ∈ A,

eu(ω) = log(m)−
∫

T3
log(1− aψ′(w)uω(w)) dw.

Proof of Lemma 2.8: From the definition of fω, we have:

Tfω(w)
(

v0

uω(w)

)
=
(

[m+ aψ′(fω(w)) [uω(w) +∇ϕb(w) · v0]] v0

uω(w) +∇ϕb(w) · v0

)

=
(

[m+ aψ′(fω(w))ruω(w)uω(fω(w))] v0

ruω(w)uω(fω(w))

)
.

It follows that

ruω(w) = m+ aψ′(fω(w))uω(fω(w))ruω(w),

and so ruω(w) = m/(1− aψ′(fω(w))uω(fω(w))). To obtain the formula, inte-
grate log(ruω(w)). 2

We now study how the function eu(a, b) varies when a varies, keeping b
fixed.

Lemma 2.9 eu is C2 on A, and

∂

∂a
eu(a, b) =

∫
T3

ψ′(w)ua,b(w) + aψ′(w)∂ua,b(w)
∂a

1− aψ′(w)ua,b(w)
dw. (18)
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Proof: By Lemma 2.4, the function ω 7→ uω(w) is C2 on A, uniformly in
w. Then by the formula in Lemma 2.8, eu is C2 as well. Differentiating this
formula with respect to a gives (18). 2

Setting a = 0 in (18), we obtain:
∂

∂a
eu(0, b) =

∫
T3
ψ′(w)u0,b(w) dw (19)

By Lemma 2.1, the distribution Eu
0,b for the skew product f0,b is invari-

ant under translations of the form (x, y, z) 7→ (x, y, z + z0). This implies
that the function u0,b(x, y, z) depends only on x and y. On the other hand,
ψ′(x, y, z) = ψ′(z) depends only on z. The integral in (19) is therefore equal
to ∫

T
ψ′(z) dz

∫
T3
u0,b(w) dw = 0,

since ψ is homotopic to a constant map. We have shown:

Proposition 2.10 For (a, b) ∈ A,
∂

∂a
eu(0, b) = 0

The behavior of the exponents of fa,b near (0, 0) is thus determined by
the second derivative of eu with respect to a. An exact computation of
this second derivative is difficult in general. For our purposes, it suffices to
compute this derivative at (0, 0).

Proposition 2.11

∂2

∂a2 e
u(0, 0) = −u2

0

∫ 1

0
ψ′(z)2 dz < 0,

where u0 = (w0 · v0)/(m− 1).

We prove Proposition 2.11 in the final subsection.
A picture of some unstable Lyapunov exponents computed for b = 0 and

small values of a is shown in Figure 2.4, where h(x, y) = (2x + y, x + y),
ψ(z) = cos(2πz), and v0 = (λ, 1), λ = (1 +

√
5)/2. A random starting

point was chosen for each value of a and 100, 000 iterations were applied
to the vector (λ, 1, λ). Using Propositions 2.10 and 2.11, we computed the
second order Taylor expansion with respect to a at (0, 0) to be eu(a, 0) ∼
log(m)− π2ma2, where m = (3 +

√
5)/2. This approximation in fact fits the

data quite well.
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Figure 1: eu(a, b) for the family fa,b, with b = 0.

2.5 Proof of Proposition 1.3

If |b| is sufficiently small, then by Lemma 2.9 and Proposition 2.11, we have

∂2

∂a2 e
u(0, b) < 0. (20)

By Proposition 2.10,
∂

∂a
eu(0, b) = 0. (21)

Choose b different from 0 and satisfying (20). It follows from (20), (21),
and Lemma 2.9 that for |a| sufficiently small and positive, eu(a, b) is pos-
itive and strictly greater than log(m). But now by Lemma 2.7, ec(a, b) =
log(m)−eu(a, b) > 0, and es(a, b) = − log(m). By Lemma 2.5, the Lyapunov
exponents of fa,b are almost everywhere equal to eu(a, b), ec(a, b), and es(a, b).
Thus for this b, and for |a| small and positive, the Lyapunov exponents of
fa,b are nonzero almost everywhere.

Let f = fa,b, where a and b are chosen so that fa,b is stably aK-system and
partially hyperbolic, the foliationWc

a,b exists and has the properties outlined
in Proposition 2.2, and the exponents of fa,b are nonzero, µ − a.e.. Let U0
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be the neighborhood of fa,b in Diff2
µ(T3) given by Proposition 2.2. Every

g ∈ U0 is a K-system, is partially hyperbolic, and has a center foliationWc
g

satisfying conclusion 1 of Theorem II. By Lemma 2.5 the exponents of g ∈ U0

depend continuously on g. Since fa,b is nonuniformly hyperbolic, there exists
a C1-open neighborhood U ⊆ U0 of fa,b in Diff2

µ(T3) so that every g ∈ U
is nonuniformly hyperbolic. By a theorem of Pesin [Pe], a nonuniformly
hyperbolic K-system is isomorphic to a Bernoulli shift. Therefore every
g ∈ U is isomorphic to a Bernoulli shift.

It also follows from Lemma 2.5 that for g ∈ U , Ec
g is a Lyapunov direction

µ-a.e. for g, with positive exponent, since g is nonuniformly hyperbolic. This
implies conclusion 2 of Theorem II.

Conclusion 3 of Theorem II follows from 2. Let S be the set of w ∈ T3

such that Ec
g(w) is a positive Lyapunov direction. Then S has full µ-measure

in T3. Suppose there were a circle C ∈ Wc
g with µC(C ∩ S) > 0, where µC is

Riemannian measure on C. Then the length of gn(C) would be unbounded
as n→∞. But gn(C) is a leaf of Wc

g , a contradiction.
Finally, g is not isotopic to an Anosov diffeomorphism, since g is isotopic

to the linear map f0,0, which has 1 as an eigenvalue. This completes the
proof of Proposition 1.3.

2.6 Proof of Proposition 2.11

Use “fa” to denote fa,0, “ua” to denote ua,0, and “e(a)” for eu(a, 0). Differ-
entiating (18), we have

e′′(a) =
∫

T3

ψ′(w)ua(w) + aψ′(w)∂ua(w)
∂a

1− aψ′(w)ua(w)

2

+
2ψ′(w)∂ua(w)

∂a
+ aψ′(w)∂

2ua(w)
∂a2

(1− aψ′(w)ua(w))
dw,

and setting a = 0, we obtain

e′′(0) =
∫

T3
(ψ′(w)u0(w))2 + 2ψ′(w)

∂ua(w)
∂a

|a=0 dw. (22)

The map f0 = f0,0 is linear. It is easy to see that u0(w) is the constant
function u0(w) = u0 = (w0 · v0)/(m− 1) 6= 0

For a ∈ R, w = (x, y, z) ∈ T3, and u ∈ R, let

γ(a, w, u) =
c+ u

m+ aψ′(w)(c+ u)
,
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where c = w0 · v0. Note that γ(a, w, ua(f−1
a (w))) = ua(w) and that for |a|

sufficiently small,

ua(w) = lim
n→∞

γ(a, w, γ(a, f−1
a (w), . . . γ(a, f−na (w), 0) · · ·)).

We compute:
∂γ

∂a
(a, w, u) =

−ψ′(w)(c+ u)2

(m+ aψ′(w)(c+ u))2 ,

and set a = 0 to get:

∂γ

∂a
(0, w, u) =

−ψ′(w)(c+ u)2

m2 .

Similarly,
∂γ

∂x
(0, w, u) =

∂γ

∂z
(0, w, u) =

∂γ

∂y
(0, w, u) = 0,

and
∂γ

∂u
(0, w, u) =

1
m
.

We want to evaluate ∂ua(w)
∂a
|a=0. Since ua(w) = γ(a, w, ua(f−1

a (w))), the
chain rule yields:

∂ua(w)
∂a

|a=0 =
∂

∂a
γ(a, w, ua(f−1

a (u)))|a=0

=
∂γ

∂a
(0, w, u0(f−1

0 (w))) +
∂γ

∂u
(0, w, u0(F−1

0 (w))) · ∂ua(f
−1
a (w))
∂a

|a=0)

=
−ψ′(w)(c+ u0(f−1

0 (w)))2

m2 +
1
m

∂ua(f−1
a (w))
∂a

|a=0).

Recall that u0 is the constant function u0(w) = u0, and u0 = (c+ u0)/m, so
this expression simplifies to:

∂ua(w)
∂a

|a=0 = −ψ′(w)u2
0 +

1
m

∂ua(f−1
a (w))
∂a

|a=0. (23)

Iterating (23) gives

∂ua(w)
∂a

|a=0 = −ψ′(w)u2
0 −

ψ′(w−1)u2
0

m
− ψ′(w−2)u2

0

m2 − · · ·
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where w−j = f−ja (w). Hence

∫
T3
ψ′(w)

∂ua(w)
∂a

|a=0 dw = −
∑
j≥0

∫
T3

ψ′(w)ψ′(w−j)u2
0

mj
dw.

The j = 0 term of this sum is − ∫ ψ′(w)2u2
0 dw. Pulling out this term, we

have ∫
T3

(ψ′(w)u0(w))2 + 2ψ′(w)
∂ua(w)
∂a

|a=0 dw =

= −
∫

T3
ψ′(w)2u2

0 dw − 2
∑
j≥1

∫
T3

ψ′(w)ψ′(w−j)u2
0

mj
dw. (24)

Notice that∫
T3
ψ′(w)ψ′(w−j)u2

0 dw = u2
0

∫ 1

0

∫ 1

0

∫ 1

0
ψ′(z)ψ′(z − rjx− sjy) dx dy dz,

where rj and sj are integers, and rj = 0 if and only if j = 0, in which case
sj = 0 as well. Thus, for j ≥ 1,∫

T3
ψ′(w)ψ′(w−j)u2

0 dw = u2
0r
−1
j

∫ 1

0

∫ 1

0
ψ′(z)ψ(z − rjx− sjy))|x=1

x=0 dy dz

= 0.

Combining this with equations (22) and (24), we have:

e′′(0) = −
∫

T3
ψ′(w)2u2

0 dw − 2
∑
j≥1

∫
T3

ψ′(w)ψ′(w−j)u2
0

mj
dw

= −u2
0

∫ 1

0
ψ′(z)2 dz,

completing the proof.
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Bourbaki, Vol. 1991/92. Astérisque No. 206 (1992), Exp. No. 754, 4,
311-344.

[You1] Young, L.-S., Some open sets of non-uniformly hyperbolic cocycles.
Ergod. Th. Dynam. Sys. 13 (1993), 409-415.

[You2] Young, L.-S., Ergodic Theory of Chaotic Dynamical Systems. Inter-
national Congress of Mathematical Physics, 1997.

26


