
WOMP: CATEGORY THEORY

JUSTIN NOEL

1. INTRODUCTION

Category theory is the language of modern mathematics. It is the right level of abstrac-
tion to describe connections between varying fields of mathematics. Similarities noticed in
different areas, such as Cartesian products in the categories of groups, sets and spaces, can
usually be explained categorically. By proving results in a more general context we can
get results that apply to widely varying fields.

2. BASICS

2.1. Definitions and examples.

Definition 2.1. A category C is a collection, ob(C ) of objects, such that for every pair
X ,Y ∈ ob(C ) there is a set, C (X ,Y ), whose elements are called the morphisms (or maps or
arrows) from X to Y. Such that the following hold

(1) There is a distinguished element 1X ∈ C (X ,X) for every X ∈ ob(C ) called the
identity map on X .

(2) For every X ,Y,Z ∈ ob(C ) we have a map of sets C (Y,Z)×C (X ,Y ) → C (X ,Z)
called the composition law of C . This map is written ( f ,g) 7→ f ◦g = f g.

(3) If f ∈ C (X ,Y ) and g ∈ C (Z,X) then f 1X = f and 1X g = g.
(4) The composition law is associative, i.e. ( f g)h = f (gh) where f ,g,h are compos-

able arrows in the obvious sense.
You already know many categories. The following are all concrete categories (the objects
have underlying sets and the morphisms are maps of the underlying sets) that you are
probably familiar with.

Example 2.2. Ens : the category of sets (Ens is short for ensemble the French word for
set) with maps set maps.

Example 2.3. Gps : The category of groups with homomorphisms.

Example 2.4. AbGps : The category of abelian groups with homomorphisms.

Example 2.5. Vectk : The category of k-vector spaces with k-linear maps.

Example 2.6. Top : The category of topological spaces with continuous maps.

Example 2.7. hTop : The category of topological spaces with homotopy classes of contin-
uous maps.

Example 2.8. Rings : The category of rings with unit and ring homomorphisms preserving
units.

Example 2.9. Man : The category of topological manifolds with continuous maps.

Example 2.10. C∞ −Man : The category of smooth manifolds with smooth maps.
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2.2. It’s all about the maps. Part of the philosophy of category theory is that the maps
are more important than the objects. When possible a category theorist will try to describe
new structures using commutative diagrams as opposed to descriptions involving elements
and explicit maps of those elements. For example

Definition 2.11. A group G is an object in Ens with maps satisfying the following com-
mutative diagrams:
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FIGURE 2.2. Invertibility
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Where e is the set with one element (the terminal set categorically). The isomorphisms
λ and τ are canonical (there is one natural choice). This looks a bit confusing at first but it
is a good example of some useful generality. We can replace the category Ens in the above
description with any other category such as Top,C∞ −Man or Gps and we’ve defined the
notion of a group object in these categories.

Example 2.12. A group object in Top is a topological group. Note that the multiplication
and inversion maps have to be continuous now in order for the diagrams to be in Top.

Example 2.13. A group object in C∞ −Man is a Lie group.

Example 2.14. It turns out that a group object in Gps is an abelian group. This is an easy
exercise in group theory.

We can also easily create a dual notion of a group from our new definition. That is a
cogroup is an object G in Ens satisfying the diagrams above but with all of the arrows
reversed. I know a cogroup sounds stupid but the notion does come up (e.g a cogroup
object in Rings is a Hopf algebra which occur frequently in algebraic topology, algebraic
geometry and representation theory).
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FIGURE 2.3. Products
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We can describe many constructions in a very universal way. For example the product of
two objects X ,Y ∈ ob(C ) is an object X ×Y satisfying the following commutative diagram
for every Z.

Where the dotted line indicates that such a map always exists and there is only one such
map making the diagram commute.

This gives one definition that works in every category. We can also dualize it to define a
coproduct. In all of the above examples the product is the ordinary Cartesian product, but
the coproducts vary widely.

Example 2.15. In Ens,Top,Man,C∞−Man and hTop the coproduct is the disjoint union.

Example 2.16. In AbGrps and Vectk it is the direct sum.

Example 2.17. In Rings it is the tensor product.

Example 2.18. In Gps it is the free product.

2.3. Abstract Categories. There are also more abstract categories. In these categories the
morphisms may not be maps of sets which can be a bit counterintuitive at first.

Example 2.19. P is a poset we can create a corresponding category with one object for
each element of P and if a ≤ b then we define a morphism a → b. Transitivity gives us our
composition law and since a ≤ a we have an identity for each object.

Example 2.20. Let C be the category with two objects a,b and one non-identity morphism
a → b. It’s a pretty boring category mostly.

Example 2.21. Let C be a category with one object. The set of endomorphisms has a
multiplication coming from the composition law. This multiplication is associative and
has a unit by definition. This defines a monoid. Similarly, we can define a category with
one object from a monoid.

Example 2.22. Let C be a category with one object and whose morphisms are all isomor-
phisms. That is for every f there exists f −1 such that f f−1 = f−1 f = id. By a similar
construction we can see that such categories are in one to one correspondence with groups.

These examples show that abstract categories can be interesting by themselves. They
also lend themselves more easily to generalization (e.g. a groupoid is a category, with
possibly many objects, where every morphism is an isomorphism or more informally a
groupoid is a “group with many objects”).
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3. FUNCTORS

We would like to get a bit metaphysical and talk about the category of (small) categories,
Cat. What we are lacking is the notion of a morphism between two categories. This is
where functors come in. Functors are the way in which we connect different areas of
mathematics and a big part of how we use abstract categories.

Definition 3.1. A functor F, between two categories C ,D, assigns to each X ∈ ob(C ) an
object F(X)∈ ob(D) and to every morphism f ∈C (X ,Y ) a morphism F( f )∈D(F(X),F(Y ))
such that

(1) F( f g) = F( f )F(g) for two composable morphisms f and g.
(2) F(idX) = idF(X).

Example 3.2. We can define the abelianization functor F : Gps → AbGps by F(G) =
G/[G,G]. Since maps of groups send commutators to commutators we see that a map
f : H → G induces a map F( f ) : H/[H,H] → G/[G,G].

Example 3.3. If we have two categories as in example 2.21 a functor between them is a
morphism of monoids. Similarly, if we have two categories as in example 2.22 a functor
between them defines a homomorphism of groups.

Example 3.4. Let C be as in 2.22 then a functor F : C →Vectk defines a representation of
the corresponding group. That is F(∗) is a vector space and for each morphism of C gives
an automorphism of that vector space. The definition of a functor says that this assign-
ment respects the identity map (corresponding to the identity element) and composition
(corresponding to the multiplication).

Example 3.5. The functor π1 : Top → Gps which assigns each topological space its fun-
damental group.

Example 3.6. Homology theories are usually functors (don’t worry if you don’t know
what they are).

Example 3.7. homk(__,k) = (__)∗ : Vectk →Vectk isn’t really a functor. If we have a map
X → Y then we get a map Y ∗ → X∗. This is called a contravariant functor. Or better yet
(because differential geometers have ruined a perfectly good term by using it in precisely
the opposite way) we have (__)∗ : Vectop

k →Vectk is a functor. Where C op is the opposite
category of C , defined to have the same objects but all of the arrows go in the opposite
direction. Functors of the form hom(__,T ) or hom(T,__) are called representable (and
are represented by T ).


