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1 Fourier series

Consider periodic functions, functions defined on some finite interval, or func-
tions defined on the unit circle. All are equivalent; I prefer to think of functions
defined on [0, 1].

We observe:∫ 1

0

e2πinxe2πimxdx = 1, if n = m; 0, if n 6= m.

So {e2πinx} is an orthonormal set in the Hilbert space L2([0, 1]). Let Un(x) =
e2πinx.

Question. Is {Un} an orthonormal basis for L2([0, 1])?
Answer. Yes!

Sketch of proof It’s a basis if for any f ∈ L2, there exists a
f̂ : Z 7→ C such that in L2 norm, f is the limit of the following
sequence of trigonometric polynomials: ∑

|n|≤N

f̂(n)Un


∞

N=1

I will only show that every L2 function is the limit of some se-
quence of trigonometric polynomials.

Useful fact. If f ∈ L2(R) or if f ∈ L2([0, 1]), then for every
ε > 0, there exists an h ∈ L2 such that h is uniformly continuous and
||f − h||L2 < ε. (You will prove this fact in first-quarter analysis.)

If f is continuous, let

Fk(x) =
∫ 1

0

f(y)Qk(x− y)dy

where Qk(x) = ck[1 + cos(2πx)]k = ck[1 + 1
2U1(x) + 1

2U−1(x)]k, ck

chosen so
∫ 1

0
Qk = 1.
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Then we can write

Qk(x− y) =
∑

|n|≤k,|m|≤k

Ck,n,mUn(x)Um(y)

for some constants Ck,n,m. So FN (x) is a trigonometric polynomial.
But as k → ∞, Qk becomes very small away from the integers,

and so FN (x) → f pointwise if f is continuous.

So the {Un} are a basis; if f ∈ L2, then f =
∑

n f̂(n)Un, for some f̂(n) ∈ R.
Note that convergence is in L2, and in L2 only. Fourier series in general

do not converge pointwise. (They do converge pointwise if f is, for example,
differentiable.)

We can write down a formula for the f̂(n):

f̂(n) = 〈f, Un〉 =
∫ 1

0

e−2πinxf(x)dx.

Parseval’s Inequality: Since {Un} is a basis,∑
n

|f̂(n)|2 =

〈∑
n

f̂(n)Un,
∑
m

f̂(m)Um

〉
= 〈f, f〉 = ||f ||2L2 .

In particular, f̂(n) → 0 as n →∞ for any f ∈ L2.
Note that we may define f̂(n) for f ∈ L1([0, 1]), via the above integral. In

this case, we still have that f̂(n) → 0 as n →∞. (This is the Riemann-Lebesgue
Lemma.)

2 Fourier Transform

We now move on to functions defined on all of R, rather than just [0, 1]. If
f ∈ L1(R), we define the Fourier transform f̂ by

f̂(ξ) =
∫

e−2πixξf(x) dx.

(Unless otherwise indicated, all integrals in this section are over the real number
line R.)

The Fourier transform has many nice properties. Assume that f, g ∈ L1.
Then:

• If h(x) = f ? g(x), then

ĥ(ξ) =
∫

e−2πixξ

∫
f(y)g(x− y) dy dx

=
(∫

e−2πiyξf(y) dy

) (∫
e−2πizξg(z) dz

)
= f̂(ξ)ĝ(ξ).

(Here ? denotes convolution, that is, f ? g(x) =
∫

f(y)g(x− y) dy.)
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• If h(x) = f ′(x), then ĥ(ξ) = 2πiξf̂(ξ).

• r̂f(ξ) = rf̂(ξ), if r ∈ R; ̂f + g(ξ) = f̂(ξ) + ĝ(ξ), and so the Fourier
transform is a linear operator.

• If h(x) = f(x− α), then ĥ(ξ) = f̂(ξ)e2πiαξ.

• If h(x) = 1
r f

(
x
r

)
, r > 0, then ĥ(ξ) = f̂(rx).

• If f ∈ L1, f̂ is continuous.1

• If φ(x) = e−πx2
, then φ̂ = φ.

That last example allows us to prove the Fourier inversion formula.

Theorem 1 If g ∈ L1 is continuous at x ∈ R, and if either

• ĝ is also in L1, or

• ĝ ≥ 0 everywhere and x = 0,

then
g(x) =

∫
e2πixξ ĝ(ξ) dξ.

Proof Let φ(x) = e−πx2
, φr(x) = 1

r φ
(

x
r

)
. Note that

∫
φr = 1 for

all r > 0.
Then if g is continuous, g(x) = limr→0 g ? φr(x).
So: ∫

e2πixξ ĝ(ξ) dξ =
∫

lim
r→0

e2πixξ ĝ(ξ)φ(rξ) dξ

= lim
r→0

∫
e2πixξ ĝ(ξ)φ(rξ) dξ.

This is where we use our conditions on ĝ. Switching limits with
integrals is an interesting subject you will look at in first-quarter
analysis.

Now,∫
e2πixξφ(rξ)ĝ(ξ) dξ =

∫
e2πixξφ(rξ)

∫
e−2πiyξg(y) dy dξ

=
∫

g(y)
∫

φ(rξ)e−2πi(y−x)ξ dξ dy

=
∫

g(y)φr(x− y) dy

So
g(x) = lim

r→0

∫
g(y)φr(x− y) dy =

∫
e2πixξ ĝ(ξ) dξ.

1We will later define f̂ for f ∈ L2 as well as L1. This result will not hold there.
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In the section on Fourier series, it was the L2 theory that was interesting.
Unfortunately, we can only define the Fourier transform for f ∈ L1. So now we
look at functions in L1 ∩ L2.

We have a very useful and interesting result:

Theorem 2 (Plancherel’s Theorem) If f ∈ L1 ∩ L2, then f̂ ∈ L2 as well, with

||f ||L2 = ||f̂ ||L2 .

Proof Let f̃(x) = f(−x), and g(x) = f ? f̃(x).
Now,

g(0) =
∫

f(x)f(−(0− x)) dx = ||f ||2L2

and
ĝ(x) = f̂(ξ)̂̃f(ξ) = |f̂(ξ)|2,

so if we could apply our previous theorem (with x = 0), we would
be done.

We need only show that g ∈ L1 and g continuous. But∫
|g(x)|dx =

∫ ∣∣∣∣∫ f(y)f(y − x) dy

∣∣∣∣ dx

≤
∫
|f(y)|

∫
|f(y − x)| dx dy ≤ ||f ||2L1

and so g ∈ L1.
Recall our useful fact: if f ∈ L2, then for every ε > 0, there is

some h ∈ L2 such that h is uniformly continuous and ||f−h||L2 < ε.
Let δ be such that |h(x + δ)− h(x)| < ε for all x.

So

|g(x + δ)− g(x)| =
∣∣∣∣∫ f(y)[f(y − x− δ)− f(y − x)] dy

∣∣∣∣
≤

∫
|f(y)||h(y − x− δ)− h(y − x)| dy

+
∫
|f(y)||f(y − x− δ)− h(y − x− δ)| dy

+
∫
|f(y)||f(y − x)− h(y − x)| dy

≤ ε||f ||L1 + 2ε||f ||L2

and so g is continuous. Thus we are done.

We can use these to extend the Fourier transform (and its inverse) to all
of L2.
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If f ∈ L2, there is some {fn} ⊂ L1 ∩ L2 such that fn → f in L2. For
example, let fn(x) = f(x) if |x| < n and 0 otherwise; clearly fn → f in L2, and
since |f | ≤ max(1, |f |2),∫

|fn(x)|dx ≤
∫ n

−n

1 dx +
∫
|f |2 dx ≤ 2n + ||f ||2L2

and so fn ∈ L1.
Then by Plancherel’s theorem, {f̂n} is a Cauchy sequence in L2, and since

L2 is a complete metric space, limn→∞ f̂n exists in L2-norm, and so we can
define f̂ = limn→∞ f̂n.

Note that this means the Fourier transform of an L2 function is an L2 func-
tion. If f 6∈ L1, then f̂ may not be continuous, and its value at a given point is
completely arbitrary.
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