Fourier Series and the Fourier Transform

Ariel Barton

September 18, 2006

1 Fourier series

Consider periodic functions, functions defined on some finite interval, or functions defined on the unit circle. All are equivalent; I prefer to think of functions defined on $[0,1]$.

We observe:

$$
\int_{0}^{1} e^{2 \pi i n x} \overline{e^{2 \pi i m x}} d x=1, \text { if } n=m ; \quad 0, \text { if } n \neq m
$$

So $\left\{e^{2 \pi i n x}\right\}$ is an orthonormal set in the Hilbert space $L^{2}([0,1])$. Let $U_{n}(x)=$ $e^{2 \pi i n x}$.

Question. Is $\left\{U_{n}\right\}$ an orthonormal basis for $L^{2}([0,1])$?
Answer. Yes!
Sketch of proof It's a basis if for any $f \in L^{2}$, there exists a $\hat{f}: \mathbf{Z} \mapsto \mathbf{C}$ such that in L^{2} norm, f is the limit of the following sequence of trigonometric polynomials:

$$
\left\{\sum_{|n| \leq N} \hat{f}(n) U_{n}\right\}_{N=1}^{\infty}
$$

I will only show that every L^{2} function is the limit of some sequence of trigonometric polynomials.

Useful fact. If $f \in L^{2}(\mathbf{R})$ or if $f \in L^{2}([0,1])$, then for every $\epsilon>0$, there exists an $h \in L^{2}$ such that h is uniformly continuous and $\|f-h\|_{L^{2}}<\epsilon$. (You will prove this fact in first-quarter analysis.)

If f is continuous, let

$$
F_{k}(x)=\int_{0}^{1} f(y) Q_{k}(x-y) d y
$$

where $Q_{k}(x)=c_{k}[1+\cos (2 \pi x)]^{k}=c_{k}\left[1+\frac{1}{2} U_{1}(x)+\frac{1}{2} U_{-1}(x)\right]^{k}, c_{k}$ chosen so $\int_{0}^{1} Q_{k}=1$.

Then we can write

$$
Q_{k}(x-y)=\sum_{|n| \leq k,|m| \leq k} C_{k, n, m} U_{n}(x) U_{m}(y)
$$

for some constants $C_{k, n, m}$. So $F_{N}(x)$ is a trigonometric polynomial.
But as $k \rightarrow \infty, Q_{k}$ becomes very small away from the integers, and so $F_{N}(x) \rightarrow f$ pointwise if f is continuous.
So the $\left\{U_{n}\right\}$ are a basis; if $f \in L^{2}$, then $f=\sum_{n} \hat{f}(n) U_{n}$, for some $\hat{f}(n) \in \mathbf{R}$.
Note that convergence is in L^{2}, and in L^{2} only. Fourier series in general do not converge pointwise. (They do converge pointwise if f is, for example, differentiable.)

We can write down a formula for the $\hat{f}(n)$:

$$
\hat{f}(n)=\left\langle f, U_{n}\right\rangle=\int_{0}^{1} e^{-2 \pi i n x} f(x) d x
$$

Parseval's Inequality: Since $\left\{U_{n}\right\}$ is a basis,

$$
\sum_{n}|\hat{f}(n)|^{2}=\left\langle\sum_{n} \hat{f}(n) U_{n}, \sum_{m} \hat{f}(m) U_{m}\right\rangle=\langle f, f\rangle=\|f\|_{L^{2}}^{2}
$$

In particular, $\hat{f}(n) \rightarrow 0$ as $n \rightarrow \infty$ for any $f \in L^{2}$.
Note that we may define $\hat{f}(n)$ for $f \in L^{1}([0,1])$, via the above integral. In this case, we still have that $\hat{f}(n) \rightarrow 0$ as $n \rightarrow \infty$. (This is the Riemann-Lebesgue Lemma.)

2 Fourier Transform

We now move on to functions defined on all of \mathbf{R}, rather than just $[0,1]$. If $f \in L^{1}(\mathbf{R})$, we define the Fourier transform \hat{f} by

$$
\hat{f}(\xi)=\int e^{-2 \pi i x \xi} f(x) d x
$$

(Unless otherwise indicated, all integrals in this section are over the real number line \mathbf{R}.)

The Fourier transform has many nice properties. Assume that $f, g \in L^{1}$. Then:

- If $h(x)=f \star g(x)$, then

$$
\begin{aligned}
\hat{h}(\xi) & =\int e^{-2 \pi i x \xi} \int f(y) g(x-y) d y d x \\
& =\left(\int e^{-2 \pi i y \xi} f(y) d y\right)\left(\int e^{-2 \pi i z \xi} g(z) d z\right) \\
& =\hat{f}(\xi) \hat{g}(\xi)
\end{aligned}
$$

(Here \star denotes convolution, that is, $f \star g(x)=\int f(y) g(x-y) d y$.)

- If $h(x)=f^{\prime}(x)$, then $\hat{h}(\xi)=2 \pi i \xi \hat{f}(\xi)$.
- $\widehat{r f}(\xi)=r \hat{f}(\xi)$, if $r \in \mathbf{R} ; \widehat{f+g}(\xi)=\hat{f}(\xi)+\hat{g}(\xi)$, and so the Fourier transform is a linear operator.
- If $h(x)=f(x-\alpha)$, then $\hat{h}(\xi)=\hat{f}(\xi) e^{2 \pi i \alpha \xi}$.
- If $h(x)=\frac{1}{r} f\left(\frac{x}{r}\right), r>0$, then $\hat{h}(\xi)=\hat{f}(r x)$.
- If $f \in L^{1}, \hat{f}$ is continuous. ${ }^{1}$
- If $\phi(x)=e^{-\pi x^{2}}$, then $\hat{\phi}=\phi$.

That last example allows us to prove the Fourier inversion formula.
Theorem 1 If $g \in L^{1}$ is continuous at $x \in \mathbf{R}$, and if either

- \hat{g} is also in L^{1}, or
- $\hat{g} \geq 0$ everywhere and $x=0$,
then

$$
g(x)=\int e^{2 \pi i x \xi} \hat{g}(\xi) d \xi
$$

Proof Let $\phi(x)=e^{-\pi x^{2}}, \phi_{r}(x)=\frac{1}{r} \phi\left(\frac{x}{r}\right)$. Note that $\int \phi_{r}=1$ for all $r>0$.

Then if g is continuous, $g(x)=\lim _{r \rightarrow 0} g \star \phi_{r}(x)$.
So:

$$
\begin{aligned}
\int e^{2 \pi i x \xi} \hat{g}(\xi) d \xi & =\int \lim _{r \rightarrow 0} e^{2 \pi i x \xi} \hat{g}(\xi) \phi(r \xi) d \xi \\
& =\lim _{r \rightarrow 0} \int e^{2 \pi i x \xi} \hat{g}(\xi) \phi(r \xi) d \xi
\end{aligned}
$$

This is where we use our conditions on \hat{g}. Switching limits with integrals is an interesting subject you will look at in first-quarter analysis.

Now,

$$
\begin{aligned}
\int e^{2 \pi i x \xi} \phi(r \xi) \hat{g}(\xi) d \xi & =\int e^{2 \pi i x \xi} \phi(r \xi) \int e^{-2 \pi i y \xi} g(y) d y d \xi \\
& =\int g(y) \int \phi(r \xi) e^{-2 \pi i(y-x) \xi} d \xi d y \\
& =\int g(y) \phi_{r}(x-y) d y
\end{aligned}
$$

So

$$
g(x)=\lim _{r \rightarrow 0} \int g(y) \phi_{r}(x-y) d y=\int e^{2 \pi i x \xi} \hat{g}(\xi) d \xi
$$

[^0]In the section on Fourier series, it was the L^{2} theory that was interesting. Unfortunately, we can only define the Fourier transform for $f \in L^{1}$. So now we look at functions in $L^{1} \cap L^{2}$.

We have a very useful and interesting result:
Theorem 2 (Plancherel's Theorem) If $f \in L^{1} \cap L^{2}$, then $\hat{f} \in L^{2}$ as well, with

$$
\|f\|_{L^{2}}=\|\hat{f}\|_{L^{2}}
$$

Proof Let $\tilde{f}(x)=\overline{f(-x)}$, and $g(x)=f \star \tilde{f}(x)$.
Now,

$$
g(0)=\int f(x) \overline{f(-(0-x))} d x=\|f\|_{L^{2}}^{2}
$$

and

$$
\hat{g}(x)=\hat{f}(\xi) \widehat{\tilde{f}}(\xi)=|\hat{f}(\xi)|^{2}
$$

so if we could apply our previous theorem (with $x=0$), we would be done.

We need only show that $g \in L^{1}$ and g continuous. But

$$
\begin{aligned}
\int|g(x)| d x & =\int\left|\int f(y) \overline{f(y-x)} d y\right| d x \\
& \leq \int|f(y)| \int|f(y-x)| d x d y \leq\|f\|_{L^{1}}^{2}
\end{aligned}
$$

and so $g \in L^{1}$.
Recall our useful fact: if $f \in L^{2}$, then for every $\epsilon>0$, there is some $h \in L^{2}$ such that h is uniformly continuous and $\|f-h\|_{L^{2}}<\epsilon$.
Let δ be such that $|h(x+\delta)-h(x)|<\epsilon$ for all x.
So

$$
\begin{aligned}
|g(x+\delta)-g(x)|= & \left|\int \overline{f(y)}[f(y-x-\delta)-f(y-x)] d y\right| \\
\leq & \int|f(y) \| h(y-x-\delta)-h(y-x)| d y \\
& +\int|f(y) \| f(y-x-\delta)-h(y-x-\delta)| d y \\
& +\int|f(y) \| f(y-x)-h(y-x)| d y \\
\leq & \epsilon\|f\|_{L^{1}}+2 \epsilon\|f\|_{L^{2}}
\end{aligned}
$$

and so g is continuous. Thus we are done.
We can use these to extend the Fourier transform (and its inverse) to all of L^{2}.

If $f \in L^{2}$, there is some $\left\{f_{n}\right\} \subset L^{1} \cap L^{2}$ such that $f_{n} \rightarrow f$ in L^{2}. For example, let $f_{n}(x)=f(x)$ if $|x|<n$ and 0 otherwise; clearly $f_{n} \rightarrow f$ in L^{2}, and since $|f| \leq \max \left(1,|f|^{2}\right)$,

$$
\int\left|f_{n}(x)\right| d x \leq \int_{-n}^{n} 1 d x+\int|f|^{2} d x \leq 2 n+\|f\|_{L^{2}}^{2}
$$

and so $f_{n} \in L^{1}$.
Then by Plancherel's theorem, $\left\{\hat{f}_{n}\right\}$ is a Cauchy sequence in L^{2}, and since L^{2} is a complete metric space, $\lim _{n \rightarrow \infty} \hat{f}_{n}$ exists in L^{2}-norm, and so we can define $\hat{f}=\lim _{n \rightarrow \infty} \hat{f_{n}}$.

Note that this means the Fourier transform of an L^{2} function is an L^{2} function. If $f \notin L^{1}$, then \hat{f} may not be continuous, and its value at a given point is completely arbitrary.

[^0]: ${ }^{1}$ We will later define \hat{f} for $f \in L^{2}$ as well as L^{1}. This result will not hold there.

