Ergodic Theory & Smooth Dynamics, II: Geometric Rigidity & Smooth Dynamics

Goal: Illustrate how tools from dynamical systems can be brought to bear on questions in differential geometry.

* Manifolds without conjugate points
* Negative curvature and marked length spectrum
A metric on \mathcal{M} has no conjugate points if for $x, y \in \mathcal{M}$ there exists a unique geodesic connecting x to y.

Examples

- \mathcal{M} is nonpositively curved. (Ricci comparison)

- Gulliver's 3 surfaces without conjugate pts (not nonpositively curved)

(Q: Does every closed \mathcal{M} without conj. pts admit a metric of nonpos. curvature?)
Theorem (Hopf) Any metric on \mathbb{T}^2 without conjugate points is flat.

I will present:

Theorem (Burago - Ivanov, '94) The same holds on \mathbb{T}^n.

Examples w/ Anosov geodesic flow
Marked length spectrum

\[M = \text{manifold, negative sectional curvature}. \]

\[\Rightarrow \text{In each free homotopy class of closed curve}\]

\[\exists \text{! closed geodesic}\]

defines a function

\[l : \pi_1(M) / \sim \to \mathbb{R}_+ \]

Marked length spectrum

Thm (Otal, Groves) if \(S \times S' \) are negatively
linked metrics or Σ with the same marked length spectrum, then S and S' are isometric.
The role of Dynamics

\(M^n = \text{Riem. manifold} \)

\(T^1M = \text{unit tangent bundle} \)

\(\psi: T^1M \times \mathbb{R} \to T^1M \)

Godesic flow

\(\psi_\tau(x) = \dot{x}(\tau) \)

Solution curves to a time-independent ODE.
\[\Phi_0 = \text{Id} \]
\[\Phi_{s+t} = \Phi_s \cdot \Phi_t. \]

Continuous dynamical system

Invariant structures:
- contact 1-form \(\alpha \)
- \(\Delta \) transverse symplectic structure \(da \)
- volume \(\alpha \wedge (da)^{n-1} \)

- In negative curvature: stable & unstable distributions (families of Jacobi fields)
Outline

I. Crash Course in Geodesic flows
 - Symplectic & Riemann Structures on TM, Adapted Coordinate Systems
 - Contact Structure on TM
 - Jacobi fields
 - Conjugate & focal pts
 - Busemann functions
 - the Anosov Property in negative curvature

II. Crash Course in Ergodicity
III

POWRENCÉ, recurrence
the ergodic theorem
and criteria for ergodicity

Crash course in Anosov flows.

- Shadowing
- Structural Stability
- Ergodicity
- Cohomological equations.

IV
Marked Length Spectrum Rigidity

V
The Hopf Conjecture
I. Crash Course in Geodesic Flows

\[M = \text{Riem mfld. (C^\infty)} \]
\[\langle , \rangle = \text{metric} \]
\[\nabla = \text{covariant differentiation operator (connection)} \]
\[\nabla : \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M) \]

1) Torsionless:
\[\nabla_{fX} Y = f \nabla_X Y \]

2) Leibniz:
\[\nabla_X (fY) = df(X)Y + f \nabla_X Y \]
3) Metric-preserving:
\[
\mathcal{L}_X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle
\]

4) Symmetry:
\[
\nabla_X Y - \nabla_Y X = [X, Y]
\]

Def. A vector field \(X \) along a curve \(c(t) \) is parallel
If \(\nabla_{c'}(t)X \equiv 0 \).

(* small technical issue in defining LHS)

A curve \(Y \) in \(M \) is a geodesic (arc, ray...)

If \(\nabla_{Y'} Y' \equiv 0 \) on its domain of definition.

The initial value problem:

\[
X'(0) = u \quad u \in TM
\]

\[
X''(t) := \nabla_{X'}X'(t) = 0
\]
has a unique solution \(x = \Phi u \), defined \(\forall \cdot t \in \mathbb{R} \), if the curvatures of \(\langle \cdot \rangle \) are bounded by the existence and uniqueness of solutions to ODEs.

Hence we have a flow

\[
\Phi : TM \times \mathbb{R} \rightarrow TM \\
\Phi_t(\nu) = \nu'(t) \\
\Phi_0 = Id, \quad \Phi_{s+t} = \Phi_s \circ \Phi_t
\]
Def \(\Phi_t \) is called the geodesic flow for \(M \) (on \(TM \)).

Prop The geodesic flow preserves length, i.e. \(t \to \| \Phi_t(u) \| \) is const.

Proof

\[
\frac{d}{dt} \langle \Phi_t(u), \Phi_t(u) \rangle = L_{\Phi_t(u)} \langle \Phi_t(u), \Phi_t(u) \rangle = \langle \Phi_t(u), \nabla_{\Phi_t(u)} \Phi_t(u) \rangle = 0
\]
for each t, the map

$N \mapsto \Phi^t(N)$

$TM \mapsto TM$

is a diffeomorphism, called the time-t map of Φ.

Special coordinates on $T(TM)$.

The connection ∇ defines a distribution $H \subseteq T(TM)$.
defined by: for \(v \in TM \),

\[H(v) = \{ \exists z \in TuTM : \nabla_{DuT}(z) = 0 \} \]

where \(\Pi : TM \rightarrow M \).

\(H \) is called the horizontal bundle of \(TTM \). Note:

\[\text{D}v : H(v) \cong T_{\Pi(v)}M \]

Let \(K_v : TuTM \rightarrow \ker D\Pi \)
be the projection with $\ker k_u = H(n)$

Hence we have an isomorphism:

$\kappa_u \times D_uT : T_uTM \to \ker D_uT + \overline{T_{\pi(n)} M}$

But note:

$\ker D_uT = T_u(\ker \pi)$

$= T_u(\overline{T_{\pi(n)} M})$

$\subseteq T_{\pi(n)} M$

natural isomorphism
Hence we have shown:

Proposition: The connection determines an isomorphism

\[TuTM \cong \prod_{\pi(u)} M \times \prod_{\pi'(u)} M \]

\[\forall u \in TM. \text{ In other words:} \]

\[TTM = TM \times (TM \otimes TM) \]

(bundle product over \(n \)).

Exercise: Show that if \(\beta(t) \in TM \) is a curve, \(b(t) = \prod_{\pi} \beta(t) \)

then (in these coordinates)

\[\beta' = (\beta, b', \nabla_{b'} \beta) \]
Structures on TM

- Riemann structure (called the Sasaki metric)
 For $\tilde{\xi}_i = (v_i, w_i) \in T_u TM$,
 Let $i = 1, 2,$

 $\langle \tilde{\xi}_1, \tilde{\xi}_2 \rangle_u =$

 $\langle v_1, w_1 \rangle_{\Pi(u)} + \langle v_2, w_2 \rangle_{\Pi(u)}$

 (sum $\delta \not\prec \not\prec \not\prec \not\prec$ on horizontal + vertical bundles)
1-form α:

for $\xi = (u,v,w) \in T_u TM$, set

$$\alpha(\xi) = - \langle u, v \rangle$$

Symplectic form $d\alpha$:

$\xi_i = (u_i, v_i, w_i) \in T_u TM$:

$$d\alpha(\xi_i, \xi_j) = \langle v_i, w_j \rangle - \langle w_i, v_j \rangle$$

Exercise: Do α as claimed and is nondegenerate.
Geodesic Spray \(\mathfrak{g} \)

For \(u \in TM \), let
\[
\mathfrak{g}(u) = (u, u, 0) \in T_u TM
\]

Exercise The vector field \(\mathfrak{g} \in \mathcal{X}(TM) \) generates the geodesic flow: that is:
\[
\forall u \in TM, \forall t_0 \in \mathbb{R}:
\]
\[
\dot{\mathfrak{g}}(\mathfrak{g}_t^0(u)) = \frac{d}{dt} \mathfrak{g}_t^0(u) \bigg|_{t=t_0}
\]

Properties of these structures

1) \(\alpha(\mathfrak{g}(u)) = \langle u, u \rangle = -\|u\|^2 \)
2) If $\xi = (u, v, w) \in T_u M$, then
\[
d\alpha (\Phi (u), \xi) = \langle u, w \rangle.
\]

Proposition The geodesic flow Φ^t preserves $d\alpha$:
\[
(\Phi^t)^* d\alpha = d\alpha \quad \forall t \in \mathbb{R}
\]

Proof:
\[
\frac{d}{dt} (\Phi^t)^* d\alpha = L_{\dot{\Phi}} d\alpha
\]
\[
= i_{\dot{\Phi}} (d^2 \alpha) + d(i_{\dot{\Phi}} d\alpha)
\]
\[
= 0 \quad \text{(by 2: exercise)}
\]
3) Let \(\beta(t) \) be a curve in \(\mathbb{T} \text{M} = \{u \mid u(0) = t\} \).

Let \(b(t) = \Pi \circ \beta(t) \) then

\[
\mathbf{O} = \frac{d}{dt} \langle b(t), \beta'(t) \rangle = \sum_{t} b(t) \left< \beta(t), \beta'(t) \right> = 2 \cdot \left< \beta(t), \nabla_{b'} b(t) \right>
\]

\[
\mathbf{T}(\mathbb{T} \text{M}) = \{ (u, v, w) : \|u\| = 1, \langle u, w \rangle = 0 \}
\]

Proposition: The restriction \(\Phi \) to the unit tangent bundle \(\text{T} \text{M} \) preserves the 1-form \(\alpha \):
Let $\alpha \in \mathcal{A}_R$

\[\varphi^*(\alpha|_{\mathcal{T}^1M}) = \alpha|_{\mathcal{T}^1M} \]

(Write α for $\alpha|_{\mathcal{T}^1M}$ in the sequel).

Moreover, α is a contact form on \mathcal{T}^1M, meaning $|\alpha \wedge (d\alpha)^n|$ defines a volume on \mathcal{T}^1M.

Thus φ preserves the

Hermite volume:

\[\lambda = |\alpha \wedge (d\alpha)^n| \]

Proof Exercise
Summary

$\varphi_t : T'M \rightarrow T'M$ preserves:

- Contact 1-form α
 (satisfying $\alpha \wedge (d\alpha)^n$ nonvanishing)
 $\alpha (\varphi_t) = -1$.

$\ker \alpha = \varphi_t^{-1}$

$= \{ (u,v,w) : \| u \| = 1 \ ; \ \langle u,v \rangle = \langle u,w \rangle = 0 \}$

n-dim'le subspace $\varphi_t^{-1}(u) = \ker \alpha$

Picture in $T_u T'M$

Geodesic flow direction $\dot{\varphi}(u)$

- Liouville volume given by form $\lambda = \alpha \wedge (d\alpha)^n$
This volume form defines a Lebesgue measure \(m \) on \(T'M \) by:

\[
m(A) = \int_A \nu
\]

(\(A \subseteq T'M \) any Borel set) \(M \) compact \(\Rightarrow m(T'M) < \infty \).

Corollary (Poincare Recurrence)

Suppose \(m(T'M) < \infty \). Then for \(m \)-a.e. \(u \in T'M \):

\[
\liminf_{t \to \pm \infty} d(\Phi_t(u), u) = 0
\]

(in the Sasaki metric)
Proof: Exercise
Variations of Geodesics and Jacobi Fields

We would like to determine the effect of the derivative of the geodesic flow, equivalently, the action of \mathfrak{g} on curves in TM, up to first order. Let $\mathfrak{g} \in T_uTM$
\[\vec{\xi} = (u_0, v_0, w_0); \quad v_0, w_0 \in \pi_{u_0}(M) \]

Let \(X(s) \) be any curve in \(TM \) tangent to \(\vec{\xi} \) at \(s = 0 \), and let \(\alpha(s) = \Pi \circ X(s) \).

Then
\[
U_0 = X(0), \quad V_0 = \frac{\partial \alpha}{\partial s} \bigg|_{s=0}, \quad W_0 = \nabla_{V_0} X \bigg|_{s=0}.
\]

Extend to a function
\[\alpha : \mathbb{R} \times \mathbb{R} \rightarrow M \]
by
\[\alpha(s, t) = X_{X(s)}(t) \]
\(\alpha \) is called a variation of geodesics. Notice that

\[
\alpha(s, t) = \Pi(\varphi_t(\alpha(s)))
\]

Hence the vector field

\[
X(s) = \frac{d\alpha}{dt}(s, t_0)
\]

along the curve \(\alpha(s, t_0) \) is the image of \(X(s) \) under the time-\(t_0 \) map \(\varphi_t \).
This implies that:

$$D\Phi(t) = \left(\frac{\partial \Phi}{\partial t}(0, t), \frac{\partial \Phi}{\partial s}(0, t), \frac{\partial^2 \Phi}{\partial t^2}(0, t) \right)$$

where

$$\frac{\partial^2 \Phi}{\partial t \partial s} := \nabla \frac{\partial \Phi}{\partial t} \frac{\partial \Phi}{\partial s}$$

$$= \nabla \frac{\partial \Phi}{\partial t} \frac{\partial \Phi}{\partial s}$$

Let

$$J(t) = \frac{\partial \Phi}{\partial s}(0, t).$$

J is a vector field along the geodesic $\gamma(t) = \Phi(0, t)$, called a Jacobi field.
Proposition \(J \) is a Jacobi field along \(Y(t) \) iff:

\[
J''(t) = -R(J(t), \dot{Y}(t)) \dot{Y}(t)
\]

Where \(R \) is the curvature tensor: for vector fields \(A, B \) on \(M \),

\[
R(A, B) = \nabla_A \nabla_B - \nabla_B \nabla_A - [A, B]
\]

\(R(A, B) \) is called the Jacobi equation (along \(Y(t) \)).
\[\overrightarrow{J(0)} \rightarrow \overrightarrow{J'(0)} \rightarrow J(t) \]

Remark: If \(J(t) \) is a Jacobi field along the geodesic \(\gamma(t) \), then \(D^t_{\gamma_t}(\gamma(0), J(0), J'(0)) = (\gamma(t), J(t), J'(t)) \).

The initial conditions \(\dot{\gamma}(0) = u_0, \ J(0) = v_0, \ J'(0) = w_0 \) uniquely determine the Jacobi field \(J \) (down \(u_0 \)).
Proof. Let \(\alpha(s,t) \) be a variation of geodesics, and let \(J_s(t) = \frac{\partial \alpha}{\partial s}(s,t) \), for fixed \(s \).

\[
J'_s(t) := \nabla_{\frac{\partial \alpha}{\partial t}} \frac{\partial \alpha}{\partial s}(s,t)
\]

\[
= \nabla_{\frac{\partial}{\partial s}} \frac{\partial \alpha}{\partial \alpha}(s,t)
\]

\[
J''_s(t) := \nabla_{\frac{\partial}{\partial t}} \nabla_{\frac{\partial \alpha}{\partial s}} \frac{\partial \alpha}{\partial \alpha}(s,t)
\]

\[= \nabla_B \nabla_A \nabla_{B \circ A} \]
Where \[A = \frac{2\alpha}{\beta t} (s,t) \quad B = \frac{2\alpha}{\beta t} (s,t) \]

But
\[
\nabla_B \nabla_A B = \nabla_A \nabla_B B - R(A,B)B
\]

- \[\nabla_{[A,B]} B \],
by definition of the curvature tensor.

Observe that:
\[[A,B] = \left[\frac{\partial}{\partial t}, \frac{\partial}{\partial s} \right] = 0 \]
\[\nabla_B B = \ddot{x}_s = 0 \]

\[\nabla_B \nabla_A B = - R(A,B)B, \]

i.e.
\[\mathcal{J}_s''(t) = - R \left(\mathcal{J}_s(t), \dot{x}(A) \dot{x}(t) \right) \]
Properties of Jacobi fields

1. If \(J(0) \perp \dot{x}(0) \) and \(J'(0) \perp \dot{x}(0) \), then \(J(t) \perp \dot{x}(t) \), \(J'(t) \perp \dot{x}(t) \) \(\forall t \)

(Proof: \(\Phi \) preserves \(\ker \alpha = \Phi(t) \))

\(J \) is called a perpendicular Jacobi field.

2. Similarly, any field \(J(t) = (at+b)\dot{x}(t) \) of the form is a Jacobi field (exercise) called a tangent Jacobi field.
3. Let
\[K(A, B) = \frac{\langle R(A, B)B, A \rangle}{\| A \wedge B \|^2} \]
be the sectional curvature of the plane spanned by \(A \) & \(B \). If \(K \leq 0 \) along \(y \), then for Jacobi field, we have
\[
(\| J' \|^2)' = 2\langle J, J' \rangle
\]
& \((\| J' \|^2)'' \geq 2\| J' \|^2 \)

Proof:
\[
\langle J, J \rangle = (2\langle J, J' \rangle)'
= 2 \| J' \|^2 + 2\langle J, J' \rangle
\]
= 2\|J\|^2 - 2\langle R(J, \delta) \delta, J \rangle.
\geq 2\|J\|^2
\]

Corollary: If \(K \leq 0 \) along \(\delta \) & \(J \) is a nontrivial field (along \(\delta \), then \(J(t) = 0 \) for at most one value of \(t \).

(Proof:) \(J(t) = 0 \Rightarrow (\|J\|^2)' = 0 \)
\& \((\|J\|^2)'' \geq 0 \)
\Rightarrow \(t \) is a local min for \(\|J\|^2 \). But \((\|J\|^2)'' \geq 0 \)
\Rightarrow \(\|J\|^2 \) has at most one local max.)
Conjugate Points

Def: Say that \(p, q \in M \) are **conjugate points** if \(\gamma \) is a (unit speed) geodesic with \(\gamma(0) = p \), \(\gamma(t) = q \) and a nontrivial Jacobi field \(J \) along \(\gamma \) with \(J(0) = J(t) = 0 \).

Exercise: If \(p \) & \(q \) are conjugate points, then \(\exists \xi, \eta \) geodesics \(\xi, \eta \) \(\xi_t = \delta, \eta_t \) from \(p \) to \(q \):

\[
\begin{align*}
\xi_t & = \delta, \\
\eta_t & = 0
\end{align*}
\]
(Hint: Implicit Function Thm)

2) The following are equivalent:

 (i) \(M \) has no conjugate points.
 (ii) \(\forall x \in \tilde{M}, \) the exponential map \(\exp_x : T_x \tilde{M} \to \tilde{M} \) is a diffeomorphism.
 (iii) \(\forall x, y \in \tilde{M}, \exists \) a geodesic segment from \(x \) to \(y \).

(Hint: \(J(t) = D_{tv} \exp_p(tw) \) is a Jacobi field.)
The preceding discussion implies:

Theorem If M is nonpositively curved (i.e. $K \leq 0$ everywhere), then M has no conjugate points.

("Cartan-Hadamard Thin")