5. More about Path Integration and a Practice Midterm

This is an addendum to the week 4 pdf file entitled "Path Integration". I add one new result and end with a practice midterm exam.

A differential 1-form \(\omega \) on \(\mathbb{R}^n \) (or on an open set \(U \subset \mathbb{R}^n \)) is an expression of the form \(\sum_{i=1}^{n} f_i(x_1, \ldots, x_n) dx_i \) where the \(f_i \) are “nice” \(\mathbb{R} \)-valued functions on \(\mathbb{R}^n \) or on \(U \).

If \(\phi(t) = (\phi_1(t), \ldots, \phi_n(t)) : [a, b] \to \mathbb{R}^n \) (respectively \(\phi(t) = (\phi_1(t), \ldots, \phi_n(t)) : [a, b] \to U \)) is a path, then we can define

\[
\int_{\phi} \omega := \sum_{i=1}^{n} \int_{a}^{b} f_i(\phi(t)) \frac{d\phi_i(t)}{dt} dt.
\]

The point of this definition is that it does not depend on the parametrization of the path. If \(\theta : [\alpha, \beta] \to [a, b] \) then

\[
\int_{\phi \circ \theta} \omega = \int_{\phi} \omega.
\]

Here is a way to write down lots of interesting 1-forms. Let \(g : \mathbb{R}^n \to \mathbb{R} \) be a function, and define

\[
\omega = dg := \frac{\partial g}{\partial x_1} dx_1 + \ldots + \frac{\partial g}{\partial x_n} dx_n.
\]

For example, if \(g(x, y) = y \) then \(dg = dy \). If \(g(x, y) = xy \) then \(dg = ydx + xdy \).

We can view \(d \) as a mapping, the exterior derivative

\[
d : \{ \text{functions} \} \to \{ \text{1-forms} \}.
\]

A 1-form \(dg \) is said to be exact. What happens when we compute the Path integral of an exact 1-form? Good question! Glad you asked!!

Remember the chain rule tells us

\[
\frac{d}{dt} g(\phi(t)) = \sum_{i=1}^{n} \frac{\partial g}{\partial x_i}(\phi(t)) \frac{d\phi_i(t)}{dt}.
\]

Combining (1) and (2), we find the left hand identity in (3) below:

\[
\int_{\phi} dg = \int_{a}^{b} \frac{d}{dt} g(\phi(t)) dt = g(\phi(b)) - g(\phi(a)).
\]
The right hand identity is the fundamental theorem of calculus! Notice that the expression on the right depends only on the endpoints of ϕ. We have proven a theorem.

Theorem 1. Let $\phi : [a, b] \to \mathbb{R}^n$ be a path, and let ω be an exact 1-form on \mathbb{R}^n. Then $\int_{\phi} \omega$ depends only on the endpoints $\phi(a), \phi(b)$. I.e. if $\sigma : [\alpha, \beta] \to \mathbb{R}^n$ is another path with $\sigma(\alpha) = \phi(a)$ and $\sigma(\beta) = \phi(b)$, then $\int_{\sigma} \omega = \int_{\phi} \omega$. More precisely, if $\omega = dg$, then

$$\int_{\phi} \omega = g(\phi(b)) - g(\phi(a)).$$

Corollary 2. Let $\phi : [a, b] \to \mathbb{R}^n$ be a closed path; that is a path such that $\phi(a) = \phi(b)$. Then we have $\int_{\phi} \omega = 0$ for any exact 1-form ω.

Example 3. Consider two 1-forms in \mathbb{R}^2.

$$\omega = xdy + ydx; \quad \xi = xdy - ydx.$$

Consider the two paths from $(1, 0)$ to $(0, 1)$:

$$\phi(t) = (\cos t, \sin t), \quad 0 \leq t \leq \pi/2; \quad \sigma(t) = (1 - t, t), \quad 0 \leq t \leq 1.$$

Here are the path integral computations:

$$\int_{\phi} \omega = \int_{t=0}^{\pi/2} (\cos^2 t - \sin^2 t)dt = 0; \quad \int_{\sigma} \omega = \int_{0}^{1} (1 - t)dt - tdt = 0.$$

$$\int_{\phi} \xi = \int_{t=0}^{\pi/2} (\cos^2 t + \sin^2 t)dt = \pi/2; \quad \int_{\sigma} \xi = \int_{0}^{1} (1 - t)dt + tdt = 1.$$

Note that $\omega = xdy + ydx = d(xy)$ while ξ is not an exact 1-form.

Our theorem has an important converse. Let ω be a 1-form on \mathbb{R}^n. Suppose it is the case that the path integral $\int_{\phi} \omega$ depends only on the endpoints of ϕ. Said another way, suppose that whenever ϕ, σ have the same endpoints we get $\int_{\phi} \omega = \int_{\sigma} \omega$. Fix a point $p \in \mathbb{R}^n$, and define a function $g : \mathbb{R}^n \to \mathbb{R}$ by

$$g(x) = \int_{p}^{x} \omega,$$

where the integral is computed along any path ϕ from p to x. (By assumption, it doesn’t depend on the choice of path.) Write $\omega = \sum_i f_i(x_1, \ldots, x_n)dx_i$. I claim $\omega = dg$. Looking back at (2), this amounts to showing $f_i = \partial g/\partial x_i$. Let

$$\psi_\epsilon(t) = (x_1, \ldots, x_{i-1}, x_i + t, x_{i+1}, \ldots, x_n); \quad 0 \leq t \leq \epsilon$$
Writing \(\psi_{\varepsilon}(t) = (\psi_1(t), \ldots, \psi_n(t)) \) we see that \(\psi_j \) is constant for \(j \neq i \) and \(\psi_i(t) = x_i + t \). From the definition (1) it follows that

\[
\frac{\partial g}{\partial x_i} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{\psi_{\varepsilon}}^{\psi_{\varepsilon+\varepsilon}} \omega = \frac{1}{\varepsilon} \int_0^{\varepsilon} f_i(x_1, \ldots, x_{i-1}, x_i + t, x_{i+1}, \ldots, x_n) dt = f_i(x).
\]

Thus, \(\omega = dg \). We have proven:

Theorem 4. Let \(\omega \) be a 1-form on \(\mathbb{R}^n \) and assume the path integral \(\int_{x}^{y} \omega \) depends only on the endpoints \(x \) and \(y \), and not on the path between them. Then \(\omega \) is an exact 1-form. Indeed, \(\omega = dg \) where \(g(x) := \int_{x}^{y} \omega \) for a fixed \(y \).

Math 205

Practice Midterm

50 Minutes

1. Let \(D = \{ (x, y) \mid x^2 + y^2 \leq 1 \} \) be the unit disk in \(\mathbb{R}^2 \), and let \(f : D \to \mathbb{R} \) be some nice function. Discuss the computation of

\[
\int \int_D f dx dy
\]

(a) using upper and lower Riemann sums over small rectangles covering \(D \).

(b) using Fubini’s theorem.

State carefully all results that you use.

2. The map \(\phi(r, \theta) = (r \cos 2\pi \theta, r \sin 2\pi \theta) \) maps the unit square to the disk \(D \) as above.

(a) Compute the derivative matrix \(D\phi(r, \theta) \) and the determinant \(\det D\phi(r, \theta) \).

(b) Use 2(a) to give another formula for \(\int \int_D f dx dy \).

(c) Use 2(b) to compute the area of \(D \).

3. Compute the path integrals

\[
\int_{\phi} dx + dy; \quad \int_{\sigma} y dx - x dy
\]

Here \(\phi(t) = (\cos 2\pi t, \sin 2\pi t) \) and \(\sigma(t) = (t + 1, 7 - 2t) \), both on the interval \([0, 1]\).
4. Define 1-forms on \mathbb{R}^n. Define what it means for a 1-form to be exact. Show that the 1-form

$$\frac{xdx + ydy}{(x^2 + y^2)^2}$$

is an exact 1-form on $\mathbb{R}^2 - \{(0,0)\}$.