Calculus Placement Exam Answer Key

Harris School of Public Policy

September 23, 2013

1

A

\[
\lim_{x \to 4} \frac{x^2 - 16}{x^2 - 7x + 12} = \lim_{x \to 4} \frac{(x - 4)(x + 4)}{(x - 4)(x - 3)}
= \lim_{x \to 4} \frac{x + 4}{x - 3}
= 8
\]

B

\[
\lim_{x \to 2} \frac{\sqrt{x + 1} - \sqrt{3}}{x - 2} = \lim_{x \to 2} \frac{(\sqrt{x + 1} - \sqrt{3})(\sqrt{x + 1} + \sqrt{3})}{(x - 2)(\sqrt{x + 1} + \sqrt{3})}
= \lim_{x \to 2} \frac{x - 2}{(x - 2)(\sqrt{x + 1} + \sqrt{3})}
= \lim_{x \to 2} \frac{1}{\sqrt{x + 1} + \sqrt{3}}
= \frac{1}{2\sqrt{3}}
\]

C

\[
\lim_{x \to -\infty} \frac{1 + e^{-x}}{1 - x} = +\infty
\]

D

\[
\lim_{x \to -1} e^{x+1}(4 - x^2) = 3
\]
\[\lim_{x \to a} \frac{x^4 - a^4}{x - a} = \lim_{x \to a} \frac{(x^2 - a^2)(x^2 + a^2)}{x - a} = \lim_{x \to a} \frac{(x - a)(x + a)(x^2 + a^2)}{x - a} = \lim_{x \to a} (x + a)(x^2 + a^2) = 4a^3 \]

B

\[\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(x) \]

In other words, the limit evaluated in (2.1) is the derivative of the function \(f \). It represents the instantaneous rate of change of the function at any point.

3

A

\[h'(x) = 3x^2 \cdot \ln(1 + \sqrt{x}) + x^3 \cdot \frac{1}{1 + \sqrt{x}} \cdot \frac{1}{2\sqrt{x}} \]

B

\[j'(x) = \frac{1}{3} \left(\frac{1 - 3x}{1 + 3x} \right)^{\frac{2}{3}} \cdot \left(\frac{-3(1 + 3x) - 3(1 - 3x)}{(1 + 3x)^2} \right) \]

C

\[k'(x) = \ln(2) \cdot 2^{-x^2 + 3x} \cdot (-2x + 3) \]

There are vertical asymptotes where \(f(x) \) is undefined. That is, where \(x = -4 \) and \(x = -10 \):

\[\lim_{x \to -4^-} \frac{(3x - 6)(x + 6)}{(x + 4)(x + 10)} = +\infty \]

\[\lim_{x \to -4^+} \frac{(3x - 6)(x + 6)}{(x + 4)(x + 10)} = -\infty \]
\[
\lim_{x \to -10^-} \frac{(3x - 6)(x + 6)}{(x + 4)(x + 10)} = +\infty
\]
\[
\lim_{x \to -10^+} \frac{(3x - 6)(x + 6)}{(x + 4)(x + 10)} = -\infty
\]

Since the numerator and denominator of \(f(x) \) are of the same degree, the horizontal asymptote will occur where \(y \) equals the ratio of the leading coefficients. That is, where \(y = 3 \):

\[
\lim_{x \to \pm\infty} \frac{(3x - 6)(x + 6)}{(x + 4)(x + 10)} = 3
\]

5

First, find \(f'(x) \) to identify critical points:

\[
f'(x) = 3x^2 + 12x - 15
\]
\[
= 3(x - 1)(x + 5)
\]

Critical points can occur in three places: where \(f'(x) = 0 \), where \(f'(x) \) is undefined, and at end points. In this instance:

- \(f'(x) = 0 \) at \(x = -5 \) and \(x = 1 \)
- \(f'(x) \) is undefined nowhere
- End points occur at \(x = -10 \) and \(x = 3 \)

Next, we evaluate whether the derivative is positive or negative before and/or after these critical points to determine whether they represent maxima or minima:

<table>
<thead>
<tr>
<th></th>
<th>((x - 1))</th>
<th>((x + 5))</th>
<th>(f'(x))</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-10, -5)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Inc</td>
</tr>
<tr>
<td>(-5, 1)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Dec</td>
</tr>
<tr>
<td>(1, 3)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Inc</td>
</tr>
</tbody>
</table>

Therefore, minima occur at \(x = -10 \) and \(x = 1 \), and maxima occur at \(x = -5 \) and \(x = 3 \). To determine which are local minima / maxima and which are global, plug these \(x \) values into the function \(f \):

\[
f(-10) = -322
\]
\[
f(1) = -80
\]
\[
f(-5) = 28
\]
\[
f(3) = -36
\]
Finally, we find that a global minimum occurs at \(x = -10 \), and a local minimum at \(x = 1 \). A global maximum occurs at \(x = -5 \), and a local maximum at \(x = 3 \).

6

A

A local minimum occurs at \(x = 6 \), and a local maximum at \(x = -2 \).

B

There is an inflection point at \(x = -4 \). (Note that \(x = 3 \) is an asymptote, and therefore neither a maximum or minimum nor an inflection point.)

C

\[
g'(x) = \frac{3}{2}(12 - 2x)^{\frac{1}{2}} \cdot -2 = -3\sqrt{12 - 2x}
\]

7

A

Critical points can occur in three places: where \(g'(x) = 0 \), where \(g'(x) \) is undefined, and at end points. In this instance:
• $g'(x) = 0$ at $x = 6$
• $g'(x)$ is undefined nowhere
• $g(x)$ has an end point at $x = 6$ (The natural domain of $g(x)$ is $x \leq 6$.)

C

<table>
<thead>
<tr>
<th>Table 2: default</th>
<th>$\sqrt{12 - 2x}$</th>
<th>$g'(x)$</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-\infty, 6)$</td>
<td>+</td>
<td>-</td>
<td>Dec</td>
</tr>
</tbody>
</table>

Therefore, $g(x)$ is always decreasing.

D

Given $g(x)$ is always decreasing, there is no local maxima. A local minimum occurs at $x = 6$.

E

$$g''(x) = \frac{-3}{2} (12 - 2x)^{-\frac{3}{2}} \cdot -2$$
$$= \frac{3}{\sqrt{12 - 2x}}$$

F

Inflection points can occur in two places: where $g''(x) = 0$ and where $g''(x)$ is undefined. In this instance:
• $g''(x) = 0$ nowhere
• $g''(x)$ is undefined when $x = 6$

Therefore, an inflection point may occur at $x = 6$.

G

<table>
<thead>
<tr>
<th>Table 3: default</th>
<th>$\sqrt{12 - 2x}$</th>
<th>$g''(x)$</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-\infty, 6)$</td>
<td>+</td>
<td>+</td>
<td>Up</td>
</tr>
</tbody>
</table>

$g(x)$ is always concave up.

H

Given $g(x)$ is always concave up, there are no inflection points.
I

There are no vertical, horizontal, or slant asymptotes.

J

\[\frac{\partial f}{\partial x} = 2x + y^3 \]

\[\frac{\partial f}{\partial y} = 3xy^2 - 6 \]

C

\[
\begin{align*}
2x + y^3 &= 0 \\
2x + 2^3 &= 0 \\
x &= -4
\end{align*}
\]