Definition 5.1. A function $f : C \rightarrow C$ is continuous if for every open set $U \subset C$, the preimage $f^{-1}(U) = \{ x \in C \mid f(x) \in U \}$ is open in C.

Notice that this definition depends only on the topology of C. Continuous functions are the “right” notion of functions between topological spaces.

Lemma 5.2. If $X, Y \subset C$, then:

$$f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y) \quad \text{and} \quad f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y).$$

Exercise 5.3. Let $X \subset C$. Is it always true that $f(f^{-1}(X)) = X$? Is it always true that $f^{-1}(f(X)) = X$?

Theorem 5.4. $f : C \rightarrow C$ is continuous if and only if for all $x \in C$ and regions R containing $f(x)$, there exists a region S containing x such that $f(S) \subset R$.

Lemma 5.5. If $X, Y \subset C$, then:

$$f(X \cap Y) \subset f(X) \cap f(Y).$$

Exercise 5.6. Show that $f(X \cap Y) = f(X) \cap f(Y)$ is not always true by providing a counterexample.

Theorem 5.7. Let $f : C \rightarrow C$ be continuous and suppose that x is a limit point of $A \subset C$. Then $f(x)$ is a limit point of $f(A)$ or $f(x) \in f(A)$.

Definition 5.8. A set $X \subset C$ is connected if it cannot be written as the union $X = A \cup B$ of two separated sets. (See Definition 3.23 for what it means for two sets $A, B \subset C$ to be separated.)

Theorem 5.9. Every region $R \subset C$ is connected.

Theorem 5.10 (Intermediate Value Theorem). Suppose that $X \subset C$ is a connected subset of C and $f : C \rightarrow C$ is continuous. Then $f(X)$ is connected.

In ordinary calculus textbooks, the intermediate value theorem is often stated as follows. Assuming that the real numbers \mathbb{R} are a valid model for the continuum, it says that if $f : \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $a < b$, then for every point p between $f(a)$ and $f(b)$, there exists c such that $a < c < b$ and $f(c) = p$.

Exercise 5.11. Derive the usual formulation of the intermediate value theorem from Theorem 5.10.
Theorem 5.12. Suppose that $X \subset C$ is a compact subset of the continuum and $f : C \to C$ is continuous. Then $f(X)$ is also compact.

Corollary 5.13 (Extreme Value Theorem). If $X \subset C$ is non-empty, closed, and bounded and $f : C \to C$ is continuous, then $f(X)$ has a first and last point.

Exercise 5.14. Prove the usual version of the extreme value theorem: if $f : \mathbb{R} \to \mathbb{R}$ is continuous and $a < b$, then there exists a point $c \in [a, b]$ such that $f(c) \geq f(x)$ for all $x \in [a, b]$. Similarly, there exists a point $d \in [a, b]$ such that $f(d) \leq f(x)$ for all $x \in [a, b]$.

Before moving on, there is a potentially tricky issue that should be discussed. Often, a function is not defined on all of the continuum. For example, the function $f(x) = 1/x$ is only defined on the set of nonzero real numbers. So far, we have only defined continuity for functions defined on all of C. It turns out that the definition of continuity that we have given in terms of open sets only works if the domain of the function f is open.

Exercise 5.15. Find a function $f : [0, 1] \to \mathbb{R}$ that appears to be continuous (in the “not lifting your pencil” sense), but for which there exists an open set $U \subset \mathbb{R}$ such that $f^{-1}(U)$ is not open.

To remedy this, we follow Theorem 5.4 in making the following definition of continuity for functions defined on subsets $A \subset C$:

Definition 5.16. (General Definition of Continuity) Let $A \subset C$ be a subset of the continuum and let $f : A \to C$ be a function defined on A. We say that f is continuous if for all $x \in A$ and regions R containing $f(x)$, there exists a region S containing x such that $f(S \cap A) \subset R$.

Exercise 5.17. Discuss whether or not the theorems on this sheet remain true for a function f whose domain is not C but instead some subset $A \subset C$, provided that we use Definition 5.16 for continuity.