Instructions: This exam has a total of 100 points, 120 including extra credit. You have 50 minutes. Try to show your work, so that if you make a mistake you will at least get partial credit.

(10) 1. Calculate the following:
 - \(\sin \pi/4 \)
 - \(\cos 2\pi \)
 - \(\tan \pi \)
 - \(\csc \pi/2 \)
 - \(\cot 5\pi/4 \)

Solution:
 - \(\sin \pi/4 = 1/\sqrt{2} \)
 - \(\cos 2\pi = 1 \)
 - \(\tan \pi = 0 \)
 - \(\csc \pi/2 = 1 \)
 - \(\cot 5\pi/4 = 1 \)

(10) 2. Prove \(\tan^2 x + 1 = \sec^2 x \).

Solution:
\[
\tan^2 x + 1 = \frac{\sin^2 x}{\cos^2 x} + 1 = \frac{\sin^2 x + \cos^2 x}{\cos^2 x} = 1/\cos^2 x = \sec^2 x,
\]
where we use the pythagorean identity \(\sin^2 x + \cos^2 x = 1 \).

(20) 3. Use the fact that \(\sin(a + b) = \sin a \cos b + \cos a \sin b \) to prove that \(f(x) = \sin x \) is continuous everywhere. You may assume that \(\lim_{x \to 0} \sin x = 0 \) and that \(\lim_{x \to 0} \cos x = 1 \).

Solution:
We need to show that for any \(c \lim_{x \to c} \sin x = \sin c \). Note that \(\lim_{x \to c} \sin x = \lim_{h \to 0} \sin(c + h) = \lim_{h \to 0} \sin c \cos h + \cos c \sin h = \sin c \lim_{h \to 0} \cos h + \cos c \lim_{h \to 0} \sin h = \sin c(1) + \cos c(0) = \sin c \). So we are done.

(10) 4. Calculate \(\lim_{t \to 0} \frac{\sin 5t}{8t} \).

Solution:
\[
\lim_{t \to 0} \frac{\sin 5t}{8t} = \lim_{t \to 0} \frac{5 \sin 5t}{8t} = \frac{5}{8} \lim_{t \to 0} \frac{\sin 5t}{5t} = \frac{5}{8} (1) = \frac{5}{8}.
\]
(10) 5. Calculate, using the definition of derivative, the derivative of \(f(x) = \cos x \) at \(c = 0 \).

Solution:

By the definition of derivative,
\[
 f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\cos x - \cos 0}{x - 0} = \lim_{x \to 0} \frac{\cos x - 1}{x} = 0.
\]

(10) 6. Find the maxima and minima of \(f(x) = \cos^2 x \) on the interval \([0, \pi]\), and identify where the function is increasing and where it is decreasing.

Solution:

\(f'(x) = -2 \cos x \sin x \) by the chain rule. \(f'(x) = 0 \) at \(x = \pi/2 \) (remember, we only consider the derivative at interior points of the interval), so the points we need to check are the \(0, \pi/2, \pi \) (endpoints and stationary point). At \(x = 0 \) and \(\pi \), \(f(x) = \cos^2 x = 1 \), and at \(x = \pi/2 \), \(f(x) = 0 \). So \(f \) achieves its maximum value 1 at 0, \(\pi \) and its minimum value 0 at \(x = \pi/2 \). \(f'(x) < 0 \) for \(x \in (0, \pi/2) \) and \(f'(x) > 0 \) for \(x \in (\pi/2, \pi) \) so by the monotonicity theorem, \(f \) is decreasing on the first interval and increasing on the second.

(10) 7. Find the maxima and minima of \(f(x) = |x| \) on the interval \([-1, 2]\), and identify where the function is increasing and where it is decreasing.

Solution:

\(f'(x) = 1 \) for \(x > 0 \), \(f'(x) = -1 \) for \(x < 0 \) and \(f'(0) \) does not exist. So the points we must check are \(-1, 0, 2\), endpoints and a singular point. \(f(-1) = 1 \), \(f(0) = 0 \), and \(f(2) = 2 \), so \(f \) achieves its maximum value 2 at \(x = 2 \) and its minimum value 0 at \(x = 0 \). It is increasing on \((0, 2)\) and decreasing on \((-1, 0)\).

(10) 8. Suppose we are given 20 meters of fencing, and we want to make a rectangular fence. What is the maximum area we can enclose?

Solution:

Let us suppose the length of one side is \(x \) meters. Then the length of the other side must be \(y = 10 - x \) meters, since the perimeter has to be 20 meters, and so \(2x + 2y = 20 \), i.e., \(x + y = 10 \), or \(y = 10 - x \). Thus the area can be written \(A(x) = x(10 - x) \), where \(x \) ranges from 0 to 10. So we want to maximize \(A(x) \) on the interval \([0, 10]\). \(A'(x) = 10 - 2x \), so \(A'(x) = 0 \) when \(x = 5 \). So we need to check \(A(x) \) for \(x = 0, 5, 10 \). \(A(0) = A(10) = 0 \), and \(A(5) = 25 \). Thus the maximum area we can enclose is 25 square meters.

(10) 9. Suppose we drive from Chicago to New York City, a distance of approximately 900 miles, in a smooth manner (i.e., continuous and differentiable), and it takes us 15 hours. What does the mean value theorem tell us about our speed?

Solution:

The MVT tells us that at some point in our journey we were traveling exactly at \(900/15 = 60 \) miles per hour.

(20) 10. (Extra credit) Suppose that \(f \) is continuous on \([a, b]\), and differentiable on \((a, b)\), with \(f'(x) > 0 \) for \(x \in (a, b) \). Prove that \(f \) is strictly increasing on \([a, b]\). Hint: Use the mean value theorem.
Solution:
To show f is strictly increasing on $[a, b]$ we must show that given any $x_1, x_2 \in [a, b], x_1 < x_2$, that $f(x_1) < f(x_2)$. Consider the interval $[x_1, x_2]$. f is continuous on this interval, and differentiable on the open interval (x_1, x_2). So, by the MVT, there is a point $c \in (x_1, x_2)$ such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

We know $f'(c) > 0$, and that $x_2 - x_1 > 0$, so we get that $f(x_2) - f(x_1) > 0$, i.e., that $f(x_2) > f(x_1)$ as desired.